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Abstract

We examine the issue of separation and code design for network data transmission
environments. We demonstrate that source-channel (or source-network) separation
holds for several canonical network examples when the whole network operates over a
common finite field. Our approach uses linear codes. Our simple, unifying framework
for these codes not only allows us to re-establish with economy the optimality of linear
codes for single transmitter channels and for Slepian-Wolf source coding. It also en-

ables us to establish the optimality of linear codes for multiple access and for erasure
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Figure 1: A linear network for which source-channel separation fails [1].

broadcast channels. This robustness of separation we show to be strongly predicated
on the fact that noise and inputs are independent. Moreover, we show that source-
channel separation holds for these networks. The linearity of both source and network
coding blurs the delineation between source and network codes. Finally, we illustrate
the fact that design for individual network modules may yield poor results when such
modules are concatenated, entailing that end-to-end coding is necessary. Thus, we ar-
gue, it is the lack of decomposability into canonical network modules, rather than the
lack of separation between source and channel coding, that presents major challenges

for network coding.

I Introduction

The failure of source-channel separation in networks is often considered to be an impedi-
ment in applying information theoretic tools in network settings. The simple multiple access
channel of Figure 1 gives one example of how separation can fail [1]. The receiver’s channel
output is the integer sum of the binary channel inputs of m > 2 users, yielding a channel
output alphabet of size m + 1. Since independent, uniformly distributed input signals fail
to achieve the maximum mutual information between the transmitted and received signals,
direct transmission of dependent source bits over the channel sometimes yields higher achiev-
able transmission rates than Slepian-Wolf source coding followed by multiple access channel
coding.

While this simple example may at first appear to irrefutably establish the failure of source-
channel separation in networks, its simplicity is misleading. In particular, note that the

alphabet size of the output is dependent on the number of transmitters. Thus, the network



lacks a consistent digital framework. Replacing integer addition with binary addition to give
a channel with input and output alphabets of the same cardinality yields a communication
system for which separation holds.

In this paper, we argue that source-channel separation is more robust than counterex-
amples may suggest. We assert, however, that separate source and channel code design
does not necessarily simplify the design of communication systems for digital networks. The
operations of compression and channel coding are conceptual tools rather than necessary
components. While modularity, such as that afforded by the separation theorem, is desir-
able in the design of components, the decomposition of a problem into modular tasks may
increase complexity when the decomposition imposes unnecessary constraints.

In addition to examining traditional questions of source-channel separation, we also in-
vestigate a variety of other separation assumptions implicit in common network design tech-
niques. By assuming independent data bits and lossless links, the network coding literature
and other layered approaches to network design endorse a philosophy where source and chan-
nel coding are separated from network coding or routing. Through examples, we demonstrate
the fragility of this assumed separation. Even in simple digital networks, neither separate
source-network coding strategies nor separate channel-network coding techniques guarantee
optimal communication performance.

Our network model requires the same finite alphabet at all nodes and additionally allows
noise in the form of erasures.! Erasures are assumed to be channel-imposed, irreversible, and
independent of the channel input so that the erasure symbol cannot be used as an additional
symbol for coding. While our examples suggest the robustness of source-channel separation
and fragility of source-network and channel-network separation in the resulting systems, we
advocate an entirely unified approach, investigating independent, random, linear code design
at all nodes of the network. For the examples given, it is not clear, even after the design is
completed, what the appropriate decomposition of tasks should be.

We treat two important types of networks in detail: multiple access networks and de-
graded broadcast networks. For the networks we consider, optimal code construction is

particularly simple. We show that random linear codes are sufficient and asymptotically

'While we focus primarily on erasure channels, we also briefly consider additive noise channels.



optimal for a wide array of problems. Our approach may be viewed, in the simplest way, as
a generalization of information theoretic results known for single-receiver source codes and
for single-transmitter, single-receiver channel codes. From the networking perspective, our
results bear a different interpretation - compression, channel coding, and routing are not
separable functions.

Finally, while the multiple access and broadcast networks considered here are important
in their own right, we show that we cannot concatenate them arbitrarily and maintain end-to-
end functionality. In effect, there is no separation of large networks into canonical elements.
We argue that this lack of separation, rather than the oft-presumed lack of source-channel

separation in networks, poses the real challenge in communication-network system design.

II Background

The use of random linear transformations in coding receives considerable attention in the
literature. For channel coding, Elias [2] shows that random linear parity check codes, formed
by Bernoulli(1/2) choices for the parity check entries in a systematic code’s generator matrix,
achieve capacity for the binary erasure channel and the binary symmetric channel. Elias
also gives a construction for sliding parity check codes requiring fewer random binary digits.
MacKay [3] proves that two families of error-correcting codes based on very sparse random
parity check matrices — Gallager codes and MacKay-Neal codes (a special case of the former)
— when optimally decoded, achieve information rates up to the Shannon limit for channels
with symmetric stationery ergodic noise. MacKay also demonstrates empirically, for binary
symmetric channels and Gaussian channels, that good decoding performance for these codes
can be achieved with a practical sum-product decoding algorithm.

Linear channel coding for network systems has received far less attention. In this work,
we consider both multiple access and degraded broadcast channels. In multiple access coding,
the model of interest comprises a collection of transmitters sending information to a single
receiver. The received signal is the sum of the transmitted signals with the possible inclusion
of either erasures or additive noise. While this type of additive interference channel has

received considerable attention in the literature (see, for example, [4, 5, 6, 7, 8, 9, 10, 11,



12, 13]) the majority of the work to date considers only the case where the incoming data
streams interfere additively in the real field; one notable exception is the work of Poltyrev
and Snyder [12], which treats a modulo-2 multiple access channel without noise in the case
where a proper subset of the transmitters sends to the decoder at any given instant. We are
unaware of prior work on linear coding for multiple access channels.

In broadcast networks, we consider physically and stochastically degraded channels with
both additive noise and erasures. While the degraded broadcast channel is well under-
stood, [14, 15], we are likewise unaware of any prior work on linear broadcast channel codes.

On the source coding side, Ancheta [16] presents universally optimal linear codes for
lossless coding of binary sources; he also shows that the rate distortion function of a binary,
stationary, memoryless source cannot be achieved by any linear transformation over a binary
field into a sequence with rate lower than the entropy of the source. The syndrome-source-
coding scheme described by Ancheta uses a linear error correcting code for data compression,
treating the source sequence as an error pattern whose syndrome forms the compressed data.

In [17], Csiszar generalizes linear source coding techniques to allow linear multiple access
source codes that achieve the optimal performance derived by Slepian and Wolf [18]. Csiszar
demonstrates the universality of his proposed linear codes? and bounds the corresponding
error exponents. These results are generalizable to single or multiple Markov sources.

Addressing the problem of practical encoding and decoding for multiple access source
codes, [19, 20, 21, 22, 23] introduce the Distributed Source Coding Using Syndromes (DIS-
CUS) framework, initially looking at sources with strongly structured statistical dependen-
cies. Schonberg et al. [24] note that Csiszar’s proof can be used to show that application
of LDPC codes in the DISCUS framework approaches the Slepian-Wolf bound for general
binary sources; they then demonstrate through simulation that belief propagation decoding
works well in practice, with a small performance gap due to the finite block length and
choice of parity check matrix. Uyematsu proposes a deterministic construction for linear
multiple access source codes in [25]; the resulting codes achieve any point in the achievable

rate region, with two-step encoding and decoding procedures (similar to concatenated codes

2Tn the given fixed-rate coding regime, a universal code is any code that achieves asymptotically negligible

error probability on all sources for which the code’s rate falls within the source’s achievable rate region.



for channel coding) of complexity polynomial in the block length.

In other related work, multiple access source coding by randomly choosing among general
block codes is considered as an exercise in [26]. Loeliger [27] considers averaging for sets of
linear codes with basic symmetry properties and gives a general version of the Varshamov-
Gilbert bound and a random coding bound that depend only on the size of the set of error
patterns; these results extend corresponding prior results for more specific types of error
patterns. Among the applications mentioned are burst error correction, and multiple access
systems where each user considers the set of possible interference patterns arising from the
activity of other users as well as channel noise.

Zhao and Effros introduce broadcast system source codes in [28; 29]. In a broadcast
system source code, a single encoder describes multiple sources to be decoded at a collection
of receivers. Sources may include both “common information” intended for more than one
receiver and “specific information” intended for only one receiver. In the most general
case, we allow a distinct source for every non-empty subset of the set of possible receivers.
Design algorithms and performance bounds for lossless broadcast system source codes appear
in [28, 29]. We know of no prior work on linear broadcast system source codes.

