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Job Scheduling and Multiple Access

Sibi Raj, Emre Telatar, and David Tse

ABSTRACT. We establish an analogy between the additive Gaussian multiple
access channel and multi-processor queues. We exploit this analogy to in-
vestigate certain problems arising in multiple access information theory. In
particular we address the question of minimal average delay for multiple users,
each with a finite bit pool, and then a multiple access channel with users arriv-
ing according to a Poisson process. In the latter case, we show that the system
is stable under all arrival rates, and show that the communication analog of
shorter-tasks-faster strategy is close to optimal for high arrival rates.

1. Introduction

A multiple access communication system is comprised of a set of transmitters
sending information to a common receiver. Transmitters are driven by independent
information sources generating streams of packets; typically this is a bursty stream.
Each transmitter encodes the packets it receives in a signal, and the receiver ob-
serves a noisy signal that depends on these transmitted signals. The transmitters
are uncoordinated except via a “weak” feedback they may get from the receiver.

Information theory views multiple access as a matter of combating noise and
interference. The issue of bursty packet arrival is something to be dealt by appro-
priate source coding. Network theory, on the other hand, views multiple access
as a matter of resource allocation and distributed scheduling, taking advantage
of the bursty arrival of packets, but ignoring the issues of noise and interference.
Neither approach is entirely satisfactory [Ga]: By dropping the question of source
burtiness, the information theoretic approach makes any meaningful analysis of
end-to-end delay impossible, by trivializing the issue of interference and noise, the
networking approach takes an oversimplified view of the physical layer.

Our aim here is to present a partially unified view. We will consider a Gaussian
multiple access channel with equal power transmitters, and will attempt to say
something about average packet delay while keeping to an information theoretic
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framework. Our method is based on the exploitation of a certain analogy between
this channel and job scheduling on multi-processor queues. Accordingly, first, we
will discuss scheduling.

2. Job Scheduling

Suppose we have n tasks to complete. Task k requires 7 units of service. To
complete these tasks we have m processors; processor k can deliver service at a rate
of sy units of service per unit time. We can assign tasks to processors, and are able
to change the assignment at any time. However, at any given time no more than
one processor may be assigned to any task. Nor can any processor be assigned to
more than one task at any given time. A task is completed when the cumulative
service it has received meets its service requirement. We will call such a system a
multi-processor queue.

n(t)

0 1 23 43
The top graph shows the remaining service requirement 74(t) of each task as

a function of elapsed time ¢. The lower graph shows the number of tasks n(t)
still to be completed, again as a function of the elapsed time.

FI1GURE 1. Job Scheduling for Example 2.1

ExAMPLE 2.1. Let there be three tasks and two processors (n = 3, m = 2).
Letm =1, =2,73=3,and s; =1, s5 = % We may assign processor 1 to task 1
and processor 2 to task 2 for one unit of time. At the end of this period, task 1 will
be completed and task 2 will have a remaining service requirement of 1% units of
service. We can then assign processor 1 to task 2 and processor 2 to task 3 for 1%
units of time. At the end of this period, task 2 will be completed, and task 3 will
have 2% units of service remaining. We can now assign processor 1 to task 3 for 2%
units of time and all tasks will be complete. (See Figure 1.)
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2.1. Service Rate Vectors. Suppose we have an infinite collection of pro-
cessors, with service rates s1,82,.... The case of a finite number m of processors
can be included in this framework by defining the service rates of all but the first
m processors to be zero. Without loss of generality, assume that s; > s > ---.
Suppose we have n tasks at hand. Clearly, we only need to consider processors 1
through n, since at any given time we cannot use more than n processors and these
are the n most powerful processors we have.

By assigning processor k to task k we can deliver a service rate vector of (sy, ...,
sn), where the k" component of this vector is the service rate delivered to the k"
task.

By permuting the assignment, for any permutation = of the integers {1,...,n},
the service rate vector s = (Sx(1),-- -, Sx(n)) is achievable.

The vertices of the hexagon are those rates achievable by permuting the assign-
ments of tasks to processors. The hexagon itself is achieved by time sharing
between its vertices. Any point in the entire region is dominated by some point
in the hexagon.

FIGURE 2. Rate region example with n = 3.

