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Introduction

Motivation
* Observe high-dimensional data

« Hopefully, a low-dimensional (simple) underlying process
* Few degrees of freedom
* Relatively little noise (in observation space)
« Complex (nonlinear) observation process
* Low-dim process lends structure to the high-dim data
* how can we access that structure?
* Multivariate examples

* Image data, spectral coefficients, word co-appearance,
gene co-regulation, many more...



Introduction (cont'd)
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* Three (simple) examples of manifolds

o All three are two-dim. data embedded in 3D

e Linear, “S”-shape, “Swiss roll”
 For all three, we would like to recover:
 That the data is only two-dimensional

» “Consistent” locations for the data in 2D



Outline

Background
 Principal Component Analysis
« Multidimensional Scaling

* Principal Coordinate Analysis

Locally Linear Embedding (Roweis and Saul)
IsoMap (Tenenbaum, de Silva, and Langford)
 Original version

 Landmark and Conformal versions
Comparisons



PCA |

 Principal Component Analysis

* Find linear subspace projection P which preserves
the data locations (under quadratic error)

« Equivalent: find linear subspace projection P which
leaves largest variance for PX

minE[||XJ — PXJ||?]
= E[XJJ X —2PXJJ' X — PXJJ X'P']
= const — E[PXJJ' X' P]

 Jis the “centering matrix” (XJ is zero-mean)

« Simple eigenvector solution



PCA I

* Eigenvectors =

directions of principal variation

m ]Qx rPxXJJI'x'p

. Top g eigenvectors of XJJ X'
Vq — ['U]_,...,’Uq]
IS a basis for the g-dim subspace

» Locations given by V, X J




Manifolds

« PCA : works for (a)

* Doesn’'t do much good for (b) or (c)
* Linear subspace doesn’t explain it well

* What do we mean by “consistent locations”?
* Preserve local relationships and structure

* One possibility : preserve distances
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Multidimensional Scaling

« Multidimensional scaling (MDS)
 Given “pre-distances” D (possibly non-Euclidean)

* Find Euclidean g-dim space which preserves those
relationships

« We'll just concentrate on Euclidean pre-distances;
(possibly unknown) locations X in p-dim space

- “preserves” : use D = distance in the g-dim space
* Need to define a cost function
. STRAIN p(D,D) = ||J(D* - D?)J||%
- STRESS p(D.D) = ||D - D|7
« SSTRESS (D, D) =|ID* - D?|}



Classical MDS

+ STRAIN : (D, D) = ||J(D? - D?)J||3

 Solution is given by the eigenstructure of
—%J’DQJ = J'X'XJ

 Top g eigenvectors W, = [w1, ..., wq]

give locations Y =W,

* This is exactly the same solution as PCA:

XJJI X v, = MNov, = I X' XTI X '0) = X\ X v;)
= Y =W, =V, XJ

* S0, we didn’t really get anywhere?



“Local” relationships

« MDS - still produced a linear embedding — why?
* Preserved all pairwise distances

 Let’s look at one of our examples:
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 Nonlinear manifold:

* local distances (a) make sense

* but, global distances (b) don’t respect the geometry



“Local” relationships

« Two solutions which preserve local structure:
 Locally Linear Embedding (LLE)

« Change to a local representation (at each point)

 Base the local rep. on position of neighboring points

* IsoMap
 Estimate actual (geodesic) distances in p-dim. space

* Find g-dim representation preserving those distances

« Both rely on the locally flat nature of the manifold
» How do we find a locality in which this is true?
* (At least) two possibilities
* k-nearest-neighbors

» c-ball



Locally Linear Embedding

« Overview

» Select a local neighborhood

« Change each point into a
coordinate system based on its
neighbors

* Find new (g-dim) coordinates
which reproduce these local
relationships
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Locally Linear Embedding
W = arg mmi/n Hxi_jgr:(f,;) Wizl s.t. v@-%:wij =1
* This has several nice properties
» Invariant to (local) rotation of all points in (%)
e Invariant to (local) scale...