Network coding is a generalization of routing for transmitting independent bits through
lossless networks. Work on linear network code design for multi-cast networks has recently
become a topic of considerable interest (see, for example, [30, 31, 32]). Koetter and Médard
give an algebraic framework in [32]. Reference [33] considers a randomized approach for inde-
pendent or linearly correlated sources, while [34] and [35] give polynomial-time deterministic

and randomized network code constructions for independent sources.

IIT Preliminaries and Generalizations

Since the focus of our paper is on the relationships between system components and concepts,
we give all results in their simplest forms. In particular, we state our results and their
corresponding derivations for independent, identically distributed (iid) random processes
and focus on binary source and channel alphabets, modified only for the inclusion of the

erasure noise model. For simplicity, all code constructions combine random linear encoding
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with typical set decoding. The definition of the typical set AE” for a single random sequence
g

Uy, Us, ... drawn iid according to probability mass function (pmf) p is
1
AR = {u" eu": —ﬁ]ogp(u”) <H{U)+ e} )

Given source alphabet U, H(U) = —_, ., p(u) log p(u) is the entropy of iid random process
Uy, Us,.... By the Asymptotic Equipartition Property (AEP),

and Pr(U" € A™) — 1 as n — co. In most cases, we use context to distinguish between
typical sets. Thus U™ € A refers to the typical set for the pmf p(u) of random variable U
while Z" € A™ refers to the typical set for the pmf ¢(z) of random variable Z. Focusing on
linear encoding and typical set decoding allows us to include the corresponding proofs and
illuminates the relationships between them.

While state and prove our results in their simplest form for readability, we note that all
of the results given here generalize widely from the forms that we state explicitly. Some of

these generalizations are described below.

e While we focus on the binary alphabet, results generalize to arbitrary finite fields.
The requirement that the finite field be the same for all sources, channel codewords,
and additive noise processes cannot, however, be relaxed in general. The channel
output alphabet is allowed to differ only in the inclusion of erasures. In our model,
erasures propagate as erasures when the output of one channel is fed into the input of

a subsequent channel.

e We state results for iid source and noise random processes; the results generalize to

stationary, ergodic processes for which corresponding typical sets exist.

e We use non-systematic codes in channel coding; the results generalize to systematic

codes.

e We use distribution-dependent typical set decoders; many of the results in this pa-
per can be generalized to achieve universal coding performance and improved error

exponents using the maximal entropy decoders of Csiszar [17].

7



e We ignore decoder complexity issues; good (sub-optimal) decoders with lower com-
plexity can be derived for many of the systems described here using sparse matrix
techniques like the the low-density parity-check (LDPC) coding techniques developed
by Gallager [36], McKay [3], and others.

e We give results for the smallest generalizable instances of each network type (e.g., two-
receiver broadcast channels and three-receiver broadcast system source codes); our

results generalize to larger systems.

IV  Single-Transmitter, Single-Receiver Networks

We begin by examining simple forms of some of the prior results described in Section II. In
particular, we give simple new proofs for the linear source and channel coding theorems for
single-transmitter, single-receiver networks [2, 16, 17]. These new derivations demonstrate
the relationships between these algorithms and random linear network coding techniques.
We further provide a linear source coding converse. Finally, we extend the given random
design arguments to design linear joint source-channel codes for the single-transmitter, single-
receiver network.

Given a single-transmitter, single-receiver network, source coding is equivalent to network
coding of compressible source sequences. We say that a network code accomplishes optimal
source coding on a noise-free network if that code can be used to transmit any source with
entropy lower than the network capacity with asymptotically negligible error probability.

Shannon’s achievability result for lossless source coding demonstrates that for Uy, Us, . ..
drawn iid from a Bernoulli(p) distribution and any € > 0, there exists a fixed-rate-(H(U) +¢)
code for which the probability of decoding error can be made arbitrarily small as the coding
dimension n grows without bound. The converse to Shannon’s source coding theorem proves
that asymptotically negligible error probabilities cannot be achieved with rates lower than
H(U). We begin by proving that the expected error probability of a randomly chosen, rate-
R, linear source code approaches zero as n grows without bound for any source U with
H({U) < R. The fixed-rate, linear encoder is independent of the source distribution; we

use distribution-dependent typical set decoders for simplicity. We first describe the source



encoder and decoder for a fixed linear code and then give the random coding result.
Let a, be an [nR] x n matrix with coefficients in the binary field IF,. The encoder for

the linear source code based on a,, is
ny _
an(u") = apu,

where u™ = u’ € (IF3)™ is an arbitrary source sequence with blocklength n. The correspond-

ing decoder is

um ifu € A™ and a,u =v and A" € A" N {ul¢s.t. a0 =v
6n(v[nR]) — /H { }

U™ otherwise,

where v/"®l = vt ¢ (IFy)[E] and decoding to U™ denotes a random decoder output (which

yields a decoding error by assumption). The error probability for source code a,, is

P.(a,) = Pr(B,(a,(U™)) #TU™).

Theorem 1 Let Uy, Us,...,U, be drawn iid according to distribution p(u). Let {A,}5°, be
a sequence of rate-R linear source codes. FEach A, is an [nR| X n matriz with coefficients

drawn iid Bernoulli(1/2). For any R > H(U), EP,(A,) — 0 as n — oo.

Proof: We design a sequence {A,}52, of codes at random and show that if the rate is chosen
appropriately, then the expected error probability FP,(A,) of the randomly chosen code
decays to zero as n grows without bound. Using the above encoder and decoder definitions

and letting w' € IF7 be an arbitrary nonzero vector,
EP{" = EPr(fy(0n(U") #U")
= Y p")Pr(Balan(u™) #u) + Y p(u”) Pr(Bu(an(u”) # u")

u? ¢A(n) un EA(n)
< @t Y, p # u) Pr(A,i = A,u) (1)
un u"GA(")
< et Y.p U)+9) Pr(A,w = 0) (2)
u"EAgn)
< 6n_i_21‘L(H(U)-|-e)2—|'nR] (3)

for some ¢, — 0. Equation (1) and the bound on the size of the typical set follow from

the AEP. The symmetry represented by the introduction of w in (2) and the bound on the

9



corresponding probability in (3) result from the following argument. Let k£ be the number of
ones in an arbitrary w # 0. Then each coefficient of vector A, w is the sum of k£ independent
Bernoulli(1/2) random variables. Since summing iid Bernoulli(1/2) random variables yields
a Bernoulli(1/2) random variable and the rows of A, are chosen independently, A,w is

[mR] possible outcomes.

uniformly distributed over its 2
By (3), EP{™ — 0 as n — oo provided that [nR] > n(H(U) + €). O
Lemma 1 provides a form of converse to Theorem 1. While Theorem 1 shows that linear

source codes are asymptotically optimal, Lemma 1 shows that any fixed linear code yields

statistically dependent output symbols. An immediate consequence of this observation is
that linear source codes cannot achieve the entropy bound for non-uniform sources (since
achieving the entropy bound would necessarily yield an incompressible data sequence). This
result highlights one difference between the fixed-rate, asymptotically lossless linear codes
investigated here and the more typically applied variable-rate, truly lossless source coding
schemes like Huffman and arithmetic codes. Variable-rate schemes can achieve lossless per-
formance for any blocklength and precisely achieve the entropy for dyadic distributions. We
address the advantages of fixed-rate codes later in this section by showing how fixed-rate,
linear source and channel codes combine naturally to give linear joint source-channel codes.

The proof of Lemma 1 relies on a recent extension of the Darmois-Skitovich theorem to finite

Abelian groups.

Lemma 1 Given any n > 1, let py,...,p, be non-uniform probability mass functions on
the mutually independent random variables Uy, ..., U,. Defining V.= (Vi,...,Vx)" and
U= (Uy,...,U,), let

V =aU

for an arbitrary k X n matriz a. If V1, Vs, ..., Vi are mutually independent, then matriz a

has at most one non-zero element in each column.

Proof: The proof uses the analogue of the Darmois-Skitovich theorem for discrete periodic
Abelian groups by Fel’dman [37]. Let us proceed by contradiction. Suppose that the jth

column of a has non-zero elements in positions i and ¢ (¢ # 7). Then V; and V; both experience
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a non-zero contribution from U;. In this case, the independence of V; and V; requires that
p; be a uniform probability mass function, which gives a contradiction. O

Just as source coding can be viewed as an extension of network coding to applications
with statistically dependent input symbols, channel coding can be viewed as an extension
of network coding to unreliable channels. Prior network coding results address the issue of
robust communication over unreliable channels by considering strategies for working with
non-ergodic link failures [32, 33]. We here investigate ergodic failures. A network code
designed for a single-transmitter, single-receiver network with ergodic failures is a channel
code for the erasure channel. We say that a network code accomplishes optimal channel
coding on the given channel if the network code can be used to transmit any source with
rate lower than the noisy channel capacity with asymptotically negligible error probability.

