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Abstract
Manifold learning is the process of estimating a low-dimensional structure
which underlies a collection of high-dimensional data. Here we review two pop-
ular methods for nonlinear dimensionality reduction, locally linear embedding
(LLE, [1]) and IsoMap [2]. We also discuss their roots in principal component
analysis and multidimensional scaling, and provide a brief comparison of the un-
derlying assumptions, strengths, and weaknesses of each algorithm.

1 Introduction

Finding low-dimensional representations of high-dimensional data is a common prob-
lem in science and engineering. High-dimensional observations result from any of a
number of data collection methods: images, spectral representations, or simply sets of
associated measurements. Often however, these observations result from changes to
only a few degrees of freedom, lending a predictable structure to the high-dimensional
data. Algorithms for finding this underlying structure within the data are collectively
referred to by the term “manifold learning”.

Finding the structure behind the data may be important for a number of reasons.
One possible application is data visualization. It is difficult to display and under-
stand relationships in dimensions higher than two or three, making the use of low-
dimensional transformations of the data appealing. However, such transformations
must preserve (if not clarify) the underlying structure and relationships in order to be
of use. It may also be desirable to measure how distant two observation pairs are in
the underlying (generative) parameter space, as this is a more meaningful measure of
dissimilarity than distance in the observation space.

Figure 1 shows a two-dimensional data set, embedded in three dimensions (and re-
projected for printed visualization) in three different ways: a linear embedding (plane)
(a), an S-shape (b), and a “Swiss roll” (c). The purpose of (nonlinear) manifold learning
is to recover, in all three cases, the true dimensionality of the data and sample locations
which are consistent with that geometry.

We begin our discussion of nonlinear manifold learning with a brief overview of a
linear method, principal component analysis. We also present the “multidimensional
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Figure 1: Two-dimensional manifolds embedded in three dimensions. (a) Linear embedding,
(b) S-curve, (c) Swiss roll

scaling” (MDS) problem, and its solution in the classic case (principal coordinate anal-
ysis). However, these methods are insufficient for nonlinear manifolds. We then dis-
cuss two methods for estimating nonlinear embeddings. The first, locally linear em-
bedding (LLE), finds a neighbor-based local representation of each point and then finds
a low-dimensional representation with a similar configuration. The second, IsoMap, is
a more direct extension to MDS, relying on the classic MDS solution but substituting
an alternate estimate of distance.

2 Principal Components Analysis

Principal component analysis is one of the classic linear methods of dimensionality
reduction [3]. Given data X = [z1, ..., z,], where each z; has dimension p (so that X
is p x n), we would like to find a linear subspace of dimension ¢ such that the projected
values of the x; (denoted ;) have minimal squared error. Although in this formulation
the projected data z; are of the same dimension p, they may then be represented as
values in R? (a coefficients for a set of basis vectors). We denote this lower-dimensional
representation Y (as ¢ x n matrix).

It is easy to show through an orthogonality argument that minimal quadratic error
in the residual is equivalent to maximizing the variance of the projected data z;; this
goal can be achieved using a procedure such as the following.

We begin by subtracting the mean % >, x; from each sample z;; this may be
accomplished by right-multiplying by the so-called “centering” matrix .J

J=1I, - %11’ 1)

(where I, is the n x n identity matrix). The covariance matrix of X is then given by
L=XJJX 2

The subspace with maximal variance can be found easily by the eigenstructure of ¥; its
(ordered) basis vectors are called the principal components. Let A = diag(A1,...Ap)

be the eigenvalues of X ordered from largest to smallest, with V,, = [v1, ..., v,] their
corresponding eigenvectors. The location of the points X in the newly defined ¢-
dimensional space (where ¢ < p) isthengivenby Y = VX .J, where V, = [v1, ..., v,]

are the top ¢ eigenvectors found above.



However, it may be undesirable to restrict ourselves to a linear transformation. Af-
ter all, we are simply looking for a lower-dimensional representation which preserves
relationships among the data, and frequently (as in Figure 1) these relationships are
nonlinear. But, this begs the question of what relationships should be preserved. One
simple criterion is to place some cost on distortions of the inter-sample distances; this
type of criterion has received considerable attention under the name multidimensional
scaling (MDS).

