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1 Introduction

This report is a summary of the issue of separation and code design for network data transmission
environments, as discussed in the paper by Effros et al. [1].

It is often considered that the failure of source-channel separation in network environments is
a crucial obstacle in applying information theoretic tools in networks. However, with a consistent
framework for digital networks, the source-channel separation turns out to be more robust than
existing counterexamples may suggest. More interestingly, the separation of source and channel
code design does not necessarily simplify the design of communication systems for digital net-
works; rather such decomposition of a problem into modular tasks may increase complexity as the
decomposition imposes unnecessary conditions.

The network coding literature assumes independent data bits and lossless links, hence endorses
a philosophy where source and channel coding are separated from network coding or routing.
However, there are simple examples showing neither separate source-network coding nor sepa-
rate channel-network coding techniques guarantee optimal performance. We further argue that
the major challenge in design of network systems is the lack of separation of large networks into
canonical elements such as simple multiple access or broadcast networks, rather than the lack of
source-channel separation in networks.

2 Preliminaries

The network model to be considered here requires the same finite alphabet at all nodes and addition-
ally allows erasures assumed to be channel-imposed, irreversible, and independent of the channel
input. We deal with two important types of networks: multiple access and broadcast networks,
and we argue that random linear codes are asymptotically optimal for those setups. This approach
may be viewed, in the simplest way, as a generalization of information theoretic results known for
single-receiver source codes and for single-transmitter, single-receiver channel codes. Also, from
the networking perspective, it has an interpretation that compression, channel coding, and routing
are not separable functions.

All results in this research are in their simplest forms. In particular, in all cases the source and
channel alphabets are binary, including the erasure symbol if needed, and all results are stated for
iid random processes. Also, all code constructions combine, for simplicity, random linear encoding
with typical set decoding. However, all of the results may generalize widely from the forms stated
here.
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3 Single-Transmitter, Single-Receiver Networks

Given a single-transmitter, single-receiver network, source coding can be viewed as an extension
of network coding to application with statistically dependent input symbols. A network code is
said to accomplish optimal source coding on a noise-free network if that code can be used to
transmit any source with entropy lower that the network capacity with asymptotically negligible
error probability.

Let us begin by showing that the expected error probability of a randomly chosen linear source
code with rate R tends to zero as n grows without bound for any source U with H(U) < R.
The fixed-rate, linear encoder is independent of the source distribution, and we use distribution-
dependent typical set decoders for simplicity.

Let an be an ⌈nR⌉×n matrix with coefficients in the binary field F2. The encoder for the linear
source code based on an is

αn(un) = anu,

where un = ut ∈ (F2)
n is an arbitrary source sequence with blocklength n. The corresponding

decoder is

βn(v⌈nR⌉) =

{

un if un ∈ A
(n)
ǫ and anu = v and ∄ûn ∈ A

(n)
ǫ ∩ {un} s.t. anû = v

Ûn otherwise,

where v⌈nR⌉) = vt ∈ F
⌈nR⌉
2 and decoding to Ûn denotes a random decoder output (which yields a

decoding error by assumption). The error probability for source code an is

Pe(an) = Pr(βn(αn(Un)) 6= Un).

Then, we have the following source coding theorem:

Theorem 1 Let U1, U2, ..., Un be drawn iid according to distribution p(u). Let {An}
∞
n=1 be a

sequence of rate-R linear source codes. Each An is an ⌈nR⌉ × n matrix with coefficients drawn iid
Bernoulli(1/2). For any R > H(U), E[Pe(An)] → 0 as n → 0.

While Theorem 1 shows that linear source codes are asymptotically optimal, it can be shown that
any fixed linear code yields statistically dependent output symbols. Therefore, linear source codes
cannot achieve the entropy bound for non-uniform sources since achieving the entropy bound would
necessarily yield an incompressible data sequence.

Similarly to the case of source coding, channel coding also can be viewed as an extension
of network coding to unreliable channels. Prior network coding results treat the issue of robust
communication against non-ergodic link failures, but here we investigate ergodic failures. We say
that a network code accomplished optimal channel coding on the given channel if the network
code can be used to transmit any source with rate lower than the noisy channel capacity with
asymptotically negligible error probability.

For linear channel coding for the erasure channel, we use an n × ⌊nR⌋ linear generator matrix
bn and a conceptually simple non-linear decoder. The linear channel encoder is defined by

γ(v⌊nR⌋) = bnv.