To accomplish linear channel coding for the erasure channel, we use an n x |nR| lin-
ear generator matrix b, and a conceptually simple non-linear decoder. The linear channel
encoder is defined by

(vl = b,v.

Let X" denote the channel input and Y denote the corrupted channel output. For any
y" =y' € {0,1, E}" define the decoder as

T if (b,v); = y; for all i s.t. y; € IFy
Sn(y") = and AV # v s.t. (by¥v); = y; for all i s.t. y; € IF,

VIRl otherwise,

where for any v € IF%”RJ, (b,v); is the ith component of the vector b,v. Again, decoding to

VInRl denotes a random decoder output.

Theorem 2 Consider an erasure channel with input and output alphabets IFy and {0,1, E'},
respectively. The erasure sequence Zy, Zs, ... is drawn iid according to distribution q(z),
where Z; = 1 denotes the erasure event, and Z; = 0 designates a successful transmission.
The channel noise is independent of the channel input by assumption. Let {B,}2° | describe
a sequence of channel codes. Each By is an n X |nR| matriz with elements chosen iid

Bernoulli(1/2). If R < 1—¢q(1), then the expected error probability EP,(B,) — 0 as n — oc.
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Proof: For the erasure channel, we can immediately decode Z™ from the received string Y.
For any 2" € IF}, define £(2") = {e € IF} : ¢; = z; Vis.t. z; = 0}. A decoding error
occurs if there exists a v # V for which B,V — B,v = B, (V — ¥) € £(Z"), since any
such v would be mapped to the same channel output by Z". For any 2" with ) . | z; =k,
|£(z")| = 2. Using the definition of the typical set, 2" € A™ implies that Y., z <
n(q(1) + €¢), where € = ¢/log(q(1)/q(0)). Thus for any fixed 2" € A™ and wt € F/"®,
Pr(B,w € £(z")) < 27m2MdM+€) (since B,w is uniformly distributed by the argument in

the proof of Theorem 1), giving

EP{™(B,)

€

= EPr(Error A Z" ¢ A™(q)) + E Pr(Error A Z" € A™(g))
et Y sl £ V) Pr(Buy —¥) € £G)

vlnRl plnRleplMRl 4neaA™ (g)

< €+ Z Z p(ul"Bl)q(zm)2lnRlg-ngnla(+e)

eI} 2nealo

< e, + 2 (-a)-¢)+nE]

for some ¢, — 0. Here A™ (p) is the typical set for the source distribution and A (q) is the
typical set for the noise. The expected error probability decays to zero as n grows without
bound provided that R <1 —¢(1) — €. O

By Shannon’s separation theorem, we can achieve optimal communication over the given
erasure channel by concatenating optimal source and channel codes. Concatenating the
optimal linear source and channel codes of Theorems 1 and 2 yields an optimal linear source-
channel code. Given source code a, and channel code b,, the joint source-channel encoder
multiplies the source input by a single n X n matrix ¢, = b,a, and transmits the output
across the channel. The corresponding decoder is £, (0,(+))-

As an alternative to the above approach, where we design separate random linear source
and channel codes and concatenate them together, we can design a joint source-channel code
at random and decode in a single typical set decoding argument. While we stick with the
traditional name of joint source-channel coding, we note that the code does not perform
the separate functions of source and channel coding jointly. Instead, the code maps source

sequences to channel inputs in a manner that allows robust communication without any
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explicit or implicit compression or addition of channel coding redundancy.

The joint source-channel code’s encoder is defined by

C(u™) = cpu.
Denote the random channel input and output by X” and Y”, respectively. For any y" =

y' € {0,1, E}" the decoder is defined by

n

u™ if (cpu); = y; for all i s.t. y; € IFy

mn(y") = and Aa #us.t. (c,u); =vy; forallist. y; € Fy

U™ otherwise.

Here, (c,u); denotes the ith component of vector ¢,u. The error probability for code ¢, is

Pe(cn) = Pr(m (G (Y™)) # U™),
where U™ and Y are the random source vector and channel output, respectively. Theorem 5

demonstrates that the expected error probability for a randomly chosen linear code C,, decays

to zero as n grows without bound.

Theorem 3 Consider the random source Uy, Us, . .. drawn iid according to distribution p(u),
and let Z1, Zs, . .. be the channel’s random erasures, where Z1, Zs, . .. are drawn iid according
to distribution q(z) and are independent of the source. (Again Z; = 1 denotes an erasure
event.) Assume that the source and channel input alphabets are equal to the binary field
IFy. Let {C,}22, describe a sequence of joint source-channel codes. Fach C, is an n X n
matriz with elements chosen iid Bernoulli(1/2). If H{U) < 1—q(1), then the expected error
probability EP.(Cy) — 0 as n — oo.

Proof: Again, we can immediately decode Z" from the received string Y”, and a decoding

error occurs if there exists a 1 # U for which C,(U — 1) € £(Z"). Thus
EP™(C,) = EPr(Emror A (U™ ¢ A™(p) v 2" ¢ A™(q)))
+EPr (Error ANU" € AE") (p)NZ" € AE”) (Q))

2t D, . p(u")g(z")1( # u) Pr(C,(u — @) € £(2"))
ur ane AL (p) zre A (g)

2+ ) Y, put)g(zm)2r I mnard)
ure A (p) zne AL (q)

%, + 2 n(l-a()—¢~HU)-0)

IN

IN

IN
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for some ¢, — 0. Thus the expected error probability decays to zero as n grows without
bound provided that H(U) <1 —¢(1) —e — €. O

While we focus primarily on the erasure channel model, we note that both the channel
coding theorem and the joint source-channel coding extend easily to additive noise models.
This model may be viewed either as true noise or as the signal of another user that has been
combined with the desired signal at some node of a network code. The second interpretation
is only useful when the interfering signal is not iid uniform; we treat interference channels
in detail in Section V.

We begin with the additive noise channel’s channel coding theorem. Let a,, be an [n(1 —
R)] x n matrix with coefficients in IF5. For channel coding, a, plays the traditional role of
the parity check matrix. Following Csiszar [17], however, we interpret a, as a source code
on the noise. For any matrix a,, we can design an n X |nR| matrix b, such that b, has full
rank and a,b, = 0. Matrix b, plays the role of the generator matrix for the desired channel
code. We design b, to have full rank so that each length-|nR]| input message maps to a
distinct channel codeword. We force a,b, = 0 so that each codeword is in the null space of
a,, making possible separation of the encoded message from the additive noise.

More precisely, the channel encoder is defined by

YW F) = b,v.

The channel output for a random channel input b,V is
Y =0b,V+Z
In decoding the channel output, the receiver first multiplies Y by a, to give
a,Y = a,(b,V + 2Z) = a,Z.

The result of this multiplication is a source coded description of the error signal Z. Thus
the decoding procedure involves applying source decoder 3, to a,Y. The error is decoded
correctly with high probability. The receiver then subtracts the error estimate from the
received Y to yield, with high-probability, 6,V. Since b, has full rank, the receiver can

recover V perfectly from b,V. Thus the channel code’s error probability equals the error
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probability for the corresponding source code on the error signal Z”. Given this insight, the

channel coding theorem is an immediate extension of the source coding theorem.

Theorem 4 Consider an additive noise channel with input, output, and noise alphabets all
equal to the binary field ¥y. Let noise Zy1, Zs, ... be drawn #d according to distribution q(z).
The channel noise is independent of the channel input. Let {(By, An)}52, describe a sequence
of channel codes. FEach A, is [n(1 — R)| matriz with elements chosen iid Bernoulli(1/2).
Fach B, is designed to match the corresponding A, as described above. If R < 1 — H(Z),
then the expected error probability EP,(B,, A,) — 0 as n — oc.

Proof: As in the proof of Theorem 1, we choose a sequence {A,}°; of matrices at random.
This is our source code for the noise. For each A,,, we design an nx (n—k) matrix B, such that
B, has full rank and A, B, = Oyx (k). By the argument given above, the error probability
for the given channel code equals the error probability for the corresponding source code on
the error signal Z™. By Theorem 1, the expected value of this error probability goes to zero
as n grows without bound for all [n(1 — R)] > nH(Z), giving an asymptotically negligible
error probability for any R < 1 — H(Z). O

Finally, we consider a linear joint source-channel code for the additive noise channel.

Again, given n X n matrix c,, we define the encoder as
C(u™) = cpu.

Given random channel input ¢, U, the channel output is
Y =¢,U+Z.

The decoder is

urif uh € A (p) and 3" € A™ () sib. coutz=y
m(y") = and A(0"2") € (A" (p) N {u}) x A" (q) s.t. chi+z=7y

U™ otherwise.

The error probability for code ¢, is

Pe(cn) - Pr(nn(gn(Un) + Zn) 7é Un)

15



Theorem 5 demonstrates that the expected error probability for a randomly chosen linear

code C,, decays to zero as n grows without bound.

