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1 Introduction

This report is a summary of the theory underlying the Cross-Entropy (CE)
method, as discussed in the tutorial by de Boer, Kroese, Mannor and Rubinstein
[1]. For a more thorough discussion of the method and its applications, please
refer to the original tutorial and the references cited in the tutorial.

The CE method, pioneered by Rubinstein in 1997 as an adaptive algorithm
for estimating probabilities of rare events, has been broadened as a generic and
efficient tool for solving a myriad of NP-hard problems. Beyond its original
purpose, the CE method has been employed in deterministic and stochastic
combinatorial optimization problems (COPs) and continuous multi-extremal
optimization problems.

This report is organized as follows. In Section 2, we discuss the fundamental
theory of the CE method and specialize the method to rare-event simulation
(RES) and COPs. In Section 3, we consider more sophisticated versions of the
CE method, and briefly discuss convergence issues. We conclude the report in
Section 4.

2 The Cross-Entropy method

Regardless of the application at hand, the crux of the CE method remains
the same. Abstractly, the CE method is an iterative algorithm comprising the
following two steps:

1. Generate random data samples using a set of dynamic parameters.

2. Update the parameters governing the random data generation using the
data samples themselves with the objective of improving future data sam-
ples.

In the remainder of this section, we specialize the above general algorithm to
RES and COPs. Refinements to the CE method and convergence are discussed
in Section 3.
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2.1 Rare-event simulation

The estimation of the probability of rare events often arises in assessing the
performance of various engineering systems. If analytical or asymptotic charac-
terizations of the system are unavailable, as is often the case, one must resort to
simulation techniques. The simplest and most inefficient simulation technique
is Crude Monte Carlo (CMC) simulation, where the system is simulated under
normal operating parameters for a very long time. A more clever simulation
technique is Importance Sampling (IS), where the system is simulated under
a different (but related) set of parameters which render the occurrence of the
rare-event of interest more likely. The difficultly with the IS technique, as we
shall see, is obtaining an optimal (or near-optimal) alternative set of parameters
under which we would like to simulate the system. The CE method, when used
in the context of RES, acts as an adaptive IS simulation technique in that it
iteratively refines estimates of the optimal set of alternative IS parameters.

We now discuss the theory behind the CE method when applied to RES. Let
X = (X1, . . . , Xn) be a random vector taking values in some space X , let S be
a real-valued function on X , and let f(·;u) be a probability density function on
X parameterized by u. Suppose now that we are interested in the probability
of occurrence of a rare event. Specifically, we are interested in the very small
probability l that S(x) is greater than or equal to a real number γ under f(·;u):

l = Pu(S(X) ≥ γ) = EuI{S(X)≥γ}.

In a CMC approach to estimating l, we would simply draw a random sample
X1, . . . ,XN from f(·;u) and compute:

1
N

N∑
i=1

I{S(Xi)≥γ}

to arrive at an unbiased estimate of l. Clearly, for rare events, most of the terms
in the above summation will be zero, thus requiring a very large value of N to
obtain a meaningful estimate of l.

An IS approach to estimating l would proceed as follows. We first note that,
using an importance sampling density g, we can represent l as:

l =
∫

I{S(x)≥γ}
f(x;u)
g(x)

g(x)dx = EgI{S(X)≥γ}
f(X;u)
g(X)

.

Hence, an unbiased estimator of l is:

l̂ =
1
N

N∑
i=1

I{S(Xi)≥γ}W (Xi), (1)

where W (x) = f(x;u)/g(x) is the likelihood ratio (LR), and X1, . . . ,XN are
i.i.d. vectors drawn from g. The optimal importance sampling density is:

g∗(x) =
I{S(x)≥γ}f(x;u)

l
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in that the resulting estimate (1) has zero variance and only one sample is re-
quired. As we mentioned earlier, the problem with the IS approach is obtaining
g∗, as this density depends on the quantity l which we are attempting to es-
timate. In addition, it is often convenient to choose an importance sampling
density of the same form as f(·;u). In this case, we are faced with the task
of finding the density f(·;v) which is “closest” to g∗ in some sense. A conve-
nient measure of “closeness” for this task is the Kullback-Leibler (K-L) distance,
which is defined as:

D(g, h) = Eg ln
g(X)
h(X)

=
∫

g(x) ln g(x)dx −
∫

g(x) lnh(x)dx.

