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1 Introduction

A natural solution for software companies that plan to efficiently disseminate new
software over the Internet to millions of users simultaneously is to use multicast
or broadcast transmission. Unicast protocols are based on receiver initiated re-
transmission requests and do not scale with the number of users. In this paper, we
summarize the initial approach taken by Digital Fountain, a company founded by
Michael Luby and Jay Goldin in 1998 to solve the multicast problem.

We first describe the charasteristics of an ideal multicast protocol as proposed
by Digital Fountain[2]. We then describe Tornado Codes, followed by Luby Trans-
form (LT) Codes. These codes were developed as a step towards approximating
the ideal protocol. Tornado codes first appeared in a technical report [3] in 1997
and were also published in [4]. LT codes were proposed in 2002 [5]. Both these
codes have now been superseded by Raptor Codes, which will be the topic of next
week.

2 Ideal Digital Fountain Protocol

Consider an application, where a server wishes to distribute a file of k equal length
packets to a very large number of clients. The main requirements of an ideal pro-
tocol for this application as outlined in [2] are:

1. Reliable: The file is guaranteed to be delivered in its entirety to all receivers.

2. Efficient: Both the total number of packets each client needs to receive and
the amount of processing time on these packets should be minimal. Ideally
the total time should be no more than what is required for a point to point
communication link.

1



2

3. On demand: Clients may initiate the download at their discretion. Clients
may sporadically be interrupted and continue the download at a later time.

4. Tolerant: The protocol should tolerate a heteregeneous population of re-
ceivers, especially a variety of end-to-end packet loss rates and data rates.

In the ideal solution proposed in [2], the server encodes the original file into
a stream of distinct encoding packets generated on the fly. It transmits packets
whenever atleast one client is listening. Each client accepts packets until it receives
k distinct encoding packets and efficiently reconstructs the original file. The server
is analogous to a fountain of water that continuously produces a stream of water
drops and hence the name.

3 Traditional Erasure Codes

A communication link over the Internet is often modelled as an erasure channel.
This channel was first introduced by P. Elias[1] in 1956. In a typical erasure chan-
nel, input symbols are either received correctly or get erased with a probability p.
Elias showed that the capacity of a memoriless erasure channel is log2(|X |)(1− p)
bits/symbol, where |X | is the input alphabet size. Furthermore, he showed that a
random linear code can achieve this capacity. This implies that at most O(n2) time
is required for encoding and decoding, where n, denotes the block length.

Maximum distance separable (MDS) codes are practical codes that achieve the
capacity of the erasure channel. A (n,k,d) MDS code, has a property that any k co-
ordinates constitue an information set[6]. A receiver that receives any k symbols
from a total of n symbols in each codeword can reconstruct the original message,
provided it knows the position of the k received symbols. Reed Solomon (RS)
codes are the most well-known MDS codes. These can be decoded in time O(k2),
using algebraic methods such as list decoding.

Despite their popularity, RS codes are not suitable for bulk data distribution
over the internet. The quadratic decoding time is unacceptable when data rates
are of the order of Mbps [2]. Furthermore, typical RS code implementations have
small block lengths such as the NASA standard (255,233,33) code over F256. This
requires a large file to be segmented into many small blocks before transmission.
Finally, since RS codes are block codes, they need to be designed for a specific rate.
This requires that we need to estimate the erasure probability of the channel before
hand. This is clearly not possible when multiple clients over different quality of
channels are being served simulataneously.
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Figure 1: Irregular Bipartite Graph

4 Tornado Codes

Tornado codes are erasure block codes based on irregular spare graphs. Given an
erasure channel with loss probability p, they can correct upto p(1−ε) errors. They
can be encoded and decoded in time proportional to n log(1/ε). Thus Tornado
Codes has been primarily designed to speed up erasure codes over the internet.
These codes can be designed over arbitrary alphabet size. In what follows we will
consider a binary alpabet for simplicity.