By moving between these assignments arbitrarily quickly, any convex combi-
nation of the rate vectors s, can be achieved. It is also clear that any rate vector
which is dominated in every component by an achievable rate vector is also achiev-
able. Thus the achievable service rate vectors form a polymatroid (see e.g., [W,
§18.3—4]), and thus are those (Si,...,S,) that satisfy

11

(2.1) forall I C {1,...,n}, ZS,' < Zsk
k=1

iel

(see Figure 2). That one cannot achieve any other service rate vector follows from
the form of (2.1): if any of the inequalities is not satisfied, then there is a collection
I of tasks which get service at a rate exceeding the sum rate of the |I| fastest
processors, a contradiction.

2.2. Service Policies. Given a collection of processors and a set of tasks,
the state of the system at time ¢ is completely determined by the remaining ser-
vice requirement 7y (t) of each task k at this time. We will denote the number of
uncompleted tasks at this time by n(t), that is, n(t) = |{k : 7(¢t) > 0}].
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A service policy P is a function that maps a remaining service requirement
vector to an achievable service rate vector. Thus, a policy determines the rate of
service offered to each task based on the state of the system.

EXAMPLE 2.2. Suppose there is an infinite number of processors, with service

rates si,S2,... and that s; > so > ---. Consider a policy L that assigns faster
processors to the shorter tasks. If the state of the system is (71,...,7,) and if 7 is
the permutation of the integers {1,...,n} that orders the tasks in increasing order

of service requirement, i.e.,
Te(1) < - < Ta(n)

then, the policy L will assign to (7,...,7,) the service rate vector

(871'—1(1)7 .- 7S7r_1(n))'

We will call L the “shorter tasks faster” policy. Note that in Example 2.1 we
employed this policy.

2.3. Scheduling for the Smallest Sum Completion Time. Again sup-
pose we have an infinite number of processors with rates s1,s2,... with s1 > s >
---, and n tasks with service requirements 7y,...,7, with n < --- < 7,. Let
Ck(11,-..,7n; P) denote the completion time of task k£ under a given service policy
P. The quantity

1 n
C(r,.--,m;P) = Ezck(Tl,...,Tn;P)
k=1

is then the average time the tasks spend in the system

We are interested in finding a policy P which minimizes C. Tt is clear that the
minimization of C is equivalent to the minimization of 3 & Ck, the sum completion
time. Fortunately for us, this is a well studied problem in scheduling theory. In
the scheduling terminology the multi-processor system we have described is known
as “uniform machines with preemption” (the adjective “uniform” indicating that
the processors differ only in speed), and the following is well known [Go] (see, e.g.,
[BEP, p. 171]):

THEOREM 2.3. Policy L of serving shorter tasks faster minimizes the average
completion time.

REMARK 2.4. Policy L not only minimizes }_;_, Cj, it also minimizes Zf;zl Ck
for every j =1,...,n.

REMARK 2.5. Under policy L, since shorter tasks are served faster, if 7; < 75,
then 7;(t) < 7;(t) for all time ¢: there is no ‘overtaking.’

REMARK 2.6. Under policy L, if 7; < 75, then increasing the length of task j
does not change C;: longer tasks do not interfere with the service of shorter ones.

3. The Gaussian Multiple access Channel

We now turn to the Gaussian mutiple access, and show that results in scheduling
theory can be adapted to questions arising in its treatment. Suppose we have n
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transmitters with equal power P and a single receiver. The signal received at the
receiver is the sum of the signals of the transmitters and Gaussian noise:

n
(3.1) y = Zxk +z
k=1

where y is the received signal, z}, is the signal transmitter by the k*® transmitter,
and z is a zero mean Gaussian random variable with unit variance. Suppose that
transmitter k has a data rate of Ry. Call a data rate vector (R1, ..., R,) achievable
if for any prescribed error probability, no matter how small, there exists codes with
rates arbitrarily close to the given data rate for each transmitter and a decoding
strategy for the receiver such that the error probability is smaller than that pre-
scribed. It is well known (see e.g., [CT, §14.3]) that a data rate vector (Ry,...,Ry)
is achievable if and only if!

(3.2) forall IC{L,...,n}, S Ri< %log(l +|1|P).
i€l
For k=1,2,..., let

1 1
k=5 log(1+ kP) — 3 log(1+ (k —1)P)

Liog(14— L2
2 % T k-1P)

Observe that sy is non-increasing in k£ and that for m =0,1,...,

(3.3)

—log (1+mP) = Zsk

Thus, equation (3.2) can be expressed as
1]

(3.4) forall T C{1,...,n}, > R <Zsk
i€l
Comparing equations (2.1) and (3.4) we see that the data rates achievable over
an additive Gaussian multiple access channel are the same as the service rates
available from a multi-processor server with processor rates given by (3.3). This
suggests an analogy between multiple access channels and multi-processor queues.
To illustrate the analogy consider the following problem.