Minimizing the K-L distance between g∗ and f(·;v) is equivalent to the following
maximization problem:

maxv EuI{S(X)≥γ} ln f(X;v),

which, using another importance sampling density f(·;w), can be rewritten as:

maxv EwI{S(X)≥γ}W (X;u,w) ln f(X;v). (2)

where W (x;u,w) = f(x;u)/f(x;w) is the LR between f(·;u) and f(·;w) at x.
The value v∗ which maximizes (2) can be estimated by solving the stochastic
counterpart of (2):

v∗ = argmaxv

1
N

N∑
i=1

I{S(Xi)≥γ}W (Xi;u,w) ln f(Xi;v). (3)

where X1, . . . ,XN are iid vectors drawn from f(·;w). In instances where the
function to be maximized in (3) is convex and differentiable with respect to v,
the solution may be analytically obtained by solving the following system of
equations1:

1
N

N∑
i=1

I{S(Xi)≥γ}W (Xi;u,w)∇ ln f(Xi;v) = 0. (4)

Note, however, that the approaches implied by (3) and (4) to estimating v∗

only yield meaningful results when not too many of the I{S(Xi)≥γ} terms are
zero — that is, when the event of interest is not rare. For rare events, we must
therefore resort to an alternative technique, such as an algorithm based on the
CE method.

We approach the task of estimating v∗ by following an iterative algorithm in
which the two parameters vt and γt associated with each iteration progressively
approach v∗ and γ, respectively.

1The convenience of the K-L distance measure is now apparent, since it lends to analytic
solutions. On the other hand, alternative metrics, such as variance minimization, generally
involve complicated numerical optimization techniques [1].
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Specifically, we begin by assigning v0 = u, generating N samples X1, . . . ,XN

from the density f(·;v0), and assigning γ1 to the value which makes the prob-
ability l1 = Ev0I{S(X)≥γ1} approximately equal to ρ, a specified constant. We
complete the first iteration by letting v1 be equal to the optimal vector param-
eter for estimating l1. Continuing in this way, γt will increase until eventually
reaching its destination value of γ. Simultaneously, vt continually changes to
reflect an estimate of the optimal vector parameter for estimating lt, and it thus
reaches its destination value of v∗ at the termination of the algorithm. The
following are the details of the algorithm.

Algorithm 1 (Probabilistic CE algorithm for RES [1])
1. Define v̂o = u. Set t = 1.

2. Generate samples X1, . . . ,XN from the density f(·;vt−1) and compute the
sample (1−ρ)-quantile of γ̂t of the performances — that is, γ̂t = S(�(1−ρ)�)
— provided γ̂t is less than γ. Otherwise, set γ̂t = γ.

3. Use the same sample X1, . . . ,XN to solve the stochastic program:

v̂t = argmaxv

1
N

N∑
i=1

I{S(Xi)≥γ̂t}W (Xi;u, v̂t−1) ln f(Xi;v).

4. If γ̂t < γ, set t = t+1 and reiterate from Step 2. Otherwise, proceed with
Step 5.

5. Estimate the rare-event probability l using the LR estimate:

l̂ =
1

N1

N1∑
i=1

I{S(Xi)≥γ}W (Xi;u, v̂T ),

where T denotes the final number of iterations.

The above algorithm is probabilistic in the sense that γ̂t, v̂t and l̂ are esti-
mated quantities which depend probabilistically on the samples X1, . . . ,XN . It
is possible to define a deterministic version of the above algorithm by replacing
sample means and sample quantiles by expectations and quantiles.

Algorithm 2 (Deterministic CE algorithm for RES [1])
1. Define vo = u. Set t = 1.

2. Calculate γt as:
γt = maxs Pvt−1(S(X) ≥ s) ≥ ρ,

provided this is less than γ; otherwise, set γt = γ.