4.1 Construction

Tornado codes are generated by cascading a sequence of irregular random bipartitie
graphs. Unlike the case of LDPC codes, these graphs are equivalent to generator
matrices. The operation of one such graph is shown in figure 1. The nodes on the
left are known. The values of nodes on the right are computed by performing an
XOR operation of the neighboring input nodes.

The overall code C(B0,B1, ...Bm,Λ) is a cascade of bipartite graphs B0,B1, ...Bm

and Λ. See figure 2. The graph B0 has n message bits as input and produces βn
check bits. These form the input bits of B1 and β2n new check bits are formed.
The graph Bi, has βin input bits (from Bi−1) and produces βi+1n check bits. This
sequence is truncated by a conventional rate 1−β erasure code Λ. The codeword
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Figure 2: Cascaded Graph Sequence

consists of the n message bits and all the check bits produced at each stage of the
cascade. It is thus a systematic code. The total number of check bits produced by
this sequence is given by

m+1

∑
i=1

βin+
βm+2n
1−β

=
nβ

1−β

The length of the codeword produced given n input bits is n+ nβ
1−β = n

1−β . The
resulting code is a rate 1−β code for all values of m. The length of the cascade is
chosen such that βm+1n ≈√

n. Note that Λ can be decoded and encoded in a time
that is quadratic in the size of its input. We begin by using this decoding algorithm
for Λ, to recover losses that occur within its bits. This will be successful if atmost
β fraction of bits have been lost in Λ. If all the losses are recovered, we know the
check bits of Bm. These could be used to recover any losses in the input bits of Bm.
Since the input bits of Bi are the check bits of Bi−1, this recursion can be continued
until all the input bits of B0 are recovered. Furthermore, if we have a decoding
algorithm that, knowing the check bits, can recover a loss of β(1− ε) fraction in
the input bits in each of Bi, in a time linear in the size of input,the overall code can
recover from β(1− ε) fraction of losses in a time that is linear in n.

4.2 Linear Time Decoding

The decoding algorithm is very simple. At each step, a right node is selected
whose all but one neighbors are known. The missing neighbor is then computed by
performing an XOR operation between the check bit and the known input bits. If at
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any step, no such node is found then an error is declared. The algorithm terminates
successfully when all the input bits are recovered.

Clearly, the algorithm is linear time, since at each step we recover one lost input
bit. The algorithm is not optimal, since the algorithm can fail even when it would
have been possible to recover the input bits through say gaussian elimination. The
main contribution of ths paper is to design and analyze bipartite graphs for which
this simplistic decoding algorithm recovers all the missing input bits from a loss
fraction arbitrarily close to the capacity.

4.3 Analysis based on Degree Sequences

A random bipartite graph with n left nodes and nβ right nodes is specified by the
following two sequences:

1. Fraction of Edges of Degree i on left (λ1,λ2...λm): λi is the fraction of
edges which are incident on a node of degree i one the left side of the graph.

2. Fraction of Edges of Degree i on right (ρ1,ρ2...ρm): ρi is the fraction of
edges which are incident on a node of degree i on the right side of the graph.

Let us define the following two polynomials over x ∈ (0,1]

λ(x) = ∑
i

λixi−1

ρ(x) = ∑
i

ρixi−1

The main results of the analysis of the decoding processes are stated in the
following three lemmas. In all these results,δ is the probability that each input bit
is lost independently of all other input bits.

1. A necessary condition on δ, if the above simplistic decoding algorithm ter-
minates successfully is that ρ(1−δλ(x)) > 1− x, for all x ∈ (0,1]

2. If ρ(1− δλ(x)) > 1− x, for all x ∈ (0,1], then for all η > 0, the decoding
algorithm terminates with atmost ηn message bits erased with probability
1−n2/3exp(− 3

√
n/2).

3. If λ1 = λ2 = 0, then with probability 1−O(n−3/2), the recovery processes
restricted to the subgraph induced by any η fraction of the left nodes termi-
nates successfully.



6

To derive the above results, the authors study the expected value behavior of the
decoding process through a set of differential equations. They use tools of statis-
tical mechanics to show that the variance of the process is small. The condition
that λ1 = λ2 = 0, in lemma 3 is required since the authors use standard proofs on
expander graphs to show that the expansion condition holds with high probability
and the decoding algorithm terminates successfully.

4.4 Capacity Achieving Codes

Solving for the optimal degree sequences that maximizes the allowed loss proba-
bility δ is a non-trivial problem. Fortunately, for the erasure channel this problem
has been solved and the optimal degree distributions are known.

We fix a positive integer D. Let H(D) = ∑D
i=1 1/i, be the truncated harmonic

sum. Thus for large D, H(D) ≈ log(D). Let λ1 = 0, and for i = 2,3...D + 1,
λi = 1

H(D)(i−1) . Also for all i ≥ 1, let ρi = e−ααi−1

(i−1)! . Here the choice of alpha is not
arbitrary but depends on the choice of D. Let there be E edges on the graph, k input
bits on the left and kβ check bits on the right. Then it follows from definition that

k = ∑
i

λiE
i

=
EH(D)(D+1)

D

kβ = ∑
i

ρiE
i

=
Eαeα

eα −1

It follows that αeα

eα−1 = β H(D)(D+1)
D . Thus α, depends on D and cannot be indepen-

dently chosen. Also note that we allow ρi > 0 for all i. In practice, since the number
of edges E is finite, we will have to truncate the expression for a large i. This will
not make a difference if E is sufficiently large. Also, note that ρ(x) = eα(x−1) and
λ(x) is the expansion of − log(1− x) truncated to the Dth term and scaled so that
λ(1) = 1.

Lemma With the above choice of ρ(x) and λ(x), we have ρ(1−δλ(x)) > 1− x,
for all x ∈ (0,1]if δ ≤ β

1+1/D .
The proof follows by direct substitution in the expressions of ρ(x) and λ(x)

derived earlier. There is a slight technical difficulty in proving that this value of
δ is sufficient to guarantee success in decoding. The reason is that result (3) in
4.3, requires that λ2 = 0, whereas our construction has λ2 6= 0. To alleviate this
difficulty, we isolate a small fraction of check nodes to form a set S and generate a
graph B2 in which each input bit node had three edges incident on randomly chosen
elements of S. The remaining check nodes in S’ and the input nodes connect using
the degree sequences stated before. By result (2) in 4.3, we can argue that the size
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of S can be made vanishingly small and successful decoding is guaranteed. Note
that by choosing D = 1/ε, we see that (1−R)(1− ε), fraction of erasures can be
corrected in a time proportional to n log(1/ε).This proves the main result of the
paper.

4.5 Computing Degree Sequences using Linear Programming

Although the optimal degree sequences are known for the erasure channel, the
authors provide an ad-hoc linear programming method to compute good degree
sequences. This kind of approach can be used to find degree sequences for other
channels after suitable conditions have been found.

The linear programming problem is posed as follows: Fix λ(x) and δ. The
objective is to find ρm ∈ M, where M is a fixed set of positive integers.

Let xi =
i
N for i = 1,2..N for some large N. Minimize ∑i(ρ(1−δλ(xi))+xi−1)

subject to ρi > 0 and ρ(1− δ(xi)) > 1− xi. This solution for ρ(x) is feasible if
ρ(1−δλ(x)) > 1− x for all x ∈ (0,1]. Once a feasible ρ(x) is found, the largest δ
is found through a binary search.

The authors also propose an extension to this method that uses the dual condi-
tion δλ(1−ρ(y)) < 1− y. Once the optimal value of ρ(x) is found for a fixed λ, it
can be used to improve our choice of λ using this dual condition.

4.6 Practical Considerations

Tornado Codes implemented in practice have much fewer cascade graphs than that
suggested by theoretical analysis. For example Tornado Z codes only have three
cascaded graphs. These are rate 1/2 codes that map an input message of 640K
packets into 1280K packets. Each packet is 256 bytes. The first layer has 640K
nodes on the left and 320K nodes on the right. The second and third layers have
160K nodes on the right. The first and second graphs have the heavy-tail/poisson
distribution as noted suggested in section 4.4. The third graph cannot use a con-
ventional quadratic time code since it has many more than

√
n nodes. The authors

claim than linear programming has been used to find the degree seqence for this
graph and a “double heavy tail” where λ′(x) = λ(x2) distribution is used

The assumption of independent erasures on each symbol is crucial in the anal-
ysis of Tornado Codes. If this were not to hold, then one cannot argue that there
would be a δ fraction of loss in each graph when there is a δ fraction of loss over-
all. In practice the internet is a bursty channel and this assumption does not hold.
So it is natural that the practical implementations only require a small number of
cascades. Also the size of Tornado codes is very large and this introduces large la-
tencies in encoding and decoding. The time is linear in block length as opposed to
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the dimension and this can be disadvantageous for low rate codes. Like RS codes
these are also block codes cannot optimally serve a heterogenous quality of users.
Finally when the rate and n is fixed, the number of encoding packets that can be
generated is also fixed. In other words, while tornado codes, do improve the en-
coding and decoding efficiency over RS codes, they are not good approximations
to the Digital Fountain protocol.

5 LT Codes

Luby Transform (LT) codes were proposed by Michael Luby in 2002[5] as a better
approximation to the digital fountain approach. Unlike Tornado Codes, these codes
are rateless. Their design does not depend on the estimate of erasure probability
of the channel, so they can simultaneously serve a heterogenous population of
receivers efficiently. Furthermore distinct encoding symbols can be generated on
the fly by the server as needed.

Suppose the original file has n message symbols. The receivers can reconstruct
these message symbols with probability 1−δ when any n+O(

√
n log2(n/δ)) sym-

bols have been received. The time for encoding each symbol is proportional to
O(log(n/δ)). The time for decoding each symbol is proportional to O(n log(n/δ)).
Thus LT codes have higher complexity than tornado codes. Just as in the case
of Tornado codes, we will consider LT codes over GF(2). Extensions to higher
alphabets is straightforward.

5.1 Encoding LT Codes

Each encoding symbol is generated independently of all other symbols by the fol-
lowing process:

1. Generate a random number d from the degree distribution ρ(d)

2. Randomly select a message node incident on each of the d edges. The value
of the encoding symbol is the XOR of the neighboring encoding bits.

Since the encoding symbols are generated on the fly, how does the decoder
know which message nodes are the neighbors of a particular encoding symbol?
Luby suggests that one solution is to explicitly include this information as an addi-
tional overhead in the packet. Another possibility is to replicate the pseudorandom
process at the receiver by supplying it with the suitable seed and/or keys.
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5.2 Decoding LT Codes

The decoding process is virtually same as that of Tornado Codes. However we
introduce some terminology that will be used in the analysis later. When the de-
coding process initiates all message symbols are uncovered. At the first step, all
degree one encoding symbols get released to cover their unique neighbor. These
set of covered message symbols that have not been processed yet form a ripple.
At each subsequent set one message symbol from the ripple is selected randomly
and processed. It is removed as a neighbor of all encoding symbols. Any encoding
symbol that now has degree one is now released and its neighbor is covered. If the
neighbor is not in the ripple it gets added to the ripple. The process ends when the
ripple is empty. It fails if atleast one message symbol is uncovered.

5.3 Analysis of ρ(1) = 1

In this section, we analyze the special case in which all encoding symbols has
degree 1. Suppose N = k log(k/δ) encoding symbols are used. Note that the prob-
ability that any message symbol is not covered is given by (1−1/k)k log(k/δ) ≈ δ/k.
Thus by union bound estimate the probability that every message symbol is covered
is greater than 1−δ. Thus k log(k/δ) degree one encoding symbols are sufficient to
guarantee that all message symbols are covered with high probability. This number
is unacceptably large. This analysis also shows that the total number of randomly
incident edges must be atleast k log(k/δ) to cover all message symbols. This fact
will be used in the next section.