3.1. Transmitters with finite bit pools. Suppose there are n users of a
Gaussian multiple access system, each user with power P and user k having a
message of length 7 bits to transmit. Note that unlike the usual information
theoretic scenario the users do not have a stream of data arriving at a given rate,
but each has a fixed pool of bits to send. We want to minimize the average delay of
the messages, the delay of a message being the time until the message is decoded
by the receiver. From the previous section, we know how to solve this optimization
problem: Assume without loss of generality that 73 < --- < 7,. Operate at the
rate vector (si,...,S8,) until the message of user 1 is decoded. By this time a
number of bits of the remaining messages will be decoded also. Next operate at
the rate vector (0,s1,...,8,_1) until the message of the second user is decoded.

LWe measure data rates in this paper in bits, and the logarithms are taken to be base 2.
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Continue in this fashion until all the messages are decoded. The resulting decoding
times Ck (71, .. ., 7Tn; L) will have the least sum (and arithmetic mean) of all possible
decoding schemes. Let X(71,...,7n) = Y, Ck(71,...,Tn; L) denote this least sum.

From an information theoretic point of view, it is clear that no encoding and
decoding scheme can have an average delay less than the one computed via this
analogy and policy L; there will not be enough mutual information and Fano’s
inequality will establish a lower bound on the probability of error. However, it is
not clear if the average delay as computed by the analogy can actually be achieved:
since the number of bits to be transmitted is finite, the usual machinery of the law
of large numbers cannot be brought onto this problem. One can, however, look at
the case of each user having a large number of bits.

THEOREM 3.1. Suppose user k has [aty]| bits to transmit (k=1,...,n), where
a > 0 is a scaling parameter. Then the sum completion time, when normalized by
a, can be made arbitrarily close to X(11,...,7n) by choosing a sufficiently large.

Proor. We will show that for any € > 0, there exists a large enough a and
an encoding and decoding scheme such that the error probability is no more than
€ and the normalized sum completion time is within € of X(7y,...,7,)-

For 0 < 6 < 1,let £ (7y,...,7,) denote the sum completion time of the tasks
when the processor rates are reduced by a factor 4, i.e., when the processor rates
are (1—98)sy, (1 —d)s2,.... Note that () = $/(1 — §) is a continuous function of
d. Given € > 0, first choose & > 0 such that

26(7’1,...,7'") <X(r1,---,Tn) + €
Now consider a multi-processor queue with these reduced rates, and let Cy,...,C,
denote the completion times of the tasks, and let t; = C1, ty = Cy — Cr—1. There
are thus n epochs, [0,t1), [t1,t2), ---, [tn—1,tn) during which the assignment of
the processors to tasks are fixed. During the 4 epoch, processor 1 is assigned to
task j, processor 2 to task j + 1, etc. Let 7{ denote the amount of work done on
task k during the j*" epoch, T,Z =t;(1 — 0)sk—j+1, 1 < j < k < n. Choose now j
large enough so that for all 1 < j <k <n,
=
(] <

We can now choose a positive integer M such that there exists n multiple access
codes, the j*® of blocklength M |At;| and rate vector

(G =)

and each with error probability less than €/n. Choosing o = Mg, we thus have
a coding scheme with error probability at most € and normalized sum completion
time within € of X(7,..., 7). O

3.2. Poisson Arrivals to a Gaussian Multi-user System. Suppose that
tasks are not all present at the beginning of time, but they arrive one by one. In
the language of scheduling theory, the tasks now has ‘release dates,” furthermore
the policy needs to be ‘on line’. Under these circumstances, it is known that the
policy L of serving shorter tasks faster does not necessarily minimize the average
time tasks spend in the system. Indeed, policy L is not necessarily optimal even in
the case when each arriving task demands 1 unit of service.
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7(t)

i ™~ - ™~

n(t)

A sample path for a multi-processor queue with tasks arriving according to a
renewal process. Here sy = 1/k, k = 1,2,..., and each task requires 1 unit
of service. The upper curve traces the remaining service requirement of each
task as they arrive to the queue. Note that if there are n tasks in the system,
the service rate each receives is determined by the temporal ordering of their
arrivals; the k*" task receives 1/k units of service per unit time. The renewal
instants for the system, i.e., the instants of arrival to an empty system is
marked with a circle in the upper time axis.

FIGURE 3. Sample path with tasks arriving over time

Nonetheless, it is interesting to examine how policy L behaves in this last
situation. Since the service demand of a new arrival is 1, it is necessarily at least
as large as the service demands of the tasks already in the system. Thus, if there
are n tasks in the system just before an arrival, the new task is assigned the n + 15
processor. It also follows from Remark 2.6 that the completion time of a task is
independent of the arrival times of the tasks arriving later. Thus, policy L operates
in a “first come fastest served” fashion (see Figure 3). To further illustrate the idea,
one may think of the tasks lining up in front of the processors. A new arrival goes to
the end of the line and moves to faster processors as tasks before it are completed,
until it reaches the fastest processor and departs when its service is finished.

Although we remarked that policy L is not optimal in general, it is possible that
it does minimize the expected time tasks spend in the system for some particular
arrival processes. In any case, we can reach some conclusions without requiring the
optimality of policy L. For example, suppose that the arrival process is a renewal
process with rate A\, and that Ez’;l sy diverges. Then, the overall system will be
stable for all finite A. To see this, consider the amount of work that needs to be done
to clear the system. This quantity increases by 1 every time a new task arrives, and
decreases at a rate of y_;_, sx when there are n tasks to complete. Since customers
arrive at a rate of 1/), the rate at which the new work arrives is 1/A, and the rate
at which work is done will exceed the arrival rate when n is large enough. The
remaining work thus performs a random walk with negative drift and a boundary
at the origin, and hence will enter a compact set around the origin infinitely often.
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We can now consider a continuous time Gaussian multiple access channel of
single-sided bandwidth W. Let all the transmitters have the same power, and let
P be the ratio of a transmitters power to the power of the additive Gaussian noise.

At a time when there are n active transmitters, the capacity region of this
channel is again given by (3.4) with

P

Now suppose that the packets arrive to this system according to a Poisson process.
Just as in the analysis of the ALOHA protocol, we will assume that each arriving
packet is associated to a different transmitter. This simplifies the analysis, but is
less innocent than it looks. In the case of ALOHA this assumption is a pessimistic
one, here it is not so: on the one hand it disallows the cooperative scheduling of
packets that would have arrived to the same user, on the other hand, by creating
more users it increases the total available transmitted power. It is thus neither an
optimistic nor a pessimistic assumption.

Suppose each arriving packet has a fixed number @ of bits to be transmitted.
We wish to process the packets in analogy with policy L: if an arriving packet finds
an empty system it should be transmitted at the rate sy; if it finds a system with
one other packet, it should transmitted at rate s» until the first user is decoded,
after which it should be transmitted at rate s; until it itself is decoded. In general,
an arriving packet that finds j — 1 packets already in the system should go through
transmission rates s;, . .., s1 in that order with the transitions occurring at the times
when the packets before it are decoded. Note that these times are independent of
the later arrivals.

Of course, it is one thing to wish to serve the arriving packets according to
a policy which prescribes what rates they should be served at what times, and
another thing to be able to come up with a encoding and decoding method that
can implement these rates. It is not true that an arbitrary job scheduling policy
can be turned into a communication scheme. The remarkable property of policy
L is that it is implementable with a small amount of feedback from the receiver.
The key enabler is again Remark 2.6: when a new transmission starts, the receiver
can inform the transmitter of the decoding times of the transmissions already in
progress. The transmitter then knows at which data rates it should communicate
at which periods of time, and also when it is to be decoded. Since the transmission
rates it sends at are precisely those which allow it to be decoded regarding the
existing transmissions as noise, it can be decoded, and its signal can be subtracted
from the received signal, causing no interference to the transmissions scheduled to
complete before it.

Let us illustrate this through an example. Suppose a user finds an empty
system. It will then use a code with rate s; = Wlog(l + P), which gives it a
decoding time of C; = S/s1. Suppose a second user arrives at a time r; < Cy. It is
not clear, a priori, that the first user can still be decoded at time C} in the presence
of the new user. To see how this can be done, split the second user’s bits into two
parts: a first part consisting of (C; —71)s2 bits and a second part consisting of the
remaining bits. For the duration from r; to C1, let the second user transmit at rate
s2 = Wlog(1+ H—LP)' At the end of this duration, the first part of the bits of the
second user can be decoded by regarding the first user as noise. Once these bits
are known, the second user’s signal can be canceled from the received signal and
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ADW/Q (1/bits)

L AQ/W (bits)

T

20

The average delay (solid curves) of a packet at different SNR’s versus the
arrival rate under policy L. Note that the vertical axis is delay normalized by
the bandwidth and also the packet length @ (in bits), and the horizontal axis
is the arrival rate (in bits per unit time) normalized by the bandwidth. The
curves are for SNR values of 0, 10,20 and 30 dBs. Also shown (dashed curves)
is a lower bound on average delay for any policy.

FIGURE 4. Average Delay vs. Arrival rate

the first user can be decoded as well. The second user will now transmit the rest
of its bits at rate s;. Note that sj is precisely the rate up to which we can decode
a user in the presence of k — 1 others by regarding these other users as noise.

We should note that the discussion above is valid only when @ is relatively
large; otherwise, the splitting of the bits may result in the number of messages to
be distinguished during a time interval becoming fractional, or the code lengths
becoming too short to allow allow efficient encoding. It should be clear, nonethe-
less, that an argument of the type used in Theorem 3.1 will establish the required
asymptotic. A perhaps cleaner argument will use error exponents as done in [TG]
and obtain the results above as a limiting case.

Figure 4 shows the average delay D of a message (i.e., the time elapsed since
its arrival till its decoding) as a function of the arrival rate and the signal to noise
ratio P. Note the normalizations of the axes in this figure; the horizontal axis is
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the bit arrival rate per unit bandwidth, and the vertical axes is the delay per bit
in units of inverse bandwidth.

Since we do not claim any optimality of policy L, what guarantee is there that
there is not some other, more clever, policy that makes the average delay D much
less than that achievable by L? The next section derives a lower bound to this
average delay and indicates that policy L cannot be beaten by much.

3.3. A lower bound on average delay. We will now derive a lower bound
on the average delay for any arrival process of rate A and any service policy. To
that end, suppose we have a multiprocessor queue to which unit length tasks arrive
at a rate of A. Suppose we have some service policy, and let p, denote the long
term fraction of time during which there are n tasks in the queue. Thus, the time-
average number of tasks in queueis N = Y np,. By Little’s law, the average time
D a tasks spends in the system satisfies

(3.6) AD = N.

Observe now, that since the total service rate cannot exceed o, = 22‘21 s when
there are n tasks in the queue, the long-term average total service rate offered by
the system is at most
anan-
n

For stability we need A < )" pno,, and thus,

N > inf{znpn : angn > A}a
n n
or equivalently,

A< sup{anan : ann < N}

=sup{E[on] : E[N] < N},

where the supremum is over all non-negative integer valued random variables N.
Let o : [0,00) = [0,00) be obtained by linearly interpolating of o,,; o(z) = 0|5 +
(x—|z])[o74] —0|2)]- Since {s, : n > 1} is a non-increasing, non-negative sequence,
o is a concave, non-decreasing function. Thus, by relaxing the integer restriction
on N, and using Jensen’s inequality

A < sup{E[o(X)] : E[X] < N}
< sup{o(B[X)) : BX] < N}
< a(N).
Combined with Little’s law (3.6) this yields
(3.7) D>o "N/,

where ¢! is the inverse function of o. One can check that for an arrival process

with constant interarrival times this lower bound is achieved by policy L, so the
bound cannot be improved without assuming something more about the arrival
process.

Figure 4 shows this lower bound as the dashed curves. It is seen to be tight at
high arrival rates, the bound is essentially indistinguishable to the performance of
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policy L. We thus conclude that policy L, even if it is not optimal, performs quite
well in this regime.

4. Remarks

The reader will have noticed that this correspondence is based on the fact that
both the multi-processor queue and the multiple access channel are governed by the
same formal equation (egs. (2.1) and (3.4)). We exploit this relationship to adapt
problems that are natural in one to the other, and thus obtain novel results in the
field of multiple access.

A genuine understanding of multiple access communication requires a combined
treatment of bursty sources and noisy channels. Network information theory is dif-
ficult enough without further complicating it, but we feel that it is still possible
to incorporate some aspects of bursty sources. The approach outlined here is per-
haps a little fragile—the results we derive are heavily dependent on, for example,
the symmetry between the transmitters—nonetheless, perhaps it can serve as an
encouragement for further research.
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