3. Calculate vt as:

argmaxv Evt−1I{S(X)≥γt}W (X;u,vt−1) ln f(X;v).
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4. If γt = γ, then stop; otherwise, set t = t + 1 and reiterate from Step 2.

5. Calculate the rare-event probability l as:

l = EvT
I{S(X)≥γ}W (X;u,vT ),

where T denotes the final number of iterations.

2.2 Combinatorial optimization

The CE method for COPs essentially involves recasting a deterministic COP
into a probabilistic framework where the RES technique of Section 2.1 may be
applied.

Let us assume that in our COP X denotes a finite set of states, and S denotes
a real-valued performance function that we wish to maximize over X . Let us
denote the maximum value of S by γ∗ and the state at which this maximum
occurs by x∗. We recast this deterministic COP into a probabilistic framework
as follows. Define f(·;v) to be a probability mass function on X , parameterized
by a real-valued parameter vector v. For a certain parameter vector u and
threshold γ we define l(γ) as the probability that the performance function S
exceeds γ:

l(γ) = Pu(S(X) ≥ γ) =
∑
x

I{S(x)≥γ}f(x;u) = EuI{S(X)≥γ}.

Now, in a typical COP, |X | is very large and l(γ∗) = f(x∗;u) = 1/|X | is
consequently very small, rendering l(γ∗) a rare event. Thus, we are now in a
position to employ the algorithms of Section 2.1 to solve this problem. The
following is the resulting procedure.

Algorithm 3 (Probabilistic CE algorithm for COPs [1])
1. Define v̂o = u. Set t = 1.

2. Generate samples X1, . . . ,XN from the density f(·;vt−1) and compute the
sample (1−ρ)-quantile of γ̂t of the performances — that is, γ̂t = S(�(1−ρ)�)
— provided γ̂t is less than γ. Otherwise, set γ̂t = γ.

3. Use the same sample X1, . . . ,XN to solve the stochastic program:

v̂t = argmaxv

1
N

N∑
i=1

I{S(Xi)≥γ̂t} ln f(Xi;v). (5)

4. If for some t ≥ d:
γ̂t = γ̂t−1 = · · · = γ̂t−d,

then stop; otherwise, set t = t + 1 and reiterate from Step 2.

Several remarks are now in order:
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• A significant difference between Algorithm 1 and Algorithm 3 is the role
of the initial parameter vector u. In Algorithm 1, u uniquely characterizes
the system under consideration, whereas in Algorithm 3, u is arbitrarily
chosen to initialize the algorithm. The LR term W is thus implicitly set
to unity in Algorithm 3 because it is meaningless.

• Rather than updating v̂t through (5), it is often beneficial to use the
following smoothing function:

v̂t = αŵt + (1− α)v̂t−1,

where ŵt is the vector derived via (5). Employing such a smoothing
function prevents harmful recurrences of zeros and ones in the parameter
vectors.

• As in the case of RES, a deterministic version of the above algorithm can
be defined.

3 Enhancements and convergence

In this section, we consider two modifications to the basic CE method presented
in Section 2. The first modification involves the use of alternative performance
functions to the one inherently defined by the original problem. The second
modification allows the CE method to be fully self-tuning.

3.1 Alternative performance functions

In our application of the CE method to RES and COPs in Section 2, we were
required to estimate the rare-event probability:

l(γ) = EuI{S(X)≥γ}.

We could modify the original CE algorithm by replacing the indicator function
in the above expression with an alternative function ϕ(s; γ) which, for a maxi-
mization problem, is increasing in s for each γ ≥ 0 and decreasing in γ for each
s ≥ 0. For example, for functions ϕ(s; γ) of the form:

ϕ(s; γ) = ψ(s)I{s≥γ},

the updating of γ̂t would remain unchanged and the updating of v̂t would be
given by:

argmaxv

1
N

N∑
i=1

I{S(Xi)≥γ̂t}ψ(S(Xi) ln f(Xi;v).