Theorem 5 Consider the random source Uy, Us, . .. drawn #d according to distribution p(u),
and let Z1,Z,y, ... be the channel’s random additive noise, where Zi,Zs,... are drawn iid
according to distribution q(z) and are independent of the source. Assume that the source,
channel input, channel output, and noise alphabets are all equal to the binary field IFy. Let
{C,}52, describe a sequence of joint source-channel codes. Each C,, is an n X n matriz with
elements chosen iid Bernoulli(1/2). If H(U) < 1— H(Z), then the expected error probability
EP.(C,) — 0 as n — oc.

Proof: An error occurs if two source sequences are mapped to the same channel input vector
or if there exist distinct noise vectors that map distinct channel input vectors to the same
channel output. In the first case, C,,U = C,u for some & # U, and in the second case,
C,U+Z = C,a+ z for some 1 # U and z # Z. Restricting our attention to typical
source and noise vectors, an error occurs if there exists a 1 € A™ (p) such that & # U and
C,(a—U) e {0}u{z—2Z:2 € A™(q)}. For any fixed u — 1 # 0 and randomly chosen C,,,
the coefficients of vector C,,(u — 1) are sums of fixed numbers of iid Bernoulli(1/2) values.

Thus Pr(C,(tt —u) = w) = 27" for all w € IF}, and

EP"(Cy)
= FEPr (Error A (U" ¢ AE")(p) vZtg Agn) (Q)))
+EPr (Error ANU" € AE") (p)NZ" € AE") ((1))

= 2 p(u")g(z")1(0 # u) Pr (C(u - &) = & — 2)
(un,zm), (@ ,2m) € AX (p) x AT (q)
S 2t > p(u™)g(z") 2" HU) ) gn(H(@)+e) g —n

(un,z7)e AT (p)x A™ (g)
S 26” + 2—n(1—H(q)—H(U)—26)

for some ¢, — 0. The error probability goes to zero provided that H(U) < 1— H(q) —2e. O
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V  Multiple Access Systems

The techniques applied in the previous section for single-transmitter, single-receiver systems
can also be applied to the design of linear source and channel codes for networks. We
begin with a simple re-derivation of the linear multiple access source codes first studied by
Csiszar [17]. We then consider linear coding for multiple access channel codes.

Given [nR;| X n matrix a,, and [nRy| x n matrix ag,, we associate with (ay,,as,)
a blocklength-n, two-transmitter, linear multiple access source code as follows. For any

uf =ul € (IFy)" and v} = ul € (IF,)", encoders 1 and 2 are defined by

ain(uf) = apm
aopn(uy) = agpnug

For any v/"™1 = vt € (IF,)"®11 and v]™! = vt € (IF,)™22], the decoder is defined by

)
(ul,ul) if (ul,ul) € A™ and (a1,n01, a2,,U2) = (v, Vo) and

Ay, 85) € A™ N {(uy, u5)}¢ st
(a1,nﬁ1, a2,nﬁ2) = (V1,V2)

\ (U, UP) otherwise.

,Bn (U{an] ’ 'UQ“ZRZ-' ) =

Again, decoding to (U, U}) denotes an error event.

Theorem 6 Consider source sequence (Uy,1,Us ), (U2, Uss), ... drawn iid according to dis-
tribution p(ui,uz) on (F2)?. Let {(Ain, A2n)}2, be a sequence of rate-(Ri, Re) linear

multiple-access source codes with coefficients chosen iid Bernoulli(1/2). Then for any rates

R1 > H(U1|U2)
R2 > H(U2|U1)
R1+R2 > H(Ul,UQ),

{(A1n, A2) }22, achieves expected error probability EP,(A; ,, Asy) — 0 as n — oo.

Proof: An error occurs if either or both of the source sequences is decoded in error. Thus,

following an argument very similar to those seen previously,
EPe (Al,na A2,n)
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X, X, Xi Xo
X1, X0, Y, Z € Ty X1, X, Y, Z2,Y € TFy
v Y € {0,1, E} v
BEC — Z Z

(a) (b)

Figure 2: Binary additive multiple access channels with (a) erasures and (b) additive noise.

In both cases, Zi, Z5, ... are iid and independent of the channel inputs.

= EPr(Ba(o1u(UF), a2n(U3))) # (U, U') A (U, U) & AM)
+E Pr(Bu(a1,(U}), 02,4 (U3))) # (UF, Us') A (UT, Us') € AP)

< et Y, plup) Y 1(a5 # uf) Pr(Ag,(uy — i) = 0)
(up,up)eA™ ag:(up,ug)eAT
+ Y plup) YD 1@ # uf) Pr(Aya(ug — i) = 0)
(u? us)eA™ ar(a? un)eA™

+ Yoo pluf,up)1(ar # uf)1(if # up)
(uf ug),(ap iy )eA™

. PI"((A1,n(u1 - ﬁl)a AZ,n(UQ - ﬁZ)) = (Oa 0))

IN

€y + 2MH LU +2) pr( A} w = 0) 4 2nHU2IU0+29 pr( 4, w = 0)
+2n(H(U1,U2)—|—€) Pr(Al,nwl =0 A Az’nWQ = O)
= ¢, + 2~ nEal-n(H{T1[U2)42€)) | o= (InRa]—n(H(U2|U1)+2¢))

49~ ([nEi]+[nRa]—n(H(U1,U2)+e))

for arbitrary, non-zero w', wi, w! € IF; and some ¢, — 0. Thus for all ([nR;], [nRy])
satisfying [nRy| > n(H(U1|Us) + 2¢), [nRy| > n(H(Us|Uy) + 2¢), and [nRy] + [nR2] >
n(H(Uy,Us) +€), EP.(A1n, A2,n) — 0 as n grows without bound. O

Application of the above linear channel coding techniques to achieve linear multiple
access channel codes is more straightforward than the corresponding source coding result.
In particular, we consider the two additive multiple access channels shown in Figure 2. The
first is the additive multiple access channel with erasures, and the second is the additive

multiple access channel with additive noise. The additive channel with interference only (no
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channel noise) can be viewed as a special case of either of the noisy models where errors or
erasures occur with probability zero. Let X' and X7 denote the random channel inputs,
and use Y" to denote the corresponding random channel output. Then Y" equals X" + X7}
corrupted by erasures in the erasure channel model, and Y" = X'+ X7 + Z" for iid additive
binary noise Z" in the additive noise channel model. Both examples use addition over the
binary field. All noise is independent of the channel input.

We begin by deriving the multiple access capacities of both the additive multiple access

channel with erasures and the additive multiple access channel with additive noise.

Lemma 2 The multiple access capacities of both the additive multiple access channel with
erasures and the additive multiple access channel with additive noise equal the rate region
achieved by time-sharing between the points (C,0) and (0, C), respectively, where C = 1—q(1)
for the erasure model and C =1 — H(Z) for the additive noise model.

Proof: The cooperative capacity for each multiple access channel is equal to the capacity
of the corresponding single-transmitter, single-receiver channel. Since the multiple access
capacity without cooperation cannot exceed the cooperative capacity and the above time-
sharing solution achieves the cooperative capacity, we have the desired result. O

Since time-sharing between two linear codes can itself be described as a linear code, the
time-sharing solution demonstrates not only that the end points are achievable by linear
codes but also that all points in the set of achievable rates are achievable by linear multiple
access channel codes. The following argument demonstrates the construction of linear mul-
tiple access channel codes from linear channel codes for single-transmitter, single-receiver
networks.

Matrix pair (b1, b, 2) denotes a linear multiple access channel code with encoders

V@) = bav
72(v2LnR2J) = bypva.

We build matrices (by,1,bn,2) from the linear code for the corresponding single-transmitter,
single-receiver channel. Let {b,}2°, be a sequence of rate-R single-transmitter, single-

receiver channel codes for the given channel model, then matrix pair (b9 ;, 09 5) = (bn, Onrxn)
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describes a multiple access channel code that achieves rate pair (R, 0). Similarly, matrix pair
(b51,059) = (Onrxn, by) describes a multiple access channel code achieving rate pair (0, R).

The multiple access channel code achieving the (A\,1 — A) time-sharing solution between

(R,0) and (0, R) is a linear code with

o Oaxwnr | | Owxar  Onxnnr |
B, 02,] = [ by Anx(1-\)nR AnxAnR Anx(1-A)nR

1,n»

[ O—nxanr  Oa—mx(1-M\)nR J [ Oa—nxanr  b—am J
We decoding the first An channel outputs with the decoder for by, and the remaining outputs

with the decoder for 3;_y),. The resulting codes lead immediately to Theorems 7 and 8.

