
Summary of Raptor Codes

Tracey Ho

October 29, 2003

1 Introduction

This summary gives an overview of Raptor Codes, the latest class of codes
proposed for reliable multicast in the Digital Fountain model. This is a
summary of a 2003 preprint by Amin Shokrollahi.

2 Background

2.1 Fountain Codes

A fountain code produces for given set of k input symbols (x1, . . . , xk) a po-
tentially limitless stream of output symbols z1, z2, . . .. The input and output
symbols can be binary vectors of arbitrary length. Each output symbol is the
sum of a randomly and independently chosen subset of the input symbols.
Information describing the relations between input and output symbols is
obtained at the receivers either in packet headers or by other application-
dependent means of synchronization between sender and receivers.

A reliable decoding algorithm for a fountain code is one which can re-
cover the original k input symbols from any set of m output symbols with
error probability at most inversely polynomial in k. The ratio m/k is called
the overhead. The encoding cost is the expected number of arithmetic op-
erations sufficient for generating each output symbol. The decoding cost is
the expected number of arithmetic operations sufficient to recover the k in-
put symbols, divided by k. Desirable properties for a fountain code are an
overhead close to 1, and constant encoding and decoding cost. A universal
fountain code is one for which the decoder can recover with high probability
the original symbols from any set of output symbols whose size is close to
optimal.

1



2.2 Tornado Codes

Tornado Codes [1] are not strictly fountain codes since the number of output
symbols is fixed for a particular code. They are however precursors to the LT
Codes and Raptor Codes in that they are derived from sparse irregular ran-
dom bipartite graphs, whose associated encoding and decoding algorithms
compute one exclusive-or operation for each edge. The edge degree distri-
butions of these graphs are carefully chosen so that with high probability,
successful decoding is achieved by a simple belief propagation decoder that
sets the value of a graph node only if the values of all its neighbors are
known.

Tornado codes use a cascade of such graphs. For any given rate R and
overhead 1+ ε, an (n, k = Rn) tornado code with O(log(1/ε)) encoding and
decoding cost can be designed, such that a codeword can be recovered from
(1 + ε)k output symbols with probability 1−O(k−3/4).

2.3 LT Codes

LT Codes [2] were the first class of universal fountain codes to be invented.
Each output symbol is generated by randomly choosing a degree d from some
suitable degree distribution, choosing d distinct input symbols uniformly at
random, and taking their sum.

If the output symbol degrees are chosen according to the Robust Soliton
distribution proposed in [2], k input symbols can be recovered from any
k + O(

√
k log2(k/δ)) output symbols with probability 1 − δ. The average

encoding and decoding cost is O(log(k/δ)).

3 Limitation of LT Codes

The following proposition shows that the decoding graph of a reliable de-
coder for an LT code has at least O(k log(k)) edges. It follows that if the
number m of output symbols needed for decoding is close to k, then each
output symbol is the sum of O(log(k)) input symbols on average. The per
symbol encoding cost is then O(log(k)).

Proposition 1 If an LT code with k input symbols as a reliable decoding
algorithm, then there is a constant c such that the decoding graph has at
least ck log(k) edges.

Proof outline: Suppose m output symbols suffice to achieve error prob-
ability at most 1/ku for some constant u. Let a be the average degree of

2



an output node in the decoding graph, and b = am/k the average degree of
an input node. The probability of error is lower bounded by the probability
that a particular input node v is not a neighbor of any output node, which
can be expressed as (1 − a/k)n. A series of mathematical manipulations
leads to the inequality b ≥ c log(k).

4 Raptor Codes

The key idea of Raptor Coding is to relax the condition that all input sym-
bols need to be recovered. If an LT code needs to recover only a constant
fraction of its input symbols, then its decoding graph need only have O(k)
edges, allowing for linear time encoding. We can still recover all input sym-
bols by concatenating a traditional erasure correcting code with an LT code.
n intermediate symbols are obtained by encoding k input symbols with an
(n, k) erasure correcting block code capable of recovering all input symbols
from a fixed fraction of intermediate symbols. The n intermediate symbols
are then encoded with an LT code that can recover from its output symbols
the required fraction of intermediate symbols. A Raptor Code is specified by
parameters (k, C,Ω(x)), where C is the (n, k) erasure correcting block code,
called the pre-code, and Ω(x)) is the generator polynomial of the degree dis-
tribution of the LT code, i.e. Ω(x) =

∑k
i=1 Ωix

i, where Ωi is the probability
that the degree of an output node is i.

The performance parameters overhead and decoding cost as defined in
section 2.1 apply directly to Raptor Codes. However, the definition of the
encoding cost of a Raptor Code differs slightly – it is the sum of the en-
coding cost of the pre-code divided by k, and the encoding cost of the LT
code. Raptor Codes also require storage for intermediate symbols, so space
consumption is another important performance parameter.