5.4 Analysis of Soliton distribution

In this section, we consider the distribution: ρ(i) = 1
i(i−1) for i = 2,3..k and ρ(1) =

1/k. We first define the following distributions:

1. q(i,L) is the probability that an encoding symbol of degree i is released when
L symbols remain unprocessed. It is clear that

q(i,L) =















1 i =1, L = k
( i

i−2)(
2
1)(

L
1)(

k−L−1
i−2 )(i−2)!

(k
i)i!

i = 2..k, L = k-i+1..1

0 otherwise.

Note that for the particular degree i encoding symbol to be released, we need
i− 2 edges to be deleted when k− (L + 1) message symbols are processed,
the second last one is deleted when (k− L)th symbol is processed and the
last edge to be a neighbor of one of the L unprocessed symbols.
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2. r(i,L) is the probability that a node of degree i is chosen and is released when
L message symbols remain unprocessed.

r(i,L) = ρ(i)q(i,L) =

(L
1

) (k−1−L)!
(k−L−1−(i−2))!

k(k−1)!
(k−i)!

3. r(L) is the probability that an encoding symbol is released when L message
symbols are unprocessed. Clearly r(L) = ∑i r(i,L). To calculate this sum,
note that kr(i,L) is the probability of the event that the (i−1)th ball lands in
one of the L designated bins (other others being empty), when i−1 balls are
being randomly thrown into k−1 bins and each bin is removed as soon as a
ball lands on it. The outcomes are mutually exclusive for each i and hence
∑i kr(i,L) = 1. Thus we have r(L) = 1/k.

At each step in the process we expect one encoding symbol to be released. Thus
only k encoding symbols are expected to be sufficient for the k message symbols.
Note that the soliton distribution implies that the average degree of each encoding
symbol is log(k). Thus the expected number of edges is k log(k). The soliton
distribution minimizes the number of average number of encoding symbols while
keeping the average number of nodes the same. Unfortunately, this distribution
does not work well in practice, since the average size of the ripple is one and is very
sensitive to variations. So there is a need to create a robust soliton distribution.

5.5 Robust Soliton Distribution

The robust soliton distribution has two extra parameters c and δ. It is designed to
ensure that the expected size of the ripple is R = c log(k/δ)

√
k. Define

τ(i) =











R/ik if i = 1,2..k/R-1 ,

R log(R/δ)/k if i = k/R
0 otherwise.

The robust soliton distribution is obtained by normalizing ρ(·) and τ(·).

ψ =
k

∑
i=1

ρ(i)+ τ(i)

µ(i) = (ρ(i)+ τ(i))/ψ for i = 1,2..k

The intuition behind this choice of τ(·) is as follows. Initially we need to
generate a ripple of size R. Hence τ(1) = R/k is chosen, so that about R encoding
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symbols will have degree one. As the decoding process continues,consider the
step when L message symbols are unprocessed. It is possible to argue that the most
likely degree of encoding symbols that get released at this stage is k/L. Since the
ripple is of size R, the probability that any release adds a message symbol to the
ripple is (L−R)/L. So we need on an average L/(L−R) releases to add one symbol
to the ripple. Thus the fraction of degree i = k/L symbols should be proportional
to

L
(L−R)i(i−1)

=
k

i(i−1)(k− iR)

1
i(i−1)

+
R

(i−1)(k− iR)
≈ ρ(i)+ τ(i)

Finally, when L = R, we expect all the unprocessed symbols to be covered.
To ensure this, we need that the encoding symbols released then (of degree k/R),
must cover the R message symbols. Thus the number of encoding symbols must be
R log(R/δ), based on the analysis of ρ(1) = 1. Straightforward analysis shows that
O(k log(k/δ) steps are required for decoding and k + O(

√
k log2(k/δ)) encoding

symbols have to be received. The probability of decoding failure is less than δ.

6 Conclusions

In this summary we studied two approximations to the ideal digital fountain pro-
tocol. Tornado codes have a decoding time linear in the input size, n but are block
codes and are not suitable for multicasting to a heterogenous class of receivers. On
the other hand, LT codes are rateless codes, but they need decoding and encoding
complexity of the order of O(k log(k)). Next week we will study raptor codes that
maintain the advantages of LT codes and yet have a much better complexity.
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