3 Multidimensional Scaling

Multidimensional scaling denotes the problem of finding a ¢g-dimensional set of points
Y which are most closely consistent (under some cost function) with a measured set
of “dissimilarities” D (also sometimes called a “pre-distance matrix™). This problem
garnered attention in the field of psychometry, by investigators who wished to build a
model of the perception of various stimuli (for example, colors) using the responses of
subjects to dictate dissimilarity between stimuli. Note that in psychometry, these mea-
surements may not form a metric space (perhaps only construing an ordering of the
comparisons). Incorporating this type of relationship entails more complex analysis;
we ignore this subtlety here and concentrate solely on the case of Euclidean measure-
ment observations. A nice tutorial on MDS, including a historical view of its origins in
psychometry is given by [4].

As stated, MDS is the problem of finding a low-dimensional representation which
preserves the distances D according to some cost p(D, D), where D denotes the dis-
tances between the points Y in the low-dimensional space. Note that in this formulation
MDS places no requirements on the form or complexity of the transformation from R?
to RY, only on preserving pairwise relationships between the data.

For a general cost function p, this is a difficult nonlinear optimization problem;
various selections of p have given rise to a wealth of research. One very convenient
form for p (called the “STRAIN” criterion) is given by

pstrain(D,D) = |J'(D* — D*)J|} 3)

where D? is the matrix of squared-distances (element-wise product), || - ||% is the
(squared) Frobenius norm, and J is the centering matrix defined in Section 2. The
intuition behind this criterion (besides having a convenient solution) is that we would
like to match variations in distance, rather than the values themselves; this makes the
criterion invariant to, say, adding a constant to all distances, or to all distances from a
given datum, potentially useful given the perceptual nature of the dissimilarity values
from psychometry.

The STRAIN metric is so pervasive in MDS that it is also known as classical MDS,
this is perhaps because it admits a convenient, closed-form solution given by the eigen-
structure of —%J’DQJ in the same way as Section 2. Namely, the top ¢ eigenvectors
[w1, ..., w,] capture the largest components of variation in .J’D?.J, and thus give the
(g-dimensional) coordinates of the solution Y = [w1,...,w,]". Itis perhaps not sur-
prising given the similarity of the solution that this technique should be closely related
to that of principal component analysis, discussed previously.
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Figure 2: Euclidean distance versus geodesic: While local distances (a) are approximately
equal to their Euclidean counterparts, Euclidean distances between more distant points (b) do
not respect the geometry of the manifold.

Indeed, this is the case; the STRAIN metric can be shown to be a dual formu-
lation of PCA [5] in that both recover points with the same inter-sample distance
structure. This is easily seen by the fact that, again letting X denote the (perhaps
unknown) sample locations in p-dimensional space, we have —.5J'D?J = J' X'X.J
(since DF; = |z — a|* = ||li||* + [l ||* — 22}, and the “double centering” oper-
ation subtracts the row and column averages, which if the z; are zero-mean are ||z;||?
and ||z ||? respectively). This means that given any eigenvector v; of © = X .J.J' X’ (as
defined in Section 2), we have a corresponding eigenvector w; = J' X'v; for J' X’ X J.
Thus both methods resolve the same g-dimensional point locations Y = W, = VX J.

Other criteria for MDS have also been studied, for example the “STRESS” and
“SSTRESS?” criteria given by

pstrEss(D, D) =||D - D% (4)

and . .
pssrress(D, D) = ||D* — D*||3 ()

However, available algorithms for minimizing these cost functions lack the same glob-
ally optimal convergence properties that accompany STRAIN.

The main problem in applying any of the above formulations of MDS to nonlinear
manifold learning however, is their direct use of and reconstruction based on Euclidean
distance measurements. The reason for this is simple — the three criteria above treat
all pairwise Euclidean distance measurements equally; yet for a manifold which has
been nonlinearly embedded in a higher-dimensional space, many of these distances do
not respect the topology of the manifold and are thus unsuitable for use in determining
the nonlinear relationship.

We investigate two methods which attempt to address this issue in differing ways.
Both rely on the fact that the surface of any manifold may be locally approximated by a
linear (tangent) subspace, in much the same way that a function may be locally approx-
imated using its derivative (i.e. as a first-order Taylor expansion). Thus a set of local
distance measurements (Figure 2(a)) are regarded as trustworthy, while longer-range
relationships (Figure 2(b)) are discarded. The first method, locally linear embedding,
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Figure 3: Locally Linear Embedding: (a) Choose a neighborhood for each point i, (b) find
weights to reconstruct x; given its neighbors, and (c) find new lower-dimensional points y;
observing these relationships.

creates and solves a set of coupled quadratic optimizations based on the locations of
each point’s neighbors; the second (IsoMap) uses local distances to approximate the
true curve length along the manifold (called the geodesic) and obtain new estimates
of all pairwise distances, then solves using classical MDS. We present each technique,
then conclude with some remarks comparing and contrasting the two.

4 Locally Linear Embedding

Locally linear embedding [1], or LLE, proposes to use the local linearity of the mani-
fold to find a weight-based representation of each point using its neighbors, character-
izing the local relative positioning of each neighborhood in R?. Then, using this local
parameterization one can look for a new set of points in a lower dimension g which
preserves, as closely as possible, the same relative positioning information.

First, solve for the weights which best characterize the points’ relationship in R?:

- n 2
W = arg 1rnv[1/n'z1 ’ T; — Z Wijz; H such that Vi Z Wi =1 (6)
i= J

JEL(d)

where T'(4) is the neighboring points of z;, defined either by the k-nearest-neighbors
or by some local sphere of radius ¢ around x;. The size of this neighborhood is a
compromise — it must be large enough to allow for good reconstruction of the points
(contain at least ¢ + 1 points), but small enough for the data manifold to have little or
no curvature. Defining w; to be the i** row of W and the matrix of local difference
vectors as A; = [z; — zj,,...,%; — x]—m)] (where j indexes the neighbors of z;),
Equation (6) may be rewritten in terms of each sample z;:

arg 1r11uii11 wiALAw; such that Z wi; =1 )
j

In practice w; may be found by solving

and normalizing w; to sum to unity [6].



This weight-based representation has several desirable invariances: first, it is invari-
ant to any local rotation or scaling of x; and its neighbors (due to the linear relationship
of (6)). Additionally, the normalization requirement on w; adds invariance to transla-
tion of z; and its neighbors (since Zj Wij(z; +a) =z, + Zj Wijo = x; + «). This
means that LLE is capable of modeling an arbitrary nonlinear embedding function so
long as it is smooth; more precisely, the mapping preserves angle and scale within each
local neighborhood.

Having solved for the optimal weights which capture the local structure (in a mean-
squared sense) at each point, we attempt to find new locations which approximate those
relationships. This too can be done in closed form, by minimizing the same quadratic
cost function as (6) for the new data locations:

Y = arg m};nz ’ Yi — Z Wijyj
i=1

JET(4)
(where the conditions have been added to make the problem well-posed). This can
alternately be written as the quadratic form

2
st.  Y1=0, YY'=1I, (9

Y = arg minY” (I — WY(I-W)Y st Y1i=0, YY'=1I, (10)

where TV is the (sparse) n x n matrix of optimal weights. This quadratic form can
be composed as an eigenvector problem (similar to that of Section 2 but finding the
minimum variance subspace rather than the maximum). It has the trivial eigenvector
1 (with eigenvalue zero) induced by the translational invariance resulting from the
weight-selection procedure; discarding this, the remaining ¢ eigenvectors with smallest
eigenvalues define the best ¢g-dimensional fit.

It should also be noted that a solution can be found for all values of ¢ simulta-
neously; the best 1-dimensional embedding is simply the first coordinate of the best
2-dimensional embedding, and so forth.

5 IsoMap

As stated previously, one of the major problems with classical MDS was its use of dis-
tances calculated in the high-dimensional Euclidean space. As illustrated in Figure 2
the local Euclidean distances (a) are approximately correct, but the Euclidean distances
between curved regions (b) do not respect this geometry. Thus, inclusion of those dis-
tances in our optimization means that classical MDS fails to recover the planar nature
of the data.

IsoMap [2] works on a simple principle — that, given a set of distances D, classi-
cal MDS recovers a set of locations which best approximate (by the measure given in
Section 3) those distances in a Euclidean R? space. However, for a nonlinearly embed-
ded manifold, the distances D we should use are not the Euclidean distances between
each data pair, but rather the shortest curve length which respects the geometry of the
data (the geodesic). Thus, to recover a geometry using MDS we need two things: first,
the value of the true (geodesic) distance measurements, and secondly, for the geodesic
distance in R? to be the same as Euclidean distance.
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Figure 4: Estimating geodesics with shortest-paths: (a) in order to find the true geodesic length
(solid) rather than the naive Euclidean distance (dashed), we approximate by a shortest-path
length traversing trusted, local distance measurements. This is shown in the original space (b)
and “unrolled” (c). Images from [2].

The second condition is satisfied if our low-dimensional data is located on a bounded
convex subset of R9. To satisfy the first condition, we will estimate the geodesic curve
length between distant points by assuming that our function is an isomorphism (i.e. the
transformation into R? preserves both angle and distance). This estimation is done by
(again) appealing to the local linearity of the manifold — if our data are sufficiently
dense, then there is some local neighborhood (again, either defined by the k-nearest
neighbors or by some e-ball) in which the geodesic distance is well-approximated by
the naive Euclidean distance in R?. Taking these local distances as trusted, farther dis-
tances may be approximated by finding the length of the shortest path along trusted
edges; it can be shown [7] that as the number of data n increases this estimate con-
verges to the true geodesic distances. An illustration of this estimation for the Swiss
roll example is shown in Figure 4.

The computational burden of this operation (naively O(n?), somewhat faster with
more sophisticated data structures) may be reduced by using only a subset of the points
(called landmark points) for the classical MDS embedding step [7]. Choosing only m
such landmark points means that fewer pairwise geodesic distances must be computed
(naively requiring O(m=n?) computation), and the size of the matrix used for principal
coordinate analysis is similarly reduced, requiring only O(m?2n) computation. Again,
the best embedding for all values of ¢ may be obtained simultaneously by computing
all eigenvectors.

Additionally, IsoMap may be extended to find conformal maps, rather than simply
isomorphic ones [7]; this adds an invariance to local scale changes much like that of
LLE. (A conformal map preserves angle but not distance; it is a strictly wider class of
functions than isomorphisms.) This extension is performed by further assuming that the
samples are drawn uniformly from the convex subset of R?; the added assumption of
uniformity enables estimation of the (local) distance distortion induced by a conformal
mapping using the density of the points in a neighborhood of RP.

6 Comparison of LLE and IsoMap

LLE and IsoMap are quite similar in goals and assumptions, and differ in execution.
Both make use of the fact that the data manifold is locally linear in nature, and assume



(b)
Figure 5: Conformal mappings: data generated on a plane and conformally warped to a fish-
bowl shape (a); note the dense sampling around the rim. IsoMap (b) fails to recover the geometry

due to its violated assumptions; Conformal IsoMap (c) and LLE (d) both recover the original
data. Images from [7].

sufficient data that a local neighborhood of samples around each point can be found
which satisfies this assumption. Both methods are sensitive to these assumptions; if the
neighborhood size is chosen to be too large or the space is too sparsely sampled both
methods break down (often producing a “folded” appearance).

IsoMap makes several further assumptions — that the data is actually located on a
convex region of R? (for some ¢) and that it was embedded in R? by some isometric
transformation. These assumptions allow it to estimate the true pairwise distances in
the original R4-space and thus utilize the closed-form solution of classical MDS to
obtain the embedding.

LLE, on the other hand, makes no attempt to estimate the true geodesics; it simply
assumes that a weighted best-fit of each point’s neighbors is sufficient to describe the
local relationship of the points. Again this leads to an efficient closed-form solution to
the optimization problem (over a wider space of embedding functions than traditional
IsoMap), but with differing failure modes than IsoMap.

In particular, IsoMap’s problems arise when its additional assumptions are violated.
For example, when the mapping is conformal and not isomorphic (and this fact is not
accounted for); a fishbowl example (Figure 5) illustrates Isomap’s inability to recover
the disc-shape which generated the data. On this example LLE succeeds, due to the
invariance of the weight-based representation to local changes in scale. Alternately,
when the low-dimensional points do not form a convex shape in R?, IsoMap will intro-
duce distortions as it attempts to match the Euclidean (rather than geodesic) distance
in R? to the estimated geodesic distance in R?.

LLE’s problems are of a different bent. Because it only makes use of the concept
that two points are “near”, it has no additional penalty for placing points which are
not nearby in the original (R?) space as neighbors in the embedded (R?) space. This
makes it resistant to the type of errors occurring in IsoMap on non-convex sets, but
more susceptible to placing faraway points nearby to each other. This leads to observed
“spider-web” behaviors (long, thin point sets) or a “folding” of points in the embedded
coordinates (a subset of points have locations which have been reflected across some
axis). Perhaps another consequence of this is an increased difficulty in making concrete
when the resulting embedded coordinates recover the true geometry of the data. In fact,
fixing this “too-local” cost function has been one of the thrusts of more recent research



(next week’s topic).

7 Conclusions

Both IsoMap and LLE provide interesting alternatives to linear embedding approaches,
showing considerable improvement when the underlying geometry of the the high-
dimensional data is complex. Both make use of a local linearity assumption for the
data, and require a sufficiently large number of samples for this assumption to be satis-
fied. However, the differences in underlying methodologies and additional assumptions
lead to differences in performance between the two algorithms under non-ideal condi-
tions. As we shall see next week, more recent algorithms which take more probabilistic
interpretations may both improve performance and increase our understanding of the
utility and difficulties in applying embedding methods.
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