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Abstract

We investigate the use of multiple transmitting and�or receiving antennas

for single user communications over the additive Gaussian channel with and

without fading� We derive formulas for the capacities and error exponents of

such channels� and describe computational procedures to evaluate such for�

mulas� We show that the potential gains of such multi�antenna systems over

single�antenna systems is rather large under independence assumptions for the

fades and noises at di�erent receiving antennas�

� Introduction

We will consider a single user Gaussian channel with multiple transmitting and�or

receiving antennas� We will denote the number of transmitting antennas by t and the

number of receiving antennas by r� We will exclusively deal with a linear model in

which the received vector y � C r depends on the transmitted vector x � C t via

y � Hx� n ���

where H is a r � t complex matrix and n is zero�mean complex Gaussian noise with

independent� equal variance real and imaginary parts� We assume E 	nny
 � Ir� that

is� the noises corrupting the di�erent receivers are independent� The transmitter is

constrained in its total power to P �

E	xyx
 � P�

Equivalently� since xyx � tr�xxy�� and expectation and trace commute�

tr�E	xxy
� � P� ���
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This second form of the power constraint will prove more useful in the upcoming

discussion�

We will consider several scenarios for the matrix H

�� H is deterministic�

�� H is a random matrix �for which we shall use the notationH�� chosen according

to a probability distribution� and each use of the channel corresponds to an

independent realization of H�

�� H is a random matrix� but is �xed once it is chosen�

The main focus of this paper in on the last two of these cases� The �rst case is

included so as to expose the techniques used in the later cases in a more familiar

context� In the cases when H is random� we will assume that its entries form an

i�i�d� Gaussian collection with zero�mean� independent real and imaginary parts� each

with variance ���� Equivalently� each entry of H has uniform phase and Rayleigh

magnitude� This choice models a Rayleigh fading environment with enough separation

within the receiving antennas and the transmitting antennas such that the fades for

each transmitting�receiving antenna pair are independent� In all cases� we will assume

that the realization ofH is known to the receiver� or� equivalently� the channel output

consists of the pair �y�H�� and the distribution of H is known at the transmitter�

� Preliminaries

A complex random vector x � C n is said to be Gaussian if the real random vector

�x � R�n consisting of its real and imaginary parts� �x �
h
Re�x�
Im�x�

i
� is Gaussian� Thus�

to specify the distribution of a complex Gaussian random vector x� it is necessary to

specify the expectation and covariance of �x� namely�

E 	�x
 � R
�n and E���x� E	�x
���x� E 	�x
�y� � R

�n��n �

We will say that a complex Gaussian random vector x is circularly symmetric if the

covariance of the corresponding �x has the structure

E���x� E 	�x
���x� E	�x
�y� � �
�

�
Re�Q� � Im�Q�
Im�Q� Re�Q�

�
���

for some Hermitian non�negative de�nite Q � C
n�n � Note that the real part of an

Hermitian matrix is symmetric and the imaginary part of an Hermitian matrix is

anti�symmetric and thus the matrix appearing in ��� is real and symmetric� In this

case E��x�E 	x
��x�E 	x
�y� � Q� and thus� a circularly symmetric complex Gaussian

random vector x is speci�ed by prescribing E	x
 and E��x� E	x
��x� E 	x
�y��
�



For any z � C
n and A � C

n�m de�ne

�z �

�
Re�z�

Im�z�

�
and �A �

�
Re�A� � Im�A�
Im�A� Re�A�

�
�

Lemma �� The mappings z � �z �
h
Re�z�
Im�z�

i
and A � �A �

h
Re�A� � Im�A�
Im�A� Re�A�

i
have the

following properties�

C � AB �� �C � �A �B ��a�

C � A�B �� �C � �A� �B ��b�

C � Ay �� �C � �Ay ��c�

C � A�� �� �C � �A�� ��d�

det� �A� � j det�A�j� � det�AAy� ��e�

z � x� y �� �z � �x� �y ��f�

y � Ax �� �y � �A�x ��g�

Re�xyy� � �xy�y� ��h�

Proof� The properties ��a�� ��b� and ��c� are immediate� ��d� follows from ��a� and