For any channel output yn = yt ∈ {0, 1, E}n, define the decoder as

δn(yn) =

{

vn if (bnv)i = yi for all i s.t. yi ∈ F2 and ∄v̂ 6= v s.t. (bnv̂)i = yi for all i s.t. yi ∈ F2

V̂ ⌊n⌋ otherwise,
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where for any v ∈ F
⌊nR⌋
2 , (bnv)i is the ith component of the vector bnv. Again, decoding to V̂ ⌊n⌋

denotes a random decoder output. Then we have the following channel coding theorem:

Theorem 2 Consider an erasure channel with input and output alphabets F2 and {0, 1, E}, respec-
tively. The erasure sequence Z1, Z2, ... is drawn iid according to distribution q(z), where Zi = 1
denotes the erasure event, and Zi = 0 designates a successful transmission. The channel noise
is assumed independent of the channel input. Let {Bn}

∞
n=1 describe a sequence of channel codes.

Each Bn is an n × ⌊nR⌋ matrix with elements chosen iid Bernoulli(1/2). If R < 1 − q(1), then
E[Pe(Bn)] → 0 as n → 0.

Given source code an and channel code bn, the joint source-channel encoder multiplies the
source input by a single n× n matrix cn = bnan and transmits the output across the channel. The
corresponding decoder is βn(δ(·)). As an alternative to this concatenating method, we can design
a joint source-channel code at random and decode in a single typical set decoding argument.

The joint source-channel code’s encoder is defined as

ζ(un) = cnu,

for any channel output yn = yt ∈ {0, 1, E} the decoder is defined by

ηn(yn) =

{

un if (cnu)i = yi for all i s.t. yi ∈ F2 and ∄û 6= u s.t. (bnû)i = yi for all i s.t. yi ∈ F2

Ûn otherwise,

Theorem 3 Consider the random source U1, U2, ... drawn iid according to distribution p(u), and
let Z1, Z2, ... be the channel’s random erasures, where Z1, Z2, ... are drawn iid according to
distribution q(z) and independent of the source. Let {Cn}

∞
n=1 describe a sequence of joint source-

channel codes. Each Cn is an n × n matrix with elements chosen iid Bernoulli(1/2). If H(U) <

1 − q(1), then E[Pe(Cn)] → 0 as n → 0.

We note that both the channel coding and the joint source-channel coding theorem extend easily
to additive noise channels. For channel coding, let an be an ⌈n(1−R)⌉×n matrix with coefficients
in F2, which can be interpreted as a source code on the noise as will be shown. For any matrix an,
we can design an n×⌊nR⌋ matrix bn such that bn has full rank and anbn = 0. Matrix bn plays the
role of the generator matrix for the desired channel code.

The channel encoder is defined by

γ(vn−k) = bnv,

and the channel output is
Y = bnv + Z.

In decoding the channel output, the receiver first multiplies Y by an to give

anY = an(bnv + Z) = anZ.

This, the decoding procedure involves applying source decoder βn to anZ. After subtracting the
error estimate from Y, the receiver can recover v from bnv since bn has full rank.

Theorem 4 Consider an additive noise channel with input, output, and noise alphabets all equal
to the binary field F2. Let noise Z1, Z2, ... be drawn iid according to distribution q(z) and be
independent of the channel input. Let {(Bn, An)}∞n=1 describe a sequence of channel codes. Each
An is ⌈n(1−R)⌉ matrix with elements chosen iid Bernoulli(1/2), and each Bn is designed to match
the corresponding An as above. If R < 1 − H(Z), then E[Pe(Bn, An)] → 0 as n → 0.
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As before, we can consider a linear joint source-channel code for the additive noise channel as
well. An encoder is defined by

ζ(un) = cnu,

and for given channel input cnu, the channel output is

Y = cnu + Z.

We define the decoder as

ηn(yn) =











un if un ∈ A
(n)
ǫ (p) and ∃zn ∈ A

(n)
ǫ (q) s.t. cnu + z = y

and ∄(û, ẑ) ∈ (A
(n)
ǫ (p) ∩ {u}c) × A

(n)
ǫ (q) s.t. cnû + ẑ = y

Ûn otherwise.

Theorem 5 Consider the random source U1, U2, ... drawn iid according to distribution p(u), and
let Z1, Z2, ... be the channel’s random additive noise, where Z1, Z2, ... are drawn iid according to
distribution q(z) and independent of the source. Let {Cn}

∞
n=1 describe a sequence of joint source-

channel codes. Each Cn is an n × n matrix with elements chosen iid Bernoulli(1/2). If H(U) <

1 − H(Z), then E[Pe(Cn)] → 0 as n → 0.