5 First Examples of Raptor Codes

5.1 LT Codes

An LT code with k input symbols and output distribution Ω(x) is itself a
Raptor Code with parameters (k,Fk

2,Ω(x)), where Fk
2 is the trivial code of

dimension and block length k. The lack of a pre-code necessitates the use
of a sophisticated output distribution Ω(x) with logarithmic encoding and
decoding cost, as discussed in Section 3. The overhead and space however
are close to 1.

3



5.2 Pre-Code-Only (PCO) Raptor Codes

At the other end of the spectrum are Pre-Code-Only (PCO) Raptor Codes.
These codes have a sophisticated pre-code but a trivial output distribution
Ω(x) = x, which sets the value of every output symbol to that of a randomly
and uniformly chosen input symbol. This approach in effect builds a fountain
code from any block code.

The decoding algorithm collects a predetermined number m of output
symbols, which determines the values of some number l of intermediate
symbols. The decoding algorithm for the pre-code is then applied to these
recovered intermediate values to obtain the values of the input symbols.

The performance of a PCO Raptor Code depends on the performance of
its pre-code as follows:

Proposition 2 Let C be an (n, k) linear block code such that kη arithmetic
operations suffice for encoding an arbitrary length-k input vector, and kγ
arithmetic operations suffice for decoding C with high probability over a bi-
nary erasure channel with erasure probability 1−R(1 + ε), for some ε > 0,
where R = k/n. Then the PCO Raptor Code with pre-code C has space con-
sumption 1/R, overhead − ln(1−R(1+ε))/R, encoding cost η, and decoding
cost γ with respect to the decoding algorithm for C.

Proof outline: The space consumption and encoding and decoding costs
follow immediately from the properties of the pre-code. The overhead is
obtained by noting that if the decoder collects m = −k ln(1− R(1 + ε))/R
output symbols, the probability that an intermediate symbol is not covered
is (1− 1/n)m, which is upper bounded by e−m/n = 1−R(1 + ε).

The overhead is at least 1 + ε, since − ln(1 − R(1 + ε))/R ≥ 1 + ε
for 0 < R < 1/(1 + ε), and approaches this bound only if R approaches
zero. Thus, improvement in overhead comes at the expense of the space
consumption and the encoding and decoding time of the pre-code. PCO
Raptor Codes can nevertheless be useful when the intermediate symbols
can be calculated off-line in a preprocessing stage, and space for storage is
not an issue.

6 Raptor Codes with Good Asymptotic Perfor-
mance

Raptor Codes with good asymptotic performance (i.e. constant encoding
and decoding costs, and space consumption and overhead arbitrarily close

4



to 1) can be obtained by appropriately choosing the pre-code C and the
output distribution Ω(x).

6.1 Edge Degree Distributions and And-Or Tree Evaluation

We first outline an analysis technique given in [3] that sheds some intuitive
light on following proofs. The main tool is a simple analysis of the probabil-
ity a tree consisting of alternating layers of AND and OR gates evaluates to
1. This technique yields a simpler and more intuitive way to obtain the crite-
rion in [1] on the edge degree distributions required for decoding all missing
message coordinates when a fixed fraction of them are erased independently
at random.

Here it is useful to consider the BP decoding in terms of rounds: at each
round all released output nodes (i.e. those connected to one unrecovered
input node) recover their incident input nodes, and then all these recovered
input nodes update their incident output nodes. All edges connected to
recovered input nodes are then removed.

Consider an edge (v, w) chosen uniformly at random from the original
graph. We can identify the generator polynomial of the output edge dis-
tribution, ω(x), with the probability that the output node w is released at
some stage where (v, w) has not been deleted and a proportion x of input
nodes have been recovered. Similarly, the generator polynomial of the in-
put edge distribution, ι(x), is identified with the probability that the input
node v is recovered at some stage where (v, w) has not been deleted and a
proportion 1− x of output nodes have been released.

Assuming that none of the input nodes are initially known, we obtain
the following recursive formula for the probability pi that a randomly chosen
edge has carried a message from its incident output symbol by round i:

pi+1 = ω(1− ι(1− pi)) (1)

A similar recursive formula can be obtained for the probability qi that a
randomly chosen edge has not carried a message from its incident input
symbol by round i:

qi+1 = ι(1− ω(1− qi)) (2)

This provides intuition for the condition

ι(1− ω(1− x)) < x, x ∈ [δ, 1] (3)

required for reliable recovery of a fraction δ of input nodes.

5



6.2 Proof of Asymptotic Performance

The output degree distribution ΩD(x) used is a slight modification of the
ideal soliton distribution of [2]:

ΩD(x) =
1

µ + 1

(
µx +

x2

1 · 2 +
x3

2 · 3 + . . . +
xD

(D − 1) ·D +
xD+1

D

)

where D = d4(1 + ε)/εe and µ = (ε/2) + (ε/2)2. An LT code with param-
eters (n,ΩD(x)) is used, along with an (n, k) pre-code Cn of rate R = k

n =
1+ε/2
1+ε that can be decoded on a BEC of erasure probability δ = ε

4(1+ε) = 1−R
2

with O(n log(1/ε)) arithmetic operations. The paper mentions that a vari-
ety of codes can be used as the pre-code, such as tornado codes, right-regular
codes, and certain types of repeat-accumulate codes.