the fact that �In � I�n� ��e� follows from

det� �A� � det

��
I iI

� I

�
�A

�
I �iI
� I

��
� det

��
A �

Im�A� A�

��
� det�A� det�A���

��f�� ��g� and ��h� are immediate�

Corollary �� U � C n�n is unitary if and only if �U � R�n��n is orthonormal�

Proof� U yU � In �� � �U�y �U � �In � I�n�

Corollary �� If Q � C n�n is non�negative de�nite then so is �Q � R�n��n �

Proof� Given x � 	x�� � � � � x�n

y � R�n � let z � 	x� � jxn��� � � � � xn � jx�n


y � C n � so

that x � �z� Then by ��g� and ��h�

xy �Qx � Re�zyQz� � zyQz � ��

The probability density �with respect to the standard Lebesgue measure on C
n�

of a circularly symmetric complex Gaussian with mean � and covariance Q is given

�



by

���Q�x� � det�� �Q�
���� exp

����x� ���y �Q����x� ����
� det��Q��� exp

���x� ��yQ���x� ��
�

where the second equality follows from ��d����h�� The di�erential entropy of a com�

plex Gaussian x with covariance Q is given by

H��Q� � E�Q	� log �Q�x�

� log det��Q� � �log e� E	xyQ��x

� log det��Q� � �log e� tr�E 	xxy
Q���
� log det��Q� � �log e� tr�I�

� log det��eQ��

For us� the importance of the circularly symmetric complex Gaussians is due to the

following lemma circularly symmetric complex Gaussians are entropy maximizers�

Lemma �� Suppose the complex random vector x � C n is zero�mean and satis�es

E	xxy
 � Q� i�e�� E 	xix�j 
 � Qij� � � i� j � n� Then the entropy of x satis�es

H�x� � log det��eQ� with equality if and only if x is a circularly symmetric complex

Gaussian with

E	xxy
 � Q

Proof� Let p be any density function satisfying
R
Cn
p�x�xix

�
j dx � Qij� � � i� j � n�

Let

�Q�x� � det��Q�
�� exp

��xyQ��x��
Observe that

R
Cn
�Q�x�xix

�
j dx � Qij� and that log �Q�x� is a linear combination of

the terms xix
�
j � Thus E�Q 	log �Q�x�
 � Ep	log �Q�x�
� Then�

H�p��H��Q� � �
Z
Cn

p�x� log p�x� dx�

Z
Cn

�Q�x� log �Q�x� dx

� �
Z
Cn

p�x� log p�x� dx�

Z
Cn

p�x� log �Q�x� dx

�

Z
Cn

p�x� log
�Q�x�

p�x�
dx

� ��

with equality only if p � �Q� Thus H�p� � H��Q��
Lemma �� If x � C

n is a circularly symmetric complex Gaussian then so is y � Ax

for any A � C
m�n �

�



Proof� We may assume x is zero�mean� Let Q � E	xxy
� Then y is zero�mean�
�y � �A�x� and

E	�y�yy
 � �A E	�x�xy
 �Ay � �
�
�A �Q �Ay � �

�
�K

where K � AQAy�

Lemma �� If x and y are independent circularly symmetric complex Gaussians� then

z � x� y is a circularly symmetric complex Gaussian�

Proof� Let A � E	xxy
 and B � E	yyy
� Then E	�z�zy
 � �
�
�C with C � A �B�

� The Gaussian channel with fixed transfer function

We will start by reminding ourselves the case of deterministic H� The results of this

section can be inferred from 	�� Ch� �


��� Capacity

We will �rst derive an expression for the capacity C�H�P � of this channel� To that

end� we will maximize the average mutual information I�x�y� between the input and
the output of the channel over the choice of the distribution of x�

By the singular value decomposition theorem� any matrixH � C
r�t can be written

as

H � UDV y

where U � C r�r and V � C t�t are unitary� andD � Rr�t is non�negative and diagonal�

In fact� the diagonal entries of D are the non�negative square roots of the eigenvalues

of HHy� the columns of U are the eigenvectors of HHy and the columns of V are the

eigenvectors of HyH� Thus� we can write ��� as

y � UDV yx� n�

Let �y � U yy� �x � V yx� �n � U yn� Note that U and V are invertible� �n has the same

distribution as n and� E	�xy�x
 � E 	xyx
� Thus� the original channel is equivalent to
the channel

