Linear Network Coding

for Multicasting

6.454 presentation

Uri Erez

The Place of Network Coding

in the Grand Design

e Multiuser information theory:

— Formally includes just about anything.
Traditionally, emphasis quite different,
noisy channels, correlation between signals
in different channels.

e Network coding:

— channels are reduced to bit pipes. ‘Theory

K of smart routing”. /

_

Single-Source Single-Sink I

e Shannon, Feinstein (1956) / Ford, Fulkerson,
Dantzig (1956):

MAX FLOW = MIN CUT

e information treated as “physical commodity”.

e No need for coding. Simply routing.

/

/ ‘Scope of Presentation. \

e One source. Multiple sinks.

e Multicasting: Same information sent to all

sinks.

e Restrict attention to directed graphs with no
(directed) cycles.

e Unit capacity edges.

e Best we could hope for: send information at
rate equal to minimal of single-source

single-sink max flows.

/ Multicasting: Classic Examplel \

®
<><Q>©
Vel

O/ \@
\/

N
e

~ ~
-~ ~
@ @

e Bottom line: No real conflict of interests

between users.

o /

/ Formulation as Linear Coding' \

e Local linear combination of incoming bits:

b(e) - Zpel"j(start(e)) Qe (p)b(p)

e Global combination of source bits:

ble) = S0, Bibs

/Formulation as Linear Coding: II I\

o bler) = ay(el)by + ar(e?)by
b(ea) = aa(eg)bz + aa(e?)bs
b(er) = ar(eq)b(eq) + az(es)es.

[b(eg) = b(€4) = b(el) b(65) = b(66) = b(eg)
b(es) = b(eg) = b(er)

By recursion we have:

[b(e3) bles)] =

ai(e;) ar(es)ar(el) + ar(es)az(e])

b1 b2]

] al(ez) 047(64)&1(6?) +a7(65)042(6§)]

[b(es) bleg)] =

[bl b2] Ozl(ei) a7(€4)a1(68) + a7(65)a2(68)

() ar(ea)an(€) +arles)aa(e)

e Find aj 27(+) such that both matrices are

K invertible. /

4 ‘ I N
Example 11

b1 b2]

e Can we choose a2 34(-) such that every
2 X 2 submatrix is invertible?

o /

Example II Continued I

e What if we group bits in blocks of 27

b (e1) D(er), B (e2) B2(ea), b'(es) D(ea), B (ea) B2(en)] =

[b% b%v b% b%] __________

e Can we choose o 234(-) such that every 2 x 2 block submatrix
is invertible?

e Use RS code...

S— "

In general linear coding “space and time bits on
equal footing”, no coupling of time bits.

e Local linear combination of incoming bits at
time¢=1,..., DELAY:
DELAY _;
b’&(e) — ZPEFI(StCLT't(e)) Zj:l aé<p>bj (p)

b(:) viewed as elements of a finite field = can
take linear combinations over field

e Local linear combination of symbols
b € GF(2PFLAY);

b(e) — ZpEI‘I(start(e)) ae(p)b(p)

for multicasting (but not for general

K networks...).

/General vs. Galois Linear Coding I\

e We shall see: Galois linear coding is sufficient

/

10

/ ‘ Central Result I \

THEOREM:

MAXRATE = min MINCUT (s — t)
€

Furthermore,

e This rate is achieved by (Galois) linear
coding.

e The code may be found in polynomial time.

o /

11

/ Outline of Basic Algorithm' \

e For each sink, find A flow paths from source
to sink.

e Denote F}: flow associated with sink ¢.
e Proceed on vertices in topological order.

o & Set of edges || = h in flow F}, one edge
from each path (that whose coding vector was
determined most recently).

e At each step: Draw «(-) at random. Make
sure that for each sink the set of symbols sent
on edges of & remains linearly independent
combinations of the messages.

o /

12

/ ‘Algorithm by Examplel \

e at each step: Draw local linear combination

at random; make sure that symbols on new &;

/

are linear independent combinations of

messages.

_

13

-

‘ Analysis: Existence I \

Take |F| > 2-|T.

Assume sets &; are good so far for all ¢ and

we are now determining a.(-).

For a fixed sink, the probability that a

randomly chosen a.(-) is bad is ﬁ.

By union bound prob. of success per edge >
1—|T|/|F| > 1/2.

= Pr{successful network} > 0. QED

14

/ Monte Carlo — Vegas' \

e Draw random linear combination a.(-).

probability of success > 1/2.
e Do (at most) |T'| linear independence tests.

e Proceed when good combination is found.
Expected # of trials per edge < 2.

15

/Summary of Algorithm Complexity\l

_

randomized algorithm: expected running time
O(|E|-|T| - h?). |F| > 2-|T| sufficient.

node v needs time O(min(|I';(v)|, |T|)) to
compute each output symbol. The source

needs O(h).
Each sink needs time O(h?) for

reconstruction.

Operations are over field with 2PFLAY

elements.

Deterministic version of algorithm: Expected
running time O(|E| - |[T|-h - (h+|T|)).
[F| > |T| sufficient.

/

16

Comments on resulting codes I

e Does the algorithm yield low complexity
codes?

e Can the alphabet size be reduced (for non
trivial networks..)?

e How large a gain can we get relative to an

uncoded system?

e Some insight is offered by considering “MDS
code networks”.

o /

17

4 — I N
MDS Codes Revisited

11 to b
e We consider the cases:
— h =2
— h=mn/2

o /

18

‘ Lower Bound on Alphabet Size I

e [s the algorithm good, obtaining codes with
small delay?

e h=2=|T|=n(n—-1)=0(n?).
e Lehman x 2 observe:

— Any (n,2) MDS code has alphabet size
F| >n—1.

— = For worst case network we have:

F| > O(v/|T))

— Finding minimal |F| is NP-hard.

— Approximation feasible?

o /

19

4 — I N
Large Coding Gain

o Take h =n/2.

e Note that for an uncoded system

FLOW < 2

e Proof:
— Suppose we try to send 2 - DELAY bits.

— U set of intermediate nodes. U; subset
receiving b;.

— We have S20FF4Y 1) < 2h - DELAY .

— = There is an 4 for which |U;| < h.

— = For any subset of U \ U;, the

corresponding sink does not receive b;.

e For coded system:
— flow=n/2.

— number of sinks= (n’}’2) ~ 2™,

Ko = coding gain=0(log |T). /

20

Reed and Solomon

strike back

e Keep h=n/2, = |T| =0(2") .

e The algorithm uses |F| = O(|T).

~

e An RS code requires an alphabet size of only

F| = n = O(log T').

21

‘ Some Extensions '

Can replace operations over finite field by

convolution.
Can be extended to graphs with cycles.

Results easily generalize to multi-source
multi-sink as long as all sinks demand the

same information — no conflict of interests.

Otherwise the problem is hard. Subject of

current research.

Are linear codes sufficient? Probably, but
have to be general.

Are there efficient algorithms that find
approximate rate region?

Combine with fountain coding approach?

/

22