Theorem 7 Consider a multiple access channel with input alphabets X1 = Xy = Fy and
output alphabet Y = {0,1, E}. If the channel inputs at time i are X,; and Xo;, then
the channel output at time i is the binary sum Xy; + Xo; with probability ¢(0) and E with
probability q(1). Erasures are #id and independent of the channel inputs. Let {(Bin, Ban) o2,

describe a sequence of rate-(Ry, Ry) multiple access channel codes. Matrices By, and Bs,

take the forms

By, = Bin Ornx(1-nnR and By, = Oxnxank  Oxax(1-nnr
O—nnxanr  Ou—nmx(1-MnR Oi—xnnxanr  Ba-an

where By, and B_y, are [AnR] x |[An] and (|[nR] — |[AnR]) x (n — [An]) matrices,

respectively, with coefficients chosen #id Bernoulli(1/2). For any A € [0,1] and R < 1—q(1),

the given sequence of linear multiple access channel codes gives expected error probability

EP,(Byy, Byy) — 0 as n — oo. Thus all rates (Ry, Ry) with Ry + Ry < 1 — q(1) are

achievable.

Theorem 8 Consider a multiple access channel with input-independent, additive noise.
Suppose that the input alphabets, output alphabet, and noise alphabet are all equal to the
binary field V. Let noise Zy, Zs, . .. be drawn iid according to distribution q(z). If the chan-
nel inputs at time i are X, ; and X ;, then the channel output at time i is Y; = X ;+Xo;+Z;.
Let {(By,n, Ban, An) }o2, describe a sequence of rate-(Ry, Ry) multiple access channel codes.

Matriz A, takes form
Axn 0



where Ay, and Aq_xy, are [(1 — R)An] x An and [(1 — R)(1 — A\)n] x (1 — A\)n matrices,

respectively, with entries chosen iid Bernoulli(1/2). Matrices By, and Bs,, take the forms

B, = Bin Oxnx(1-2)nr and By, = Oxnxank  Oxnx(1-Anr ’

01 nnxanr 0@ Anx(1-MnR 01 nnxanr  Ba

where By, and B_yy, are the generator matrices corresponding to random parity check ma-
trices Axp and Aq—xn, respectively. For any A € [0,1] and R < 1—-H(Z), the given sequence
of linear multiple access channel codes gives expected error probability EP.(Bi pn, B, An) —

0 as n — oo. Thus all rates (Ry, Ry) with Ry + Ry < 1 — H(Z) are achievable.

While the proofs of Theorems 7 and 8 take slightly different approaches, this difference is
not essential. The proof methodology from Theorem 7, which uses direct typical set decoding
rather than building a parity-check matrix, can be adapted to the additive noise multiple
access channel.

Given the above source and channel coding theorems, we next tackle the issue of source-

channel separation for our multiple access channels.

Theorem 9 Consider a multiple access channel with input alphabets Xy = Xy = IFy and
output alphabet Y = {0,1, E}. If the channel inputs at time i are Xy, and Xy, then the
channel output at time i is the binary sum Xy; + Xo; with probability ¢(0) and E with
probability q(1); the erasure events are #id. If source pair (Uy1,Usy), (U2, Usg), ... is drawn
iid according to distribution p(u1,ue) with H(Uy,Us) < 1—q(1), then there ezists a sequence
of joint source-channel codes with probability of error Pe(n) — 0. Conversely, if H(Uy,Usy) >

1 —q(1), then the probability of error for any communication system is bounded away from

zero. Thus source-channel separation holds for the multiple access erasure channel.

Proof: By Theorem 6, the Slepian-Wolf region for the given source is Ry > H(U;|Us),
Ry, > H(U|Uy), and Ry + Ry > H(U;,U,). By Theorem 7, the capacity region for the
given channel is Ry + Ry > 1 — ¢(1). If H(U;,Uy) < 1 — ¢(1), then the regions overlap, and
the given source can reliably communicated across the given channel with separate source

and channel coding schemes. (Here H(Uy,U;) < 1 — ¢(1) implies that H(U,|Us) < 1 — ¢(1)
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and H(Uy|U;) < 1 — ¢(1) and that there exists some (Rj, Rp) with Ry > H(U;|Us), Ry >
H(Us|Uy), and Ry + Ry > H(Uy,Us).)

To prove the converse, note that separation holds for the channel with vector input
(X1, X2) and scalar output Y. Thus even if the two transmitters could cooperate, no source
pair (U, Us) with H(Uy,Us) > 1 — ¢(1) could be reliably transmitted across the given

communication system, giving the desired result. O

Theorem 10 Consider a multiple access channel with input-independent, additive noise.
Suppose that the input alphabets, output alphabet, and noise alphabet are all equal to the
binary field I¥y. Let noise Z1, Zs, . .. be drawn iid according to distribution q(z). If source pair
(U11,U21), (U12,Usz2), - .. is drawn iid according to distribution p(ui,us) with H(Uy,Us) <
1— H(Z), then there ezists a sequence of joint source-channel codes with probability of error
P = 0. Conversely, if H(U,,Uy) > 1— H(Z), then the probability of error is bounded

away from zero.

Proof: As in the previous proof, given input-independent noise, separation holds for the
channel with vector input (X, Xy) and scalar output Y = X; + Xy + Z, making reliable
communication of any source with H(Uy,U;) > 1 — H(Z) impossible for the given channel.
Reliable communication for any source with H(Uy,U;) < 1 — H(Z) is achieved by separate
source and channel coding since the Slepian-Wolf region and capacity region again overlap.
O

We next demonstrate the performance of random linear codes in joint source-channel

coding across the given linear channel.

Theorem 11 Consider the random source (Uy,1,Us 1), (Ui 2,Us2), . .. drawn iid according to
distribution p(ui,us), and let Z1, Zs, ... be the channel’s random erasures, where Zy, Zs, . ..
are drawn iid according to distribution q(z), all Z; are independent of the source, and Z; = 1
denotes an erasure in channel use i. Assume that the source and channel input alphabets
are equal to the binary field Fy. Let {(Cy1,Cr2)}o>, describe a sequence of linear joint
source-channel codes. Each C;, (i € {1,2}) is an n X n matriz with elements chosen id
Bernoulli(1/2). If H(Uy,Us) < 1—q(1), then the expected error probability EP,(C,) — 0 as

n — oQ.
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Proof: Again, we begin by noting the erasure positions in Y” and using them to reconstruct
Z". A decoding error occurs if there exists a 0; # U; for which C,(U; —a;) € £(Z27),
a Uy # Uy for which Cy,(Usy — 11z) € £(Z"), or a 43 # Uy and Gy # U, for which
Ci1n(Up — ) + Cy (U — ) € £(Z™). Thus

P(n) (Cl,'m CQ,n)
= EPr(Error A (U}, UY) ¢ A (p)yv zZn ¢ Agn)((])))
+FE Pr (Error AU, UY) € A(") p)NZ" e Agn) ((1))

S 2€n + Z Z ul ) u2 Zn)
(up up)eAl™ (p) 2ne AL (g)
Z Pr(Ciy,(u — @) € £(2"))
ap£up:(ar un)eA™ (p)
+ Z Pr(Cyp(uz — ) € £(2"))
ap Al (ul a2 €A™ (p)
-+ Z Pr(Cl,n(ul - ﬁl) + C2,n(u2 - ﬁ2) € g(zn))
apAup a5 ugi(ag ig) €A (p)
< 2e, + Z Z p(ut, uz)q(z")

(lup)eA™ (p) zneal™ (q)

. [2”( (U1|U2)+e)9—ngnlg(l)+€') | on(H(U2|U1)+e)g—ngn(q(1)+e') | on(H(U1,U2)+€)g—non(q(1)+e')

< 2€n+27”(17(](1)7€I—H(U1‘UQ)—E)+2—n(1—q(1)—€’—H(U2‘Ul)—f)+2—n(1—q(1)—6’—H(U1,UQ)—E).

for some ¢, — 0. Thus the expected error probability decays to zero as n grows without
bound provided that max{H (U, |Us), H(Us|Uy), H(U1,U3)} = H(Uy,Up) <1 —¢q(1) —e— €.
O

Theorem 12 Consider the random source (Uy1,Us1), (Ui, Usz2),. .. drawn iid according
to distribution p(ui,us), and let Zy,Zs, ... be the channel’s random additive noise, where
71y Za, . .. are drawn iid according to distribution q(2), and Z; are independent of the source.
Assume that the source, channel input, channel output, and noise alphabets are all equal to
the binary field I¥y. Let {(Cin, Con)}2, describe a sequence of linear joint source-channel

codes. Each C;,, (i € {1,2}) is an n x n matriz with elements chosen iid Bernoulli(1/2). I
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H(U,,U) < 1— H(Z), then the expected error probability EP,(Cy,,Coy) — 0 as n — oo.