�y � D�x� �n ���

where �n is zero�mean� Gaussian� with independent� identically distributed real and

imaginary parts and E 	�n�ny
 � Ir� Since H is of rank at most minfr� tg� at most
minfr� tg of the singular values of it are non�zero� Denoting these by �

���
i � i �

�� � � � �minfr� tg� we can write ��� component�wise� to get

�yi � �
���
i �xi � �ni� � � i � minfr� tg�

�



and the rest of the components of �y �if any� are equal to the corresponding components

of �n� We thus see that �yi for i � minft� rg is independent of the transmitted signal and
that �xi for i � minft� rg don�t play any role� To maximize the mutual information�
we need to choose f�xi  � � i � minfr� tgg to be independent� with each �xi having
independent Gaussian� zero�mean real and imaginary parts� The variances need to

be chosen via �water��lling� as

E 	Re��xi��
 � E 	Im��xi��
 � �
�
��� ���i �

�

where � is chosen to meet the power constraint� Here� a� denotes maxf�� ag� The
power P and the maximal mutual information can thus be parametrized as

P ��� �
X
i

�
�� ���i

��
� C��� �

X
i

�
ln���i�

��
�

Remark � �Reciprocity�� Since the non�zero eigenvalues ofHyH are the same as those

of HHy� we see that the capacities of channels corresponding to H and Hy are the

same�

Example �� Take Hij � � for all i� j� We can write H as

H �

�
	

p
��r
���p
��r

�
� �prt� hp��t � � �p��ti

and we thus see that in the singular value decomposition of H the diagonal matrix

D will have only one non�zero entry�
p
rt� �We also see that the �rst column of U isp

��r	�� � � � � �
y and the �rst column of V is
p
��t	�� � � � � �
y�� Thus�

C � log�� � rtP ��

The x � V �x that achieves this capacity satis�es E	xix�j 
 � P�t for all i� j� i�e�� the

transmitters are all sending the same signal� Note that� even though each transmitter

is sending a power of P�t� since their signals add coherently at the receiver� the power

received at each receiver is Pt� Since each receiver sees the same signal and the noises

at the receivers are uncorrelated the overall signal to noise ratio is Prt�

Example �� Take r � t � n and H � In� Then

C � n log�� � P�n�

For x that achieves this capacity E	xix�j 
 � �ijP�n� i�e� the components of x are i�i�d�

However� it is incorrect to infer from this conclusion that to achieve capacity one has

to do independent coding for each transmitter� It is true that the capacity of this

�



channel can be achieved by splitting the incoming data stream into t streams� coding

and modulating these schemes separately� and then sending the t modulated signals

over the di�erent transmitters� But� suppose Nt bits are going to be transmitted�

and we will either separate them into t groups of N bits each and use each group to

select one of �N signals for each transmitter� or� we will use all all Nt bits to select

one of �Nt signal vectors� The second of these alternatives will yield a probability of

error much smaller than the �rst� at the expense of much greater complexity� Indeed�

the log of the error probability in the two cases will di�er by a factor of t� �See the

error exponents of parallel channels in 	�� pp� �������
��

��� Alternative Derivation of the Capacity

The mutual information I�x�y� can be written as

I�x�y� � H�y��H�yjx� � H�y��H�n��

and thus maximizing I�x�y� is equivalent to maximizingH�y�� Note that if x satis�es
E	xyx
 � P � so does x � E 	x
� so we can restrict our attention to zero�mean x�
Furthermore� if x is zero�mean with covariance E	xxy
 � Q� then y is zero�mean

with covariance E	yyy
 � HQHy � Ir� and by Lemma � among such y the entropy

is largest when y is circularly symmetric complex Gaussian� which is the case when

x is circularly symmetric complex Gaussian �Lemmas � and ��� So� we can further

restrict our attention to circularly symmetric complex Gaussian x� In this case the

mutual information is given by

I�x�y� � log det�Ir �HQHy� � log det�It �QHyH�

where the second equality follows from the determinant identity det�I�AB� � det�I�

BA�� and it only remains to choose Q to maximize this quantity subject to the

constraints tr�Q� � P and that Q is non�negative de�nite� The quantity log det�I �

HQHy� will occur in this document frequently enough that we will let

��Q�H� � log det�I �HQHy�

to denote it� Since HyH is Hermitian it can be diagonalized� HyH � U y�U � with

unitary U and non�negative diagonal � � diag���� � � � � �t�� Applying the determinant

identity again we see that

det�Ir �HQHy� � det�It � �
���UQU y������

Observe that �Q � UQU y is non�negative de�nite when and only when Q is� and that

tr� �Q� � tr�Q�� thus the maximization over Q can be carried equally well over �Q�

�



Note also that for any non�negative de�nite matrix A� det�A� �Q
iAii� thus

det�Ir � �
��� �Q����� �

Y
i

�� � �Qii�i�

with equality when �Q is diagonal� Thus we see that the maximizing �Q is diagonal�

and the optimal diagonal entries can be found via �water��lling� to be

�Qii �
�
�� ���i

��
� i � �� � � � � t

where � is chosen to satisfy
P

i
�Qii � P � The corresponding maximum mutual infor�

mation is given by X
i

�
log���i�

��
as before�

��� Error Exponents

Knowing the capacity of a channel is not always su cient� One may be interested

in knowing how hard it is to get close to this capacity� Error exponents provide a

partial answer to this question by giving an upper bound to the probability of error

achievable by block codes of a given length n and rate R� The upper bound is known

as the random coding bound and is given by

P�error� � exp��nEr�R���

where the random coding exponent Er�R� is given by

Er�R� � max
�����

E��	�� 	R�

where� in turn� E��	� is given by the supremum over all input distributions qx satis�

fying the energy constraint of

E��	� qx� � � log
Z �Z

qx�x�p�yjx�������� dx
����

dy�

In our case p�yjx� � det��Ir��� exp
���y�x�y�y�x��� If we choose qx as the Gaussian

distribution �Q we get �after some algebra�

E��	�Q� � 	 log det�Ir � �� � 	���HQHy� � 	�
�
�� � 	����Q�H

�
�

�



The maximization of E� over Q is thus same same problem as maximizing the mutual

information� and we get E��	� � 	C�P��� � 	�� H��

To choose qx as Gaussian is not optimal� and a distribution concentrated on a

�thin spherical shell� will give better results as in 	�� x���
!nonetheless� the above
expression is a convenient lower bound to E� and thus yields an upper bound to the

probability of error�

� The Gaussian Channel with Rayleigh Fading

Suppose now that the matrix H is not �xed� but is a random matrixH independent

of both x and n� The realization of H of H is assumed to be known at the receiver�

but not at the transmitter� The channel is thus with input x and output �y�H� �

�Hx � n�H�� We will assume that the entries of H are independent and each

entry is zero�mean� Gaussian� with independent real and imaginary parts� each with

variance ���� Equivalently� each entry of H has uniformly distributed phase and

Rayleigh distributed magnitude� with expected magnitude square equal to unity� This

is intended to model a Rayleigh fading channel with enough physical separation within

the transmitting and the receiving antennas to achieve independence in the entries of

H� We will �rst show that such an H is invariant under unitary transformations�

Lemma �� Suppose H � C
r�t is a complex Gaussian matrix with independent iden�

tically distributed entries� each entry with independent real and imaginary parts with

zero�mean and equal variance� Then for any unitary U � C r�r � and V � C t�t � the

distribution of UHV y is the same as the distribution H�

Proof� It su ces to show that G � UH has the same distribution asH� The lemma

then follows from an application of this to Gy� Since columns of H are independent�

the columns of G are independent also� It remains to check that each column of

G has the same distribution as that of H� Since the columns of H are circularly

symmetric complex Gaussian vectors� so are those of G� If gj and hj are the j
th

column of G and H respectively� then

E	gjgyj
 � U E 	hjhyj
U y � E 	hjhyj


where the last equality holds because E 	hjhyj
 is a multiple of the identity matrix�
In this section we will assume that the channel is memoryless for each use of

the channel an independent realization of H is drawn� In this case we are on famil�

iar ground and the capacity can be computed as the maximum mutual information�

However� the results that follow are valid verbatim for channels for which H is gen�

erated by an ergodic process as long as the receiver observes the H process only the

�rst order statistics are needed to determine channel capacity�

�



��� Capacity

Since the receiver knows the realization ofH� the channel output is the pair �y�H� �

