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Motivation
• Observe high-dimensional data

• Hopefully, a low-dimensional (simple) underlying process

• Few degrees of freedom

• Relatively little noise (in observation space)

• Complex (nonlinear) observation process

• Low-dim process lends structure to the high-dim data

• how can we access that structure?

• Multivariate examples

• Image data, spectral coefficients, word co-appearance, 
gene co-regulation, many more…

Introduction



• Three (simple) examples of manifolds

• All three are two-dim. data embedded in 3D

• Linear, “S”-shape, “Swiss roll”

• For all three, we would like to recover:

• That the data is only two-dimensional

• “Consistent” locations for the data in 2D

Introduction (cont’d)



Background
• Principal Component Analysis

• Multidimensional Scaling

• Principal Coordinate Analysis
Locally Linear Embedding  (Roweis and Saul)

IsoMap (Tenenbaum, de Silva, and Langford)

Outline

Comparisons

• Original version

• Landmark and Conformal versions



• Principal Component Analysis

• Find linear subspace projection P which preserves 
the data locations (under quadratic error)

• Equivalent: find linear subspace projection P which 
leaves largest variance for PX

• J is the “centering matrix” (XJ is zero-mean)

• Simple eigenvector solution

PCA   I



• Eigenvectors = 

directions of principal variation

• Top q eigenvectors of 

is a basis for the q-dim subspace

• Locations given by

PCA   II



• PCA : works for (a)

• Doesn’t do much good for (b) or (c)

• Linear subspace doesn’t explain it well

• What do we mean by “consistent locations”?

• Preserve local relationships and structure

• One possibility : preserve distances

Manifolds

(a) (b) (c)



• Multidimensional scaling (MDS)

• Given “pre-distances” (possibly non-Euclidean)

• Find Euclidean q-dim space which preserves those 
relationships

• We’ll just concentrate on Euclidean pre-distances; 
(possibly unknown) locations X in p-dim space

• “preserves”  :  use      = distance in the q-dim space

• Need to define a cost function

• STRAIN

• STRESS

• SSTRESS

Multidimensional Scaling



• STRAIN   : 

• Solution is given by the eigenstructure of 

• Top q eigenvectors 

give locations 

• This is exactly the same solution as PCA:

• So, we didn’t really get anywhere?

Classical MDS



• MDS – still produced a linear embedding – why?

• Preserved all pairwise distances

• Let’s look at one of our examples:

“Local” relationships

• Nonlinear manifold: 

• local distances (a) make sense

• but, global distances (b) don’t respect the geometry



• Two solutions which preserve local structure:

• Locally Linear Embedding (LLE)
• Change to a local representation (at each point)

• Base the local rep. on position of neighboring points

• IsoMap
• Estimate actual (geodesic) distances in p-dim. space

• Find q-dim representation preserving those distances

• Both rely on the locally flat nature of the manifold
• How do we find a locality in which this is true?

• (At least) two possibilities

• k-nearest-neighbors

• ε-ball

“Local” relationships



• Change each point into a 
coordinate system based on its 
neighbors
• Find new (q-dim) coordinates 
which reproduce these local 
relationships

Locally Linear Embedding
• Overview

• Select a local neighborhood



Locally Linear Embedding

• This has several nice properties

• Invariant to (local) rotation of all points in

• Invariant to (local) scale…

• Invariant to (local) translations (due to norm. of W)



Find new (q-dim) coordinates which 
reproduce these local coordinates

Locally Linear Embedding

Or, as the quadratic form



Find new (q-dim) coordinates which 
reproduce these local coordinates

Locally Linear Embedding

Or, as the quadratic form

This can be solved using the eigenstructure as well:

We want the min. variance directions of

1 is an eigenvector with eigenvalue 0 (translational invar);

The next q smallest eigenvectors form the coordinates Y



Application

(From LLE 
homepage)

• Does it work?

• Yes, often

• When does it fail? Hard to 
answer this…

• Another method (IsoMap) will be 
easier to analyze

• Makes a clear set of 
assumptions

• Will help quantify what LLE 
lacks…



IsoMap
• Recall classical MDS (principal coordinate analysis)

• Given a set of (all) distance measurements

• Finds optimal Euclidean-distance reconstruction

(assuming cost criterion ρ) 

• What we really want:

• Find distance measurements along manifold 
(geodesics)

• Find low-dim reconstruction which also has these 
geodesic distances

• Under certain conditions, we can obtain this from MDS!

• Need low-dim geodesics = low-dim Euclidean dist.



IsoMap
• Overview

• Select a local neighborhood
• Find estimated geodesic 
distances between all pairs in X
• use classical MDS to find the 
best q-dim. space with these 
(Euclidean) distances



IsoMap
Find estimated geodesic distances between 
all pairs in X:

Keep local distances 
(close to geodesic)

Discard far distances

For far points, we can approximate the geodesic by 
the shortest path along retained distances:                    
(found e.g. via dynamic programming)



IsoMap
Use classical MDS to find an equivalent 
low-dim Euclidean space

If the true data comes from a convex set of Rq
this will recover the true geometry (since 
geodesic length = Euclidean distance); 
otherwise it will introduce distortions



IsoMap
Landmark Points to improve efficiency
• Naïve implementation of IsoMap

• Shortest Path – O(n3)   (slightly less)

• Find eigenvectors – O(n3)

• Use only a subset of points (m) for transformation

• Shortest path – < O(m n2)

• Eigenvectors – O(m2 n)

Original points and reconstruction using landmark points (black)



Conformal IsoMap
Extend to non-isomorphic mappings

• Conformal mappings: preserve orientation but not distance; 
distance can warp (locally)

(LLE already tries to allow for this)

• Example: fishbowl – no isomorphic map to plane

• Solution: a different assumption

• Assume that data is uniformly distributed in low-dimensional space

• Use distribution to estimate local distance warp

3D data                    IsoMap Conformal IsoMap LLE



Examples

(From IsoMap
.      homepage)



Examples

(From LLE 
homepage)



Examples

(From LLE 
homepage)



Examples

(From LLE 
homepage)



Difficulties
IsoMap

• When assumptions are violated:
• Non-convex sets in Rq

• Non-isomorphic mappings (standard version)

• Non-uniform distributions (conformal version)

LLE
• Much more difficult to say…

• No requirement that faraway points stay far

• Susceptible to “folding”

• Can see “spider-web” like behavior

• Hard to tell if this is an artifact or not…



More recent work
• Lots of “LLE-like” solutions that try to fix this:

• Penalties to align multiple local coordinate systems

• Adding ideas from (and for) density estimation

• Next week…

• Also: finding mappings

X to  Y,   Y to  X

• Supervised learning

• Re-solve optimization

(From LLE 
homepage)