Proof: An error occurs if two values of u} are mapped to the same value of z7, two values
of ul are mapped to the same value of z7, or if there exist distinct noise vectors that map
distinct source vectors to the same channel output. In the first case, C,U; = C) 0, for
some 0y # Uy; in the second case, Cy, Uy = O 11, for some 1y # Uy; and in the third case,
CipUi+Z = Cy 01 + 2 for some 4y # Uy and z # Z, C,Uy +Z = Cy 09 + 2z for some
Uy #Usand z # Z, or C, , U1 +C5,Us+Z = C ,, 111 +Cs , 112+ 2 for some 61y # Up, Gy # Uy,
and # # Z. Thus, setting F(z") = {2 — 2z : 2 # z,2' € A" (g)} and restricting our attention
to typical error sequences, we sum up the error events as: C),(U; — ;) € {0} U F(Z"),
Con(Ugy — 1) € {0} UF(Z™), and C1,(Uy —0y) + Cy,,(Uy — 02) € F(Z"). We then bound
the expected error probability as

EPe(n) (Cl,n702,n)
= EPr (Error A ((U{l, U3) & AE")(p) vVZtg Agn) (Q)))
+FEPr (Error INUANVSNS AE")(p) NZ" e AE”) (Q))

< 2, + Z Z p(ut,uz)q(z")
(upug)eAl™ (p) zne Al (g)
Z Pr(C’l,n(ul — fll) - {O} U .'F(Zn))
apur:(ar,up)eA™ (p)
+ Z Pr(CQ’n(UQ — ﬁg) € {O} U f(Zn))
ap#ug:(up,ap)eA™ (p)
+ Z PI‘(Clyn(lll - ﬁl) + CQ,n(UQ — ﬁg) € .7:(,2”))
ap£ut,ap Auy:(ay,ap)e A (p)
< 2e, + Z Z “1 ’ U2 ) [2n( (U1\U2)+6)27n2n(H(Z)+e)

(ufup)eA™ (p) zneal™ (q)
n(H(Usz|U1)+€) o—non(H(Z)+e) n(H(U1,Us)+€) o—non(H(Z)+e)
+2 27"2 +2 272 ]

< ¢, + 2 M(I-HZ)=HUI|U2)~2¢) | o=n(1=H(Z)=H(U2|U1)~2€) 4 o=n(1~H(Z)=~H(U1,U3)~2¢)

for some ¢, — 0. Thus the expected error probability decays to zero as n grows without

bound provided that max{H (U,|Us), H(U2|U,), H(U,Us)} = H(Uy,Us) < 1 — H(Z) — 2e.
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Ula U21 U3a U12a U23a U13a U123

DEC,| |DEC,| |DECs
} }
U17 U12a U137 U123 U37 U13a U23: U123

U27 U127 U237 U123

Figure 3: A broadcast system source code with three receivers.

VI Broadcast Systems

The next simple model under consideration is the broadcast system, where one transmitter
sends information to a collection of receivers.

A broadcast system source code comprises a single encoder and a collection of decoders.
Since the case with two receivers has special structure absent from general broadcast system
source codes [28, 29], we focus on the three-receiver system of Figure 3. The results given
simplify easily to the two-receiver case and generalize to more receivers. Note that, since we
consider discrete channels, the degraded broadcast channel converses of [38] or of [39], which
allows no or partial common information, are applicable. In the given broadcast system
source coding model, samples of source vector (Ui, Us, Us, Ui, Uss, U1z, Urag) are drawn iid
from some distribution p(u1, ug, us, U192, Uss, U13, U123). The source description contains com-
ponents of rates Ry, Ry, R3, Ri2, Ro3, R13, and Ri93. Decoder 1 receives the rate Ry, Rio,
Ri3, and Ris3 descriptions and uses them to decode (Ui, Uig, Uss, Uiaz). Decoder 2 receives
the rate Ry, Ri2, Rss, and Ris3 descriptions and uses them to decode (Us,Uis, Usg, Uias).
Decoder 3 receives the rate Rs3, Ri3, Ro3, and Rio3 descriptions and uses them to decode
(Us, U1z, Uaz, Ura3). While several receivers decode the common information, each has a
different subset of the descriptions with which to decode.

Theorem 13 proves the optimality of linear broadcast system source codes. In this case,
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the linear encoder is a matrix of dimension
([an] + [nRg] + [nRﬂ + [ang] + [nR23—| + [nR13—| + [nR123]) X Mn.

The first [nR;] bits of the output go to receiver 1 only. The subsequent [nRy]| and [nR3]
bits similarly go to receivers 2 and 3, respectively. Next come, in order, the rate-Rio, Ra3,

Ry3, and Ry93 descriptions. We again use typical set decoding.

Theorem 13 Consider samples of source vector (Uy,Us,Us, Uya, Uss, Uz, Uiaz) drawn iid
according to distribution p(ui,ua, us, U1g, Uss, U1z, Uiaz) on (IF)7. Let {A,}%2, be a sequence
of rate-(Ry1, Ry, R3, Ri2, Ras, Ri13, Ri23) linear broadcast system source codes with coefficients
chosen iid Bernoulli(1/2). For any s C {1,2,3,12,23,13,123}, let us = (ug)acs, and let
(nR)s =) ,es[nRa]. Then for any rates satisfying

(nR), > H(U,|Us,~,) V sC 8 ={1,12,13,123},5 # ¢
(nR), > H(U,|Us,—,) V sC S =1{212,23,123},5 # ¢
(nR), > H({U|Us,_s) V sC S3=1{3,13,23,123},5# ¢

{A,}>° | achieves expected error probability EP,(A,) — 0 as n — oo.

Proof: Given the linear structure of the code, we can break encoder matrix A, into a

collection of [nR,| x n sub-matrices, a € {1,2,3,12,23,13,123}, such that

We begin by bounding the expected probability of decoding in error at receiver 1, here
denoted as EP,(A1n, A12,n, A13n, A123,n) The arguments for receivers 2 and 3 are similar. By
the union bound, the code error probability is bounded by the sum of the individual decoder

error probabilities.
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Figure 4: (a) The erasure broadcast channel and (b) a physically degraded channel with the
same capacity (@ = (g2(1) — ¢1(1))/(1 — ¢1(1)) and all erasures propagate as erasures).

An error occurs at receiver 1 if any subset of the desired sources is decoded in error.

Thus, following our standard approach,

EP.(Aijn, Aton; Atz n, Aiozn) < €0+ Z p(uf, uty, ulls, utss)

(uf uls,ulsulsg) €A

> > Pr(A, ,(u, — 11;) = 0)

SCS1SFP g stuns(ap ug, _,)EAT

S €n + Z 2n(H(U5|U51,S)+26)27(RR)3
sCS1:5#¢

for some ¢, — 0. O

We next consider the erasure broadcast channel models shown in Figure 4 (a) and (b). A
single channel input is sent to receivers 1 and 2. In the first model, the output at receiver 1
is an erasure with probability ¢;(1) and the transmitted value with probability ¢;(0); like-
wise, the output at receiver 2 is an erasure with probability ¢»(1) and is otherwise received
correctly. Without loss of generality, assume that ¢;(1) < go(1). In this model, erasures are
assumed to be independent events. In the model of Figure 4(b), the erasure probabilities for
the two receivers are the same, but the erasures are dependent random variables, with all

erasures at the first receiver propagating to the second receiver. By [1, Theorem 14.6.1], the
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capacity of the broadcast channel depends only on the conditional marginal distributions
p(y1|z) and p(yo|z), thus the capacity of the two channels shown and all channels with the
same p(y;|z) and p(ys|z) (regardless of the statistical dependencies between erasure events
Z, and Z,) are identical.®> Note that the elegant and simple converse for degraded BSC
broadcast channels of [40], which relies on properties of binary sequences, might be readily
extended to our model, albeit without the generality of [38, 39].

Lemma 3 proves time-sharing to be optimal for broadcast coding over the given family of
channels. The result of Theorem 14, proving the rates achievable by linear broadcast channel
codes on the erasure broadcast channel is then immediate by the previous linearity of time-
sharing argument. The given bound is optimal for the case of no common information. No
converse exists for the case of common information, but the given linear coding achievability

results agree with the best known achievability results on the binary erasure channel.

Lemma 3 Consider a binary erasure channel with output alphabets {0,1, E} at each of
two receivers. The erasure sequences Z11, 212, ... and Zy 1, Zao, . .. are drawn #d according
to distributions q1(z1) and go(22), respectively, where Z;; = 1 denotes an erasure event at
receiver i at time j. The joint distribution q(z1,22) may be any distribution with the given
marginals, but the channel noise is independent of the channel input by assumption. The
capacity region for sending independent information to the two receivers is described by
R R
1_q11(1) + 1_;2(1) <1

For any achievable independent information rate pair (Ry, Ry), the rate triple (R}, Ry, R|,) =

(Ry, Ry — Ry, Ry) with common information rate R}, and independent information rates R

and R, is also achievable for any Ry < Rs.