4 Multiple Access Systems

Given the results in the previous section, the same strategies can also be applied to multiple access
systems. Let us first consider source coding. Given ⌈nR1⌉ × n matrix a1,n and ⌈nR2⌉ × n matrix
a2,n, we associate with (a1,n, a2,n) a blocklength-n, two transmitter, linear multiple access source
code similarly as in the previous section except that now we have a tuple of codewords. Then we
have the following source coding theorem:

Theorem 6 Consider source sequence (U1,1, U2,1), (U1,2, U2,2), ... drawn iid according to distribu-
tion p(u1, u2) on (F2)

2. Let {(A1,n, A2,n)}∞n=1 be a sequence of rate-(R1, R2) linear multiple-access
source codes with coefficients coefficients drawn iid Bernoulli(1/2). For any rates

R1 > H(U1|U2)

R2 > H(U2|U1)

R1 + R2 > H(U1, U2),

E[Pe(A1,n, A2,n)] → 0 as n → 0.

For channel coding, we consider two additive multiple access channels shown in Figure 1. The
first is the additive multiple access channel with erasures, and the second is with additive noise.
Let Xn

1 and Xn
2 be the random channel inputs and Y n be the corresponding channel output, then

for the erasure channel model Y n = Xn
1 + Xn

2 corrupted by erasures, and for the additive noise
channel model Yn = Xn

1 + Xn
2 + Zn for iid additive binary noise Zn. Note that all alphabets and

addition are over the binary field. Then, it can be shown that the multiple access capacities for
both channels equal the rate region achieved by time-sharing between the points (C, 0) and (0, C),
where C = 1 − q(1) for the erasure model and C = 1 − H(Z) for the additive noise model.

Note that time-sharing between two linear codes can also be described as a linear code, hence
all points in the set of achievable rates are achievable by linear multiple access channel codes. For
a sequence of rate-R single-transmitter, single-receiver channel codes, {bn}

∞
n=1, the multiple access
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(a) (b)

Figure 1: Binary additive multiple access channels with (a) erasures and (b) additive noise.

channel code achieving the (λ, 1 − λ) time-sharing solution between (R, 0) and (0, R) is a linear
code with

[bλ
1,n, bλ

2,n] =

([

bλn 0λn×(1−λ)nR

0(1−λ)n×λnR 0(1−λ)n×(1−λ)nR

]

,

[

0λn×λnR 0λn×(1−λ)nR

0(1−λ)n×λnR b(1−λ)n

] )

.

Then, we decode the first λn channel outputs with the decoder for βλn and the remaining outputs
with the decoder for β(1−λ)n.

With these mechanics, we obtain the channel coding theorems for both channel models. In
particular, all rates (R1, R2) are achievable such that R1 + R2 < 1 − q(1) for the erasure model,
and R1 + R2 < 1 − H(Z) for the additive noise model. Moreover, given these source and channel
coding theorems, we have the following theorem of source-channel separation for our multiple access
channels:

Theorem 7 For the multiple access channel with erasures shown above, if source pair (U1,1, U2,1),
(U1,1, U2,1), ... is drawn iid according to distribution p(u1, u2) with H(U1, U2) < 1−q(1), then there
exists a sequence of joint source-channel codes with probability of error tending to zero. Conversely,
if H(U1, U2) > 1−q(1), then the probability of error for any communication system is bounded away
from zero.

A similar theorem is easy to formulate for multiple access channels with additive noise. Note
that for a joint source-channel code, we can set up n × n matrices C1,n, C2,n similarly as in the
previous section, and for both channel models it can be shown that this scheme yields asymptotically
negligible error probability for the sources with entropy lower than the channel capacities.

5 Broadcast Systems

A broadcast system source code consists of a single encoder and a collection of decoders. We
consider a simple model with three receivers shown below. In this case, the linear encoder is a
matrix of dimension

(⌈nR1⌉ + ⌈nR2⌉ + ⌈nR3⌉ + ⌈nR12⌉ + ⌈nR23⌉ + ⌈nR13⌉ + ⌈nR123⌉) × n,

and we use typical set decoding. Then we have the following source coding theorem:

Theorem 8 Consider samples of source vector (U1, U2, U3, U12, U23, U13, U123) drawn iid according
to distribution p = (u1, u2, u3, u12, u23, u13, u123) on (F2)

7. Let {An}
∞
n=1 be a sequence of rate-

(R1, R2, R3, R12, R23, R13, R123) linear broadcast system source codes with coefficients chosen iid
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Figure 2: A broadcast system source code with three receivers.