�Hx� n�H�� The mutual information between input and output is then

I�x� �y�H�� � I�x�H� � I�x�yjH�
� I�x�yjH�
� EH 	I�x�yjH � H�
�

We know from the previous section that if x is constrained to have covariance Q�

the choice of x that maximizes I�x�yjH � H� is the circularly symmetric complex

Gaussian of covariance Q� and ��Q�H� � log det�Ir �HQHy� is the corresponding

maximal mutual information� We thus need to maximize

��Q� � E 	��Q�H�
 � E�log det�Ir �HQHy�
�

over the choice of non�negative de�nite Q subject to tr�Q� � P �

Since Q is non�negative de�nite� we can write it as Q � UDU y where U is unitary

and D is non�negative and diagonal� With this substitution

��Q� � E�log det�Ir � �HU�D�HU�y
��

By Lemma � the distribution of HU is the same as that of H� and thus ��Q� �

��D�� We can thus restrict our attention to non�negative diagonal Q� Given any

such Q and any permutation matrix "� consider Q� � "Q"y� Since H" has the

same distribution as H� ��Q�� � ��Q�� Note that for any H� the mapping Q ��
Ir �HQHy is linear and preserves positive de�niteness� Since log det is concave on

the set of positive de�nite matrices� Q �� ��Q�H� � log det�Ir �HQHy� is concave�

It then follows that Q �� ��Q� is concave� Thus

�Q �
�

t#

X
�

Q�

satis�es �� �Q� � ��Q� and tr� �Q� � tr�Q�� Note that �Q is a multiple of the identity
matrix and we conclude that the optimal Q must be of the form 
I� It is clear that

the maximum is achieved when 
 is the largest possible� namely P�t� To summarize�

we have shown the following

Theorem �� The capacity of the channel is achieved when x is a circularly symmet�

ric complex Gaussian with zero�mean and covariance �P�t�It� The capacity is given

by E�log det�Ir � �P�t�HHy
��
�

Note that for �xed r� by the law of large numbers �
t
HHy � Ir almost surely as

��



t gets large� Thus� the capacity in the limit of large t equals

r log�� � P �� ���

��� Evaluation of the Capacity

Although the expectation E�log det�Ir � �P�t�HHy
��
is easy to evaluate for either

r � � or t � �� its evaluation gets rather involved for r and t larger than �� We will

now show how to do this evaluation� Note that

det
�
Ir � �P�t�HH

y
�
� det

�
It � �P�t�H

yH
�

and de�ne

W �

�
HHy r � t

HyH r � t�

n � maxfr� tg andm � minfr� tg� ThenW is anm�m random non�negative de�nite
matrix and thus has real� non�negative eigenvalues� We can write the capacity in

terms of the eigenvalues ��� � � � ��m ofW 

E
� mX
i��

log
�
� � �P�t��i

��
���

The distribution law of W is called the Wishart distribution with parameters m� n

and the joint density of the ordered eigenvalues is known to be �see e�g� 	�
 or 	��

p� ��
�

p��ordered���� � � � � �m� � K��
m�ne

�
P

i �i
Y
i

�n�mi

Y
i�j

��i � �j�
�� �� � 	 	 	 � �m � �

where Km�n is a normalizing factor� The unordered eigenvalues then have the density

p����� � � � � �m� � �m#Km�n�
��e�

P
i �i
Y
i

�n�mi

Y
i�j

��i � �j�
��

The expectation we wish to compute

E
� mX
i��

log
�
� � �P�t��i

��
�

mX
i��

E�log�� � �P�t��i��
� m E�log�� � �P�t���

��

��



depends only on the distribution of one of the unordered eigenvalues� To compute

the density of �� we only need to integrate out the ��� � � � � �m

p������ �

Z
	 	 	
Z

p����� � � � � �m� d�� 	 	 	d�m�

To that end� note that
Q

i�j��i � �j� is the determinant of a Vandermonde matrix

D���� � � � � �m� �

�
			

� � � � �

�� � � � �m
���

���

�m��� � � � �m��m

�
���

and we can write p� as

p����� � � � � �m� � �m#Km�n�
�� det

�
D��� � � � � �m�

��Y
i

�n�mi e��i �

With row operations we can transform D���� � � � � �m� into

�D���� � � � � �m� �

�
	
������ � � � ����m�

���
���

�m���� � � � �m��m�

�
�

where ��� � � � � �m is the result of applying the Gram�Schmidt orthogonalization pro�

cedure to the sequence

�� �� ��� � � � � �m��

in the space of real valued functions with inner product

hf� gi �
Z �

�

f���g����n�me�� d��

Thus
R�
�
�i����j����

n�me�� d� � �ij� The determinant of D then equals �modulo

multiplicative constants picked up from the row operations� the determinant of �D�

which in turn� by the de�nition of the determinant� equals

det
�
�D���� � � � � �m�

�
�
X
�

����per���
Y
i

�D�i�i �
X
�

����per���
Y
i

��i��i�

��



where the summation is over all permutations of f�� � � � � mg� and per�
� is � or �
depending on the permutation 
 being even or odd� Thus

p����� � � � � �m� � Cm�n

X
���

����per����per���
Y
i

��i��i���i��i��
n�m
i e��i �

Integrating over ��� � � � � �m we get

p������ � Cm�n

X
���

����per����per������������������
n�m
� e���

Y
i��

��i�i

� Cm�n�m� ��#
mX
i��

�i����
��n�m� e���

�
�

m

mX
i��

�i����
��n�m� e���

where the second equality follows from the fact that if 
i � i for i � � then 
� � �
also �since both 
 and  are permutations of f�� � � � � mg� and thus 
 � � and the last

equality follows from the fact that �i����
��n�m� e��� integrates to unity and thus Cm�n

must equal ��m#� Observe now that the Gram�Schmidt orthonormalization yields

�k����� �
h

k�
�k�n�m��

i���
Ln�m
k ���� k � �� � � � � m� �

where Ln�m
k �x� � �

k�
exxm�n dk

dxk
�e�xxn�m�k� is the associated Laguerre polynomial of

order k� �See 	�� x���������
��
To summarize

Theorem �� The capacity of the channel with t transmitters and r receivers under

power constraint P equals

Z �

�

log�� � P��t�
m��X
k��

k�
�k�n�m��

�
Ln�m
k ���

��
�n�me�� d� ���

where m � minfr� tg and n � maxfr� tg� and Li
j are the associated Laguerre polyno�

mials�

Figure � shows the value of the integral in ��� for � � r� t � �� and P � ��dB�
Example 	� Consider t � �� In this case m � � and n � r� Noting that Ln�m

� ��� � ��

an application of ��� yields the capacity as

�

$�r�

Z �

�

log�� � P���r��e�� du� ���

��
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Figure � Capacity �in nats� vs� r and t for P � ��dB

The values of this integral are tabulated in Table � for � � r � �� and P from �dB
to ��dB in �dB increments� See also Figure �� Note that as r gets large� so does the

capacity� For large r� the capacity is asymptotic to log���Pr�� in the sense that the

di�erence goes to zero�

Example 
� Consider r � �� As in the previous example� applying ��� yields the

capacity as

�

$�t�

Z �

�

log
�
� � P��t

�
�t��e�� du� ����

As noted in ���� the capacity approaches log���P � as t gets large� The values of the

capacity are shown in Table � for various values of t and P � See also Figure ��

Example �� Consider r � t� In this case n � m � r� and an application of ��� yields

the capacity as

Z �

�

log�� � P��r�
r��X
k��

Lk���
�e�� d�� ����

where Lk � L�
k is the Laguerre polynomial of order k�

Figure � shows this capacity for various values of r and P � It is clear from the

�gure that the capacity is very well approximated by a linear function of r� Indeed�

��
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The capacity in nats of a multiple receiver� single transmitter fading channel�
The path gain from the transmitter to any receiver has uniform phase and
Rayleigh amplitude of unit mean square� The gains to di�erent receivers are
independent� The number of receivers is r� and P is the signal to noise ratio�

Table � Values of the integral in ���
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Figure � Capacity vs� r for t � � and various values of P �
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The capacity in nats of a multiple transmitter� single receiver fading channel�
The path gain from any transmitter to the receiver has uniform phase and
Rayleigh amplitude with unit mean square� The fades for each path gain is
independent� The number of transmitters is t and P is the signal to noise ratio�

Table � Values of the integral in �����
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Figure � Capacity vs� r for r � t and various values of P �

�rst rewrite ��� as

C � E
Z �

�

log
�
� �

Pm

t
�
�
mdF

�

m
W ���

where FA�x� is the empirical distribution of the eigenvalues of an m �m Hermitian

matrix A

FA�x� �
the number of eigenvalues of A less than x

m
�

A very general result from the theory of random matrices �see� e�g�� 	�
� says that for