Proof: By [1, Theorem 14.6.1,Theorem 14.6.2], the capacity of the given channel is the convex
hull of the closure of all (Ry, Ry) satisfying Ry < I(W;Y3) and Ry < I(X;Y;|W) for some
joint distribution p(w)p(z|w)p(y1|z)p(y2|y1). Here W is an auxiliary random variable with
alphabet size 2 and p(yz2|y1) is derived from the physically degraded channel model. By a

3All channel models considered here assume Z; and Z, are independent of the channel input.
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symmetry argument, the optimal W is a uniform binary random variable with p(z|w) = 1-0

if x = w and p(z|w) = B otherwise. Thus

Ry

IN

I(X; Y1 |W)
= I(X;Yy) - I(W; 1)
= 1-q() - [H(1-a(1)/2,a(1), 1 —a(1))/2)
—H((1-8)(1 - q1(1),a(1), 801 — a:(1)))]
= (1-a)H(B)
Ry < I(W;Y2)
= H(1-q@)1-0)/2,01)+ (1 -q))o (1 —-a)l - a)/2)
—H((1-8)1 - (1)1 —-a),ad)+ (1 —a))ae, (1 - (1)1 - a))
= 1-a@)d-o)1-H(B))
= (1—-¢1)1-H(B)).

Varying H(f) from 0 to 1 gives the independent coding result. The common information

result comes from [1, Theorem14.6.4]. O

Theorem 14 Consider an erasure channel with input alphabet o and output alphabets
{0,1, E} at each of two receivers. The erasure sequences Z11,Z12,... and Zs1,Za2, ... are
drawn iid according to distributions g1(z1) and ga(z2), respectively, where Z; j; = 1 denotes
an erasure event at receiver i at time j. The joint distribution q(z1,z2) may be any distribu-
tion with the given marginals, but the channel noise is independent of the channel input by
assumption. Let {B,}5°, describe a sequence of channel codes. Each B,, is ann x (|nR;y | +
|nRs|) matriz with elements chosen iid Bernoulli(1/2). If R1/(1—q1(1))+Ry/(1—g2(1)) < 1,
then the expected error probability EP,(B,) — 0 as n — 0o.

To date, there exist no results to prove the optimality of linear broadcast codes for
the additive noise broadcast channel model. In this case, time-sharing is not the optimal
solution [1], and direct application of the techniques used in this paper fail to achieve the
optimal performance. The stumbling block is that we cannot apply the construction used to

build channel input X from the auxiliary random variable W to be decoded by the second
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receiver. (See the proof of Lemma 3.) In particular, we cannot achieve the appropriate (non-
uniform) cross-over probability from the auxiliary random variable to X using an additive
signal created by a linear code. In this case, as in Theorem 14, the time-sharing solution
is achievable with linear coding. While the time-sharing solution gives a bound on the
performance achievable by linear coding, the time-sharing solution is sub-optimal for this
problem. Linear coding performance beyond the time-sharing bound may or may not be
possible. The following argument describes one possible strategy for trying to move linear
codes beyond the time-sharing bound. Consider a systematic code with a low density parity-

check matrix. Let the encoding matrix be

1
By=1| Py Py |,
0 Py
where [ is the (|nRi] + [nR2|) x (|nR1] + |nR2]) identity matrix and Py, Py, and P

have dimensions

H(Zy)
"1 H(Z)

H(%)

nht 1 H(Z)

1
X an, nR X nRQ, (n — nRQ - nR1m> X nRQ,

respectively. (We here drop the rounding notation for readability but note that all of the
above quantities must be integers.) For each i € {1,2}, let Z! = [Z!,Z!,Z!,Z!,], where the
sub-vectors have lengths nRy, nRs, nR1H(Z1)/(1— H(Z1)), and n—nRy—nR,/(1— H(Z4)),

respectively. Applying the above code, the channel output at receiver 2 is

Vi +Zy
Vo + Zy
P11V + Py Vo + Zos
Py Vo +Zyy

If the decoder at that receiver applies parity check matrix P;; to the the received Vi + Zy;

and subtracts off the outcome from the third component of Y then the modified signal is

0 Vo + Z
Y, _ 2 29
P (Vi + Zy) Po1 Vo + Zos + P12
I 0 Py Vo + Zoy
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Decoder 2 thereby recovers more of its parity check symbols at the expense of increasing the
corresponding error probability in those symbols. When the density of parity check matrix
Py, is low, the increase in error probability for symbols Py V, may also be low enough to
make those parity check bits useful in decoding the description of V5. Receiver 1 uses the
same technique to decode Vj,, then subtracts off its impact on the parity check bits for Vy,

and finally decodes V;.

VII Input-Dependent Noise

By assuming that the channel noise is independent of the channel input, the theorems of
the previous section rule out asymmetrical channels like the Z-channel. Unfortunately, the
above techniques do not extend to the case where the noise random variable is dependent
on the channel input. For example, in the single-transmitter, single-receiver network, more
careful choice of B,, can yield an arbitrary desired distribution on the channel input vectors.
Unfortunately, it cannot do so in a manner that allows the set of codewords to cover the
typical set. In particular, if row ¢ of the generator matrix b, is nonzero, then the sth coefficient
of channel codeword X" = b,V is a mixture of iid, Bernoulli(1/2) random values (assuming

Bl of possible messages), and thus

that the message V is chosen uniformly over the space ]F%n
is itself Bernoulli(1/2). While we can make the distribution on X; Bernoulli(g) for some
g < 1/2 by mixing proportion (1 — 2¢) all-zero rows with proportion 2¢ non-zero rows, the
number of distinct channel codewords that result is at most 2720 < 2nH() for all ¢ € (0,1/2)
by the strict concavity of the the entropy function.

The above observation of the failure of linear codes for input-dependent noise demon-
strates that while separation holds for channels like the Z-channel, separation does not
hold in general for linear codes on single-transmitter, single-receiver channels with input-
dependent noise. For example, consider an additive noise channel with input-dependent
noise 72, Zs, ..., and suppose that linear channel codes cannot achieve the capacity of the
given channel. Now consider a source Uy, Us, ... such that the statistic of source U are pre-

cisely the optimal input statistics for the given channel. For this example, optimal linear

source coding followed by optimal linear channel coding would fail to achieve the optimal
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performance but joint coding — in this case, no coding — would succeed. Unfortunately, while
the above example demonstrates a case where linear joint source-channel coding achieves the
optimal performance while separated linear codes fail, the linear joint source-channel coding
techniques used in this paper fail to achieve the optimal performance in this example.

The above observation about the failure of source-channel separation for linear coding on
channels with input-dependent noise is one of many examples where separation fails owing
to input-dependent noise. In that example, separation fails for linear codes but does not
fail in general. Theorem 15, which treats the additive multiple access channel with additive
noise, provides an example where source-channel separation fails more generally owing to

input-dependent noise. The same phenomena may be observed in erasure channels.

Theorem 15 Consider a multiple access channel where the input alphabets X1 and X,
output alphabet Y, and noise alphabet Z are all equal to the binary field Wy, Let Zy, Zs, . ..
be the noise random process, and use X1,; and Xs; to describe the channel inputs at time
t. Then the channel output at time i 1s Y; = Xy, + Xo, + Z;. Separation fails when Z; and

(X1,, Xo,;) are statistically dependent random variables.

Proof: Following the argument of Theorem 10, we demonstrate the failure of separation by
showing that when the cooperative capacity of the network is different from the multiple
access capacity, then there exist sources for which joint coding can reliably transmit sources
that cannot be sent reliably using separate source and channel coding.

The maximal rate attainable in separate source and channel coding is bounded by the

multiple access channel capacity’s bound on the sum rate
R1 + R2 S maXI(Xl, XQ, Y),
PP

where P, and P, are the marginal probability mass functions of X; and Xs, respectively.

The cooperative capacity of the network provides the alternative bound
R+ Ry < H}gaXI(X]_,XQ; Y).
12

When
max [ (X1, Xo;Y) < max I(X;, Xp;Y),

Py,P> P
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separation fails since the cooperative capacity is achievable through joint coding for the
source with p(uq, ug) = Pio(us, usg).

For all 4,5 € {0,1}, let Pr(Z = 1| X; = ¢, X; = j) = ¢;;. For the multiple access capacity,
let p; = Pr(X; = 1) and py = Pr(X3 =1). Then

maXI(Xl, XQ, Y)

Py,Py

= I;}%Z([H((l —p1)(1 —p2)(1 — goo) + (1 — p1)P2go1 + p1(1 — p2)gio + P1p2(1 — ¢11))

—(1 = p1)(1 = p2)H(go0) — (1 = p1)p2H (g01) — p1(1 — p2) H (q10) — p1ip2H (11)]-

For the cooperative capacity, let Pr(X; = 0,X; = 0) = po, Pr(X; = 0,Xs = 1) = pos,
Pr(X; =1, Xy = 0) = pio, and Pr(X; =1, X = 1) = py1, where p;; = 1 — poo — po1 — P1o-
Then we similarly find

maxI(X1, Xo;Y) =  max [H(Y)— HY]|U,V)]

P2 P00,P01,P105P11
= max  [H(poo(1 — goo) + Po1go1 + Progio + P11(1 — ¢11))

P00,P01,P10,P11

—pooH(lIoo) - p01H(CI01) - ploH(Qm) - 1011H((I11)]-

The two equations are not equal in general. For example, let g0 = ¢;1 = 0 while

qo1 = q10 = 1/2 Then

max I (X1, Xo;Y) = H(3/4)—1/2=0.311

PP

max I (X, Xo;Y) = 1.

P2

(The maxima occur at (p1,p2) = (1/2,1/2) and (poo, Po1, P10, p11) = (1/2,0,0,1/2).) Separa-
tion fails in this example since the source pair (Ui, Up) with Pr(Uy = 0,U; = 0) = Pr(U, =
1,U; = 1) = 1/2 can be reliably transmitted across the given channel, despite the fact that
the achievable rate region for Slepian-Wolf source coding and the capacity region for the
given channel do not overlap. (Slepian-Wolf source coding requires a rate R; + Ry > 1 while
the multiple access capacity region extends only as far as R; + Re < .311.)

In contrast, for input-independent noise qop = o1 = q10 = ¢11 = ¢, giving

maXI(Xl, XQ, Y)

PPy

= max{H((1=p1)(1=p2)(1 = ¢) + (1 = p1)peg + pr(1 = p2)g + prpa(1 — q))
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_(1 - Pl)(1 - p2)H(Q) - (1 - pl)p2H((]) - Pl(l - p2)H(Q) —ppoH(q)]
= lgllggj[H((l —(1=p)(1=p2))1—=q)+ (1 =p1)(1 =p2)q) — H(q)]

= 1-H(q).

We achieve the maximum by setting (1 — p1)(1 — p2) = 1/2. Similarly, the cooperative
capacity becomes

max I(X,XY) = max  [H(poo(1 — q) + po1q + piog + p11(1 — q))
12

Po00,P01,P10,P11

—pooH(Q) - p01H((]) - PloH(Q) - an(Q)]

= max  [H((1— (po1 + p10))(1 — q) + (po1 + p10)q) — H(q)]

P00,P01,P10,P11

= 1-H(q).

Again, we achieve the maximum when py; + p1g = 1/2.
Comparing the two results in this case, we find that

max I (X1, Xo;Y) = IIIlDaXI(Xl, X2;Y)
12

PP

as expected from Theorem 10, and separation holds. O

Theorem 10 proves that separation fails for some multiple access adder channels with
input-dependent noise and shows that the gap between the maximal joint entropy for sources
that can be transmitted and the maximal achievable sum rate across the multiple access
channel can be quite large (0.689 bits per symbol in the binary example provided in the
proof). Figure 5 shows the corresponding difference for 100 randomly chosen sources. For
these examples, we model the noise Z as the sum of two independent noise components,
say Z = Zy + Zy, where Z; is dependent on X; but not X5, and Z, is dependent on X,
but not X;. In particular, we set Pr(Z; = 1|X; = 0) = €10, Pr(Z; = 1|X; = 1) = €,
Pr(Z; = 1|Xy = 0) = €39, Pr(Z; = 1|Xy = 1) = € and choose €, €11, €20, and €3,)
independently at random according to the uniform distribution on [0, 1]. For each channel,
we plot the difference between the maximal joint entropy for sources that can be transmitted
and the maximal sum rate achievable across the multiple access channel. For examples where
this value is non-zero, separation fails. While the example in the above proof suggests that

the gap can be large, the gaps are far smaller for examples encountered in our experiments.
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(Separation fails at these points)
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Figure 5: The difference between the maximal cooperative capacity and the maximal sum
rate for the broadcast channel for a collection of multiple access channels with input-

dependent additive noise.

VIII The Case for End-to-End Coding

The preceding sections treat the topics of source and channel coding using the tools of linear
network coding, bringing previously disparate areas into a common framework. We end by
demonstrating that this unification is not only useful in its combination of tasks once treated
entirely separately but is in fact crucial to achieving optimal, reliable communication.

Traditional routing techniques rely entirely on repeat and forward strategies for getting
a source from its point of origin to its desired destination. The network coding literature
demonstrates the failure of that approach in achieving the optimal performance for some
simple multi-cast examples [30]. We next demonstrate the failure of the network coding
model.

The common network coding model assumes that all sources are independent and all
links are noiseless. Implicit in the given model is the assumption that source and channel
coding are performed separately from network coding at the edges of the network, so that

the internal nodes need only pass along the information to the appropriate receivers. We
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Figure 6: A network for which separation of source and network coding fails.

U1 Ul

U- 2 U2

Figure 7: A network for which separation of channel and network coding fails.

next demonstrate that source-network separation and channel-network separation both fail.
That is, there exist networks for which network coding and source coding must be performed
jointly in order to achieve the optimal performance. Likewise, there exist networks for which
network coding and channel coding must be performed jointly in order to achieve the optimal
performance. We use a sequence of simple examples to prove these results.

Example 1: The network of Figure 6 comprises two transmitters and three receivers.
Receiver node 1 wishes to receive Uy, receiver node 2 wishes to receive U,, and receiver node
3 wishes to receive both U; and U,. Sources (Ui, Us) are dependent random variables, with
H(U,,U) < H(Uy) + H(Uy). All network links are lossless, and the capacities are noted
in the figure. Achieving reliable communication in this example requires the descriptions
received by nodes 1 and 2 to be dependent random variables and requires sources U; and U,
to be re-compressed at nodes 1 and 2, respectively. Thus separation of source coding and
network coding fails. O

Example 2: Consider the network shown in Figure 7. The channel between node 0
and nodes 1 and 2 is a broadcast erasure channel with independent erasures of probabilities
¢1(1) = ¢2(1) = g. The network between nodes 1 and 2 and node 3 is a multiple access

channel without interference. The network coding approach requires labeling each link with
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X —>0—0Q0—0— X,

Figure 8: A network for which separation of source and network coding fails. The links
between nodes 1 and 2 and nodes 2 and 3 are independent erasure channels with probabilities

of erasure ¢;(1) and ¢5(1), respectively.

its corresponding link capacity. If R; and R, are the capacities of the edges to receivers 1
and 2, then R; + Ry must be less than 1 — g by Theorem 14. The links from node 1 to node 3
and from node 2 to node 3 are both lossless, with capacity 1 bit per channel use. Optimal
network coding on the given channel gives a maximal rate of 1 — ¢ from the encoder to the
decoder. We contrast with the above separated channel and network coding approach an
end-to-end coding strategy. In this case, we do not force zero error probability between node
0 and nodes 1 and 2 but instead simply forward the information received by those nodes to
the decoder. The capacity of the resulting code is 1 — ¢? since receiver 3 suffers an erasure
only if both node 1 and node 2 receive erasures. O

In addition to illustrating the failure of separate channel and network coding schemes,
Example 2 serves as a reminder that general network capacities cannot be proven by break-
ing the network into canonical elements and solving them independently. Sadly, the strategy
given for that example is not always optimal. In particular, the strategy discussed in Ex-
ample 2 demonstrates that failure to decode at intermediate nodes of the network can yield
performance superior to that achieved by decoding at intermediate nodes. Example 3 gives
an example that teaches the opposite lesson.

Example 3: Consider the channel of Figure 8. The links between nodes 1 and 2 and
nodes 2 and 3 are independent erasure channels with probabilities of erasure ¢; (1) and ¢»(1),
respectively. If we do not decode at the intermediate node, then the maximal achievable
rate from node 1 to node 3 is (1 — ¢1(1))(1 — g2(1)). Decoding at node 2 yields maximal
achievable rate min{l — ¢;(1),1 — ¢2(1)} > (1 — ¢1(1))(1 — go(1)).

The failure of separation in Examples 1 and 2 and the contrasting lessons regarding
decoding at intermediate nodes demonstrated by Examples 2 and 3 make the case for the need

for end-to-end coding in network environments. The success of the linear coding technique
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in network coding, source coding, and channel coding suggests that a unified approach that

obviates the need for separate routing, compression, and error correction codes may be

within reach. In contrast, the failure of separation across canonical network systems seems

to present a far greater challenge to optimal code design in networks.
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