* Invariant to (local) translations (due to norm. of W)




Locally Linear Embedding

Find new (qg-dim) coordinates which
reproduce these local coordinates

Y = arg min [|y;— S O Wiyll? st Yi=0, YY'=1I
J€r(2)
Or, as the quadratic form
arg myin Y(I -W)' (I -W)Y
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Locally Linear Embedding

Find new (qg-dim) coordinates which
reproduce these local coordinates

7 — i 12 — -
Y = arg min |2y — | Z Wiyll© st. Y1=0, YY =I
ger(4)
Or, as the quadratic form
arg myin Y(I -W)' (I -W)Y

This can be solved using the eigenstructure as well:
We want the min. variance directions of (I — W)'(I — W)
1 is an eigenvector with eigenvalue 0 (translational invar);

The next g smallest eigenvectors form the coordinates Y



Application

* Does it work?
* Yes, often

* When does it fail? Hard to
answer this...

* Another method (IsoMap) will be
easier to analyze

 Makes a clear set of
assumptions

 Will help quantify what LLE
lacks...

(From LLE
homepage)



IsoMap

« Recall classical MDS (principal coordinate analysis)
 Given a set of (all) distance measurements
* Finds optimal Euclidean-distance reconstruction
(assuming cost criterion p)
* What we really want:

* Find distance measurements along manifold
(geodesics)

* Find low-dim reconstruction which also has these
geodesic distances

* Under certain conditions, we can obtain this from MDS!

* Need low-dim geodesics = low-dim Euclidean dist.



IsoMap

« Overview

» Select a local neighborhood

* Find estimated geodesic
distances between all pairs in X
* use classical MDS to find the
best g-dim. space with these
(Euclidean) distances




IsoMap

Find estimated geodesic distances between
all pairs in X:
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Keep local distances Discard far distances
(close to geodesic)

For far points, we can approximate the geodesic by
the shortest path along retained distances:
(found e.q. via dynamic programming)



IsoMap

Use classical MDS to find an equivalent
low-dim Euclidean space

If the true data comes from a convex set of R4
this will recover the true geometry (since
geodesic length = Euclidean distance);
otherwise it will introduce distortions




IsoMap

Landmark Points to improve efficiency
* Naive implementation of IsoMap

« Shortest Path — O(n3) (slightly less)
 Find eigenvectors — O(n?3)

« Use only a subset of points (m) for transformation
 Shortest path — < O(m n?)

 Eigenvectors — O(m?2 n)
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Original points and reconstruction using landmark points (black)



Conformal IsoMap

Extend to non-isomorphic mappings

« Conformal mappings: preserve orientation but not distance;
distance can warp (locally)

(LLE already tries to allow for this)
« Example: fishbowl — no isomorphic map to plane
« Solution: a different assumption

* Assume that data is uniformly distributed in low-dimensional space

» Use distribution to estimate local distance warp

i
L] L g 0
(4
ol C gy [
i .._’q ~ _a
-
A X TES

3D data IsoMap Conformal IsoMap




Examples

(From IsoMap

—* homepage)
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Examples

(From LLE
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Examples

(From LLE
homepage)




Examples
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Difficulties

IsoMap
* When assumptions are violated:

* Non-convex sets in R4
* Non-isomorphic mappings (standard version)
* Non-uniform distributions (conformal version)
LLE
* Much more difficult to say...
* No requirement that faraway points stay far
« Susceptible to “folding”
» Can see “spider-web” like behavior

* Hard to tell if this is an artifact or not...



More recent work

* Lots of “LLE-like” solutions that try to fix this:
* Penalties to align multiple local coordinate systems
« Adding ideas from (and for) density estimation

* Next week...

 Also: finding mappings
XtoY, YtoX
* Supervised learning

* Re-solve optimization

(From LLE
homepage)