Theorem 1 The Raptor Code with parameters (k, Cn, ΩD(x)) has space
consumption 1/R, overhead 1+ε, and encoding and decoding costs of O(log(1/ε)).

Proof outline: First it is shown that any set of (1 + ε/2)/n + 1 output
symbols of the LT code with parameters (n,ΩD(x)) are sufficient to reliably
recover at least (1 − δ)n intermediate symbols via BP decoding. This is
done by showing that the input edge degree distribution ι(x) and the output
edge degree distribution ω(x) induced by ΩD(x) satisfy equation 3, which
is sufficient to ensure reliable decoding of at least (1 − δ)n intermediate
symbols.

Recovery of at least (1−δ)n intermediate symbols allows the decoder for
Cn to recover the k input symbols. The overall overhead is n(1 + ε/2)/k =
1 + ε.

The encoding and decoding cost of the LT code is proportional to the
average degree of the distribution ΩD, which is Ω′D(1) = 1+H(D)/(1+µ) =
ln(1/ε) + α + O(ε), where H(D) is the harmonic sum up to D, 1 < α <
1 + γ + ln(9), and γ is Euler’s constant. The encoding and decoding cost of
Cn is also O(log(1/ε), which gives the result.

7 Design and Analysis of Finite Length Raptor
Codes

The asymptotic analysis of the previous section is less useful in a practical
setting. The error probability bounds given in the previous section are not
tight for finite length codes, and the code design choices, while sufficient for
proving asymptotic results, do not perform well in practice.

6



7.1 Design and Analysis of LT Code Component

The LT code component is obtained by linear programming on a heuristically
obtained design problem. Consider running the decoding algorithm on k(1+
ε) output symbols. From equation 1 a recursion can be obtained on the
probability ui that an input symbol is unrecovered at round i:

ui+1 = 1− e(1+ε)Ω′(ui)

This shows that if an expected x-fraction of input symbols has been re-
covered by the start of a round, then the expected fraction of input nodes
recovered during the round is 1−x−e(1+ε)Ω′(x). The degree distribution Ω(x)
is chosen to minimize the objective function Ω′(1), subject to the constraint
that the expected number of input nodes recovered during each round is
larger by a constant factor c than the square root of the number of unrecov-
ered input symbols, which is

√
(1− x)k.

The error probability of the LT decoder for a given degree distribution
can be calculated exactly using a dynamic programming approach which is
the subject of an upcoming paper [4].

7.2 Design and Analysis of Pre-code

The LDPC codes proposed as suitable pre-codes are constructed from a node
degree distribution Λ(x) as follows: for each message node a degree d is
chosen independently at random from the distribution, and d random check
nodes are chosen to be the neighbors of the message node. A complicated
analytical expression for the error probability of the ensemble is given.

7.3 Combined Error Probability

Denoting by pLT
l the probability that the LT decoder fails after recovering l

intermediate symbols, and by pCj the probability that the pre-code C cannot
decode j randomly chosen erasures, the probability that the k input symbols
cannot be recovered from the k(1 + ε) output symbols is

n∑

l=0

pLT
l pCn−l

8 Systematic Raptor Codes

An algorithm is given for constructing from a given Raptor Code of param-
eters (k, C, Ω(x)) a systematic version of the code. First, a set of k positions

7



is computed, which will be the positions of the systematic output symbols.
This is done by considering the generator matrix G of the pre-code and
the generator matrix S of the first k(1 + ε) symbols of the LT code. Using
Gaussian elimination, k rows of SG which form a full rank square submatrix
R are identified. These rows correspond to the positions of the systematic
output symbols.

Encoding of the first k(1 + ε) symbols is done by first left-multiplying
the vector of input symbols with GR−1 to obtain the vector u, and then
left-multiplying the result with S. Subsequent output symbols are obtained
by application of the LT code to the vector u.

Decoding is done by applying the decoding algorithm of the original
Raptor Code to obtain a vector of symbols y. The original input symbols
are then given by Ry.

9 Conclusion

This summary has explained the motivation behind the idea of Raptor
Codes, and has covered tools and approaches for the design and analy-
sis of a range of Raptor Codes that includes simple Pre-code-only Raptor
Codes, asymptotically good Raptor Codes, and practical finite length and
systematic Raptor Codes.

References

[1] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, “Efficient Era-
sure Correcting Codes”, IEEE Transactions on Information Theory, Vol.
47, Issue 2, pp. 569-584, February 2001.

[2] M. Luby, “LT Codes”, 43rd Annual IEEE Symposium on Foundations
of Computer Science, 2002.

[3] M. Luby, M. Mitzenmacher, and M. Shokrollahi, “Analysis of Random
Processes via And-Or Tree Evaluation”, Proceedings of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, 1998, pp 364-373.

[4] R. Karp, M. Luby, and A. Shokrollahi, “Finite length analysis of LT-
codes”, To appear, 2002.

8