Bernoulli(1/2). For any s ⊆ {1, 2, 3, 12, 23, 13, 123}, let us = (ua)a∈s, and let (nR)s =
∑

a∈s⌈nRa⌉.
Then for any rates satisfying

(nR)s ≥ H(Us|US1−s) ∀s ⊆ S1 = {1, 12, 13, 123}, s 6= ∅

(nR)s ≥ H(Us|US2−s) ∀s ⊆ S2 = {2, 12, 23, 123}, s 6= ∅

(nR)s ≥ H(Us|US3−s) ∀s ⊆ S3 = {3, 13, 23, 123}, s 6= ∅,

{An}
∞
n=1 achieves E[Pe(An)] → 0 as n → 0.

Now we consider the following erasure broadcast channel models. In the model of Figure 3 (a),

(a) (b)

Figure 3: Binary additive multiple access channels with (a) erasures and (b) additive noise.

erasures are independent, but they are dependent in the model of Figure 3 (b). However, since the
capacity of the broadcast channel depends only on the conditional marginal distributions p(y1|x)
and p(y2|x), the capacity of the two channels are identical. The following Lemma proves that
time-sharing to be optimal for broadcast coding over the given channels.

Lemma 1 Consider a binary erasure channel with output alphabets {0,1,E} at each of two re-
ceivers. The erasure sequences Z1,1, Z1,2, ... and Z2,1, Z2,2, ... are drawn iid according to distribu-
tions q1(z1) and q2(z2), respectively. The joint distribution q(z1, z2) can be arbitrary. The capacity
region for sending independent information to the two receivers is

R1

1 − q1(1)
+

R2

1 − q2(1)
≤ 1.
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For any achievable independent information rate pair (R1, R2), the rate triple (R′
1, R

′
2, R

′
12) =

(R1, R2 − R0, R0) with common information rate R′
12 is also achievable for any R0 < R2.

As mentioned before, time-sharing of linear channel codes yields also a linear code, linear broadcast
channel codes on the erasure channel achieves the optimal rates.

However, there exist no results to prove the optimality of linear broadcast codes for the additive
noise broadcast channel model. In this case, time-sharing is not optimal and direct application of
the techniques used before fail to achieve the optimal performance.

6 Input-Dependent Noise

If the noise random variable is dependent on the channel input, we can show that the previous
techniques do not apply. More precisely, separation does not hold in general for linear codes on
single-transmitter, single-receiver channels with input dependent noise. However, there exists a
more general example, i.e., not confined to linear codes, showing that source-channel separation
fails owing to input-dependent noise in the case of additive multiple access channel with additive
noise. This can be summarized as the following theorem:

Theorem 9 Let Z1, Z2, ... be the noise random process, and X1,i, X2,i be the channel inputs at
time i. Then the channel output at time i is Yi = X1,i + X2,i + Zi. Separation fails when Zi and
(X1,i, X2,i) are statistically dependent random variables.

7 The Case for End-to-End Coding

Traditional routing relies on simply repeat and forward techniques, but the network coding liter-
ature shows some simple multi-case examples where that approach fails in achieving the optimal
performance. However, this network coding model may also fail due to the implicit assumption
that source and channel coding are performed separately from network coding at the edges of the
network.

(a) (b)

Figure 4: Networks for which separation of (a) source-network or (b) channel-network coding fails

Consider a network in Figure 4 (a) where all links are lossless and the capacities are as shown in
the figure. Let us assume that sources (U1, U2) are dependent random variables, with H(U1, U2) <

H(U1)+H(U2). Achieving reliable communication requires the descriptions received by nodes 1 and
2 to be dependent dependent random variables and requires sources U1 and U2 to be re-compressed
at nodes 1 and 2, respectively. Hence, separation of source and network coding fails.

On the other hand, a network in Figure 4 (b) shows the case where separation of channel and
network coding fails. The channel between node 0 and nodes 1 and 2 is a broadcast erasure channel
with independent erasures of probabilities q(1) = q(2) = q, and the network between nodes 1 and
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2 and node 3 is a multiple access channel without interference. If R1 and R2 are the capacities of
the links to receivers 1 and 2, R1 + R2 < 1 − q by Lemma 1. Now optimal network coding on the
given multiple access channel gives a maximal rate of 1− q. However, if we do not force zero error
probability between node 0 and nodes 1 and 2 but instead simply forward the information, then
the capacity of resulting code is 1 − q2.

While the second example illustrates that failure to decode at intermediate nodes can yield
superior performance, we can find another example showing the opposite, i.e., decoding at inter-
mediate nodes is better. Hence, these examples suggest the need for end-to-end coding in network
environments. Such failure of separation across canonical network systems entails a great challenge
to optimal code design in networks.
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