Empirical evidence shows that ϕ = s speeds up the algorithm, while high-power
polynomials should be avoided as they lead more easily to local minima.
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3.2 Fully Adaptive CE algorithm

In this subsection, we discuss the Fully Adaptive CE (FACE) algorithm which
is a fully automated version of Algorithm 3.

In FACE, parameters are updated using the best performing Ne samples,
where Ne is a constant specified ahead of time. We define ρt as Ne/Nt. For
each iteration, Nt is obtained using the following procedure. At each iteration,
we would like:

St,(Nt) ≥ St−1,(Nt−1), (6)

which we attempt to satisfy by allowing Nt to take on a wide range of values
from Nmin to Nmax. We begin by setting Nt = Nmin and incrementing Nt

until (6) is satisfied. If Nt = Nmax and (6) is violated, then we update γ̂t and
v̂t as we did in Algorithm 3. If, however, samples of size Nmax were generated
for several iterations while violating (6), then FACE bails out declaring failure.
At each iteration, we would also like:

γ̂t > γ̂t−1. (7)

Collectively, (6) and (7) imply improvement in both the best and worst of the
Ne samples in each iteration. Empirically, it was found that FACE speeds up
convergence up to two times faster than the original CE algorithm with static
N and ρ. The full FACE algorithm is detailed below.

Algorithm 4 (FACE Algorithm [1])
1. At each iteration t, t = 1, 2, . . . take a sample of size Nt, (Nmin ≤ Nt ≤

Nmax) from f(·; v̂t−1). Denote the corresponding ordered sample perfor-
mances by St,(1) ≤ · · · ≤ St,(N).

2. If (6) and (7) hold, proceed with the updating Steps 2 and 3 of Algorithm 3
using the Nt samples in Step 1.

3. If (6) and (7) are violated, check whether:

St,(Nt) = · · · = St,(Nt−d) = St−1,(Nt−1) (8)

holds, for some integer d. If (8) holds, stop and deliver St,(Nt) as an
estimate of the optimal solution. Call such St,(Nt) a reliable estimate of
the optimal solution.

4. If Nt = Nmax and (6), (7) and (8) are still violated, proceed with Steps
2 and 3 of Algorithm 3 using the Nmax samples mentioned in Step 1 and
go to Step 3.

5. If Nt = Nmax for several iterations in turn and (6), (7) and (8) are vi-
olated, stop and announce that FACE identified a “hard” problem. Call
St,(Nt) an unreliable estimate of the optimal solution.
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3.3 Convergence

The convergence of the CE method to an estimate of the optimal CE parameter
in a finite number of iterations with a finite sample size was shown in [2] under
certain assumptions. Specifically, it was assumed that the probability being
estimated in the CE method did not vanish in a neighborhood of the optimal
parameter v∗. Furthermore, the algorithms for which convergence was proven
were modified versions of Algorithms 1 and 2 in which ρ is adaptively decreased,
and the sample size N is adaptively increased. In the same work, the authors
showed that for sufficiently small ρ and sufficiently large N , the convergence to
the optimal CE parameter is exponential in the sample size N .

4 Conclusion

In this report, we summarized the fundamental theoretical aspects of the CE
method pioneered by Rubinstein. The basic method was specialized to simula-
tion of rare events and combinatorial optimization. While these are the most
popular applications of the CE method, the method has found use in other
areas, such as machine learning and vector quantization and clustering [1].

While the CE method has been widely deployed to efficiently solve a wide
range of difficult problems, such as the Max-Cut and Travelling Salesman prob-
lems, there still remains a great deal to be understood about the dynamics and
convergence properties of the method. A better understanding of the method’s
dynamics which contribute to its resilience to local minima is desirable, in ad-
dition to bounds for rates of convergence of the method.

References

[1] P. T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubin-
stein, A tutorial on the Cross-Entropy method, (2003), Internet:
http://wwwhome.cs.utwente.nl/

[2] T. Homem de Mello and R. Y. Rubinstein, Rare event estimation for static
models via Cross-Entropy and Importance Sampling, (2003), submitted for
publication.

8