W de�ned as above� as n � maxfr� tg and m � minfr� tg are increased with n�m

approaching a limit � � ��

dF
�

m
W ���

d�
�
��
�

�
�	

q�

�


� ����� 


�




�
for � � 	��� ��


� otherwise�
����

with �� � �
p
� 
 ���� Thus� in the limit of large r and t�

C

m
� �

��

Z 
�



�

log
�
� �

Pm

t
�
�r���

�
� �

��
�� ��

�

�
d�� ����

��



For the case under consideration� m � n � r � t� for which �� � �� �� � �� and

C � r

Z 	

�

log�� � P��
�

�

r
�

�
� �
�
d�

which is linear in r as observed before from the �gure�

Remark �� The result from the theory of random matrices used in Example � applies

to random matrices that are not necessarily Gaussian� For equation ���� to hold it is

su cient for H to have i�i�d� entries of unit variance�

Remark 	� The reciprocity property that we observed for deterministic H does not

hold for random H Compare Examples � and � where the corresponding H�s are

transposes of each other� In Example �� capacity increases without bound as r gets

large� whereas in Example � the capacity is bounded from above�

Nonetheless� interchanging r and t does not change the matrix W � and the ca�

pacity depends only on P�t and the eigenvalues ofW � Thus� if C�r� t� P � denotes the

capacity of a channel with r receivers� t transmitters and total transmitter power P �

then

C�a� b� P b� � C�b� a� Pa��

Remark 
� In the computation preceding Theorem � we obtained the density of one of

the unordered eigenvalues of the complex Wishart matrixW � Using the identity ����

in the appendix we can �nd the joint density of any number k of unordered eigenvalues

ofW 

p��������k���� � � � � �k� �
�m� k�#

m#
det

�
Dk���� � � � � �k�

yDk���� � � � � �k�
� kY
i��

�n�mi e��i

where

Dk���� � � � � �k� �

�
	
������ � � � ����k�

���
���

�m���� � � � �m��k�

�
� �

��� Error Exponents

As we did in the case of deterministic H we can compute the error exponent in the

case of fading channel� To that end� note �rst that

E��	� qx� � � log
ZZ �Z

qx�x�p�y�Hjx�������� dx
����

dy dH�

��



Since H is independent of x� p�y�Hjx� � pH�H�p�yjx�H� and thus

E��	� qx� � � log E
�Z �Z

qx�x�p�yjx�H�������� dx
����

dy

�
�

Note that

p�yjx�H� � det��Ir��� exp
���y �Hx�y�y �Hx�

�
�

and for qx � �Q� the Gaussian distribution with covariance Q� we can use the results

for the deterministic H case to conclude

E��	� �Q� � � log E�det�Ir � �� � 	���HQHy���
�
�

Noting that A� det�A��� is a convex function� the argument we used previously to

show that Q � �P�t�It maximizes the mutual information applies to maximizing E�

as well� and we obtain

E��	� � � log E
�
det

�
Ir �

P

t�� � 	�
HHy

����
� ����

To e ciently compute E�� one would represent the Wishart eigenvalue density as

a Vandermonde determinant� �just as in the previous section�� and orthonormalize

the monomials �� �� ��� � � � � �m��� with respect to the inner product

hf� gi �
Z �

�

f���g����n�m
�
� � P

t�����
�
���

e�� d��

The multiplicative factor picked up in the orthonormalization is the value of the

expectation in �����

As before� the restriction of qx to Gaussian distributions is suboptimal� but this

choice leads to simpler expressions�

� Non�ergodic channels

We had remarked at the beginning of the previous section that the maximum mutual

information has the meaning of capacity when the channel is memoryless� i�e�� when

each use of the channel employs an independent realization of H� This is not the

only case when the maximum mutual information is the capacity of the channel� In

particular� if the process that generates H is ergodic� then too� we can achieve rates

arbitrarily close to the maximum mutual information�

In contrast� for the case in whichH is chosen randomly at the beginning of all time

and is held �xed for all the uses of the channel� the maximum mutual information is in

��



general not equal to the channel capacity� In this section we will focus on such a case

when the entries of H are i�i�d�� zero�mean circularly symmetric complex Gaussians

with E 	jhijj�
 � �� the same distribution we have analyzed in the previous section�

��� Capacity

In the case described above� the Shannon capacity of the channel is zero however

small the rate we attempt to communicate at� there is a non�zero probability that

the realized H is incapable of supporting it no matter how long we take our code

length� On the other hand one can talk about a tradeo� between outage probability

and supportable rate� Namely� given a rate R� and power P � one can �nd Pout�R�P �

such that for any rate less than R and any � there exists a code satisfying the power

constraint P for which the error probability is less than � for all but a set of H whose

total probability is less than Pout�R�P �

Pout�R�P � � inf
Q
Q��
tr�Q��P

P���Q�H� � R
�

����

where

��Q�H� � log det�Ir �HQHy��

This approach is taken in 	�
 in a similar problem�

In this section� as in the previous section we will take the distribution of H

to be such that the entries of H are independent zero�mean Gaussians� each with

independent real and imaginary parts with variance ����

Example �� Consider t � �� In this case� it is clear that the Q � P is optimal� The

outage probability is then

P�log det�Ir �HPHy� � R
�
� P�log�� � PHyH� � R

�
Since HyH is a �� random variable with �r degrees of freedom and mean r� we can

compute the outage probability as

Pout�R�P � �
�
�
r� �eR � ���P �
$�r�

� ����

where ��a� x� is the incomplete gamma function
R x
�
ua��e�u du� Let ��P� �� be the

value of R that satis�es

P���P�H� � R� � �� ����

Figure � shows ��P� �� as a function of r for various values of � and P �

��
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�P� �� vs� r at t � � for various values of P and �� Recall that �P� �� is the
highest rate for which the outage probability is less than �� Each set of curves
correspond to the P indicated below it� Within each set the curves correspond�
in descending order� to � � ����� ����� ����� ���	�

Figure � The ��capacity for t � � as de�ned by �����
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Note that by Lemma � the distribution ofHU is the same as that ofH for unitary

U � Thus� we can conclude that

��UQU y�H�

has the same distribution as ��Q�H�� By choosing U to diagonalizeQ we can restrict

our attention to diagonal Q�

The symmetry in the problem suggests the following conjecture�

Conjecture� The optimal Q is of the form

P

k
diag��� � � � � �� �z �

k ones

� �� � � � � �� �z �
t� k zeros

�

for some k � �� � � � � t� The value of k depends on the rate� higher the rate �i�e�� higher

the outage probability�� smaller the k�

As one shares the power equally between more transmitters� the expectation of �

increases� but the tails of its distribution decay faster� To minimize the probability

of outage� one has to maximize the probability mass of � that lies to the right of the

rate of interest� If one is interested in achieving rates higher than the expectation of

�� then it makes sense to use a small number of transmitters to take advantage of the

slow decay of the tails of the distribution of �� Of course� the corresponding outage

probability will still be large �larger than �
�
� say��

Example � Consider r � �� With the conjecture above� it su ces to compute

P����P�t�It�H�
� R

�
for all values of t� if the actual number of transmitters is� say�

� � then the outage probability will be the minimum of the probabilities for t � �� � � � � � �

As in Example � we see that HHy is a �� statistic with �t degrees of freedom and

mean t� thus

P����P�t�It�H� � R
�
�
��t� t�eR � ���P �

$�t�
�

Figure � shows this distribution for various values of t and P � It is clear from the

�gure that large t performs better at low R and small t performs better at high R� in

keeping with the conjecture� As in Example �� let ��P� �� be the value of R satisfying

P����P�t�It�H� � R
�
� �� ����

Figure � shows ��P� �� vs� t for various values of P and �� For the small � values

considered in the �gure� using all available transmitters is always better than using

a subset�
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corresponds to the P indicated below it� Within each set� the curves correspond�
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� �� �� �� �� and ����

Figure � Distribution of �
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�P�t�It�H

�
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�P� �� vs� t for various values of P and �� Recall that �P� �� is the highest
rate for which the outage probability remains less than �� Each set of curves
corresponds to the P indicated below it� Within each set the curves correspond�
in descending order� to � � ����� ����� ����� ���	�

Figure � The ��capacity for r � �� as de�ned by �����
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� Multiaccess Channels

Consider now a number of transmitters� say M � each with t transmitting antennas�

and each subject to a power constraint P � There is a single receