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Multiple access System

• Uncoordinated transmitters

• Interference: transmitters si-

multaneously access common

receiver

• Zero or little feedback

• Bursty nature of data arrival



Motivation

• For information theory, its a matter of combating noise and

interference.

- More accurate models of noise and interference

- It ignores the random arrival of data

• For queueing theory, its a matter of

- Taking advantage of random arrivals , distributed

scheduling, resource allocation etc.

- Trivialized models for noise and interference, which are

either suboptimal or impossible

More complete picture is needed!



Tale of two papers: Similarities

• Gaussian multiple access channel

y =
n∑

1

xk + z

each user has power P and noise power is 1.

• Each packet is treated as an individual user i.e. queues at

transmitters are ignored

• Limited feedback available

• Receiver always knows number of users in the system



Tale of two Papers: Differences

• First paper assumes successive cancellation at receiver

- Information theoretically optimal

- Sum rate goes to infinity with number of users

- Stability is not an issue for any packet arrival rate

- Issue of interest is delay vs. arrival rate tradeoff

• Second paper treats other users as noise when decoding one user

- Information theoretically suboptimal

- Sum rate bounded for infinite users

- Not stable for all arrival rates.



Job Scheduling: Multi Processor Queues

Consider n jobs to be completed. Job j requires τj service.

There are k processors. Processor i can serve at rate si (per unit time).

At any time instant we can not

• assign any processor to more than one task

• or any task to more than one processor

Although we can

• choose any matching of processors and jobs

• Preempt jobs on one processor and then assign to other processor.

Job j leaves the system when total service sj is received.



Multi Processor Queues

Their example:

We have n cows
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τj = amount of milk in cow j

We have k milkmen to milk them

Milkman i can milk si per hour.



Achievable rates

Assume s1 ≥ s2 · · ·
If there are only 3 jobs. What possible rates (S1, S2, S3) can be provided?
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S • Vertices of this polymatroid

correspond to some matching

between jobs and processors

• Other points achieved by time

sharing

• Outside points can not be

achieved!

Si ≤ s1, Si + Sj ≤ s1 + s2, S1 + S2 + S3 ≤ s1 + s2 + s3



Achievable Rates

In general for n jobs (S1, S2 · · ·Sn) is achievable iff

for every I ⊂ {1, · · ·n},
∑

i∈I

Si ≤
|I|∑

j=1

sj

Note: Add extra 0 rate processors if k < n.

Service Policy

Its a rule for assigning processors to jobs.

Say depending on the instantaneous remaining job lengths {τj(t)}.
Here τj(t) is the remaining length of job j after time t.



Minimizing Average Completion time

Suppose we are given n jobs and we want to minimize the average

completion time of the jobs (C1 + C2 · · ·Cn)/n

Theorem 1 Assigning shorter tasks to faster processors (at every

instant of time) achieves this goal.

For this policy,

• The order of job lengths is preserved throughout

• Longer tasks do not affect the completion times of shorter tasks.



Gaussian Multiple Access Channel

For Gaussian multiple access channel with users of power P , the

capacity region is

for every I ⊂ {1, · · ·n},
∑

i∈I

Ri ≤ 1

2
log(1 + |I|P )
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Successive cancellation achieves this region.

Signals from already decoded users are subtracted to yield cleaner

channel for yet undecoded users.



Gaussian Multiple Access Channel

Let us define

sj =
1

2
log(1 + jP )− 1

2
log(1 + (j − 1)P )

=
1

2
log

(
1 +

P

1 + (j − 1)P

)

Now the capacity region is

for every I ⊂ {1, · · ·n},
∑

i∈I

Ri ≤
|I|∑

j=1

sj

Same formula for achievable rate in processor sharing!

So what??



Finite bit pools at transmitters

If each user j has to send a fixed pool τj of data to send (no data

rate-just fixed number of bits).

Aim is to minimize the average transmission time. Again use shorter

task faster policy. How?

User splits its data pool into different parts to be transmitted at

different rates.

Perform successive Cancellation.

Caveat: Each part of a transmitter’s data pool should be very long for

operating reliably on the capacity region.



Finite bit pools at transmitters

If each user j has to send a fixed pool τj of data to send (no data

rate-just fixed number of bits).

Aim is to minimize the average transmission time. Again use shorter

task faster policy. How?

User splits its data pool into different parts to be transmitted at

different rates.

Perform successive Cancellation.

Caution: Each part of a transmitter’s data pool should be very long for

operating reliably on the capacity region.



Processor sharing with Poisson arrivals

• Now suppose that all jobs/packets are not present as before. Unit

length packets are arriving in a Poisson process of rate λ.

• System is stable for all λ as sum rate
∑n

1 si diverges with n →∞.

• Lets apply shorter task faster policy.

- Its same as earlier task faster.

- Optimal strategy is not known.

• Each new packet is notified of the remaining lengths of earlier

packets.

- Splits its data accordingly.

- Possible with very little feedback

• Thanks to successive cancellation, earlier packets can remain

oblivious to new arrivals.



Average Delay vs. Arrival Rate
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Performance of shorter task faster policy

Is this performance any good?



Lower Bound on Average Delay

Let pn be the fraction of time the system has n users. The average

users N =
∑

n pnn.

By Little’s law average delay D = N/λ.

For stability, the long term average service available should be at least

the long term average service demand λ.

λ ≤
∑
n

pnσn

where σn is sum service rate for n users i.e.
∑n

i=1 si. Let σ(x) be the

interpolated function between points (1, σ1), (2, σ2) · · · .
Following lower bound on D is obtained (see plot).

D ≥ σ−1(λ)/λ

Shorter task faster is close to optimal at high arrival rates.



Part II



Processors Sharing

Consider a processor whose total rate depends on the number of users

say φ(n) for n users. Each user gets φ(n)/n.

Jobs arrivals are rate λ Poisson. Mean length of each job E[S].

The distribution of users in the system,

Pr{n jobs in the system} =
1

Kφ!(n)
(λE[S])n

where

φ!(n) =
n∏

i=1

φ(i) and K = 1 +
∞∑

j=1

(λE[S])j/φ!(j) (1)

as long as this infinite summation is well defined.

- Geometric distribution when φ(n) = 1 for all n.

Note Little’s law tells that average delayD is finite iff expected number

of users N is finite.



Treating Mutual information as Service rate

• Consider a multiple access channel of bandwidth W . Assume SNR

of P (for each user).

• Since all other users are treated as noise, total communication

rate of nW ln(1 + P/(1 + P · n− 1)) (nats/sec) is achievable. Call

this φ(n).

• Let the packet length in nats be the service demand S of a packet.

Thus λE[S] is the average data arrival rate.

•
lim

n→∞φ(n) = W

For the system to be stable, packets in the system must have a

distribution.

This is possible iff λE[S]/W < 1.

Maximum throughput for system bandwidth W is W nats/s.



Finite Packet lengths

• Transmitting reliably at the rate of mutual information needs very

large codewords.

• Small packets can not be sent reliably at that rate.

—

Consider a Gaussian channel where noise power at time i is σ2
i . The

receiver decides to decode the codeword after receiving first d symbols.

The probability of error Pe

Pe ≤ exp

(
ρ ln M −

d∑

i=1

E0(ρ, σi)

)
0 ≤ ρ ≤ 1 (2)

where ln M is packet length in nats and ρ is an arbitrary number in [0, 1].

E0(ρ, σi) is given by

E0(ρ, σi) = ρ ln

(
1 +

P

(1 + ρ)σ2
i

)



Finite Packet Lengths

As other users are treated as noise, σ2
i = 1 + (ni − 1)P where ni is the

number users present at time i.

The network operation is as follows:

• Required Pe is specified for the system. Receiver chooses any fixed

ρ ∈ [0, 1] for all time.

• Each packet starts sending infinite length codeword.

• After each symbol, the receiver calculates the RHS of Eq. (2). As

soon as it is smaller than Pe, informs the transmitter to stop

transmitting that codeword

– Limited feedback needed.



Finite Packet Lengths

This network operation gives a new notion of job lengths obtained by

rewriting Eq. (1) as

− ln Pe + ρ ln M ≥
d∑

i=1

E0(ρ, σi)

LHS above is the defined as demand S of packets.

- It depends on both packet length and Pe requirement.

The service rate (per unit time) is defined as

φ(n) = Wρn ln

(
1 +

P

(1 + ρ)(1 + (n− 1)P )

)

With these definitions of demand and service rate, the best possible

tradeoff between Pe and bit arrival rate λE[ln M ] follows from Eq. (1).

– Previous result follows as a special case of this.



Concluding Remarks

• First approach gives asymptotically optimal tradeoff between delay

vs. arrival rate

- Packet lengths need to be very large.

• - Second approach, gives tradeoffs between queueing theory

parameters (delay, arrival rate) and information theoretic

parameters (bandwidth, probability of error, SNR)

- Addresses the finite packet length issue effectively

- Nonetheless, it is based on a suboptimal strategy.

• What if transmitter queues are not ignored?

• Some easy extensions to Gaussian broadcast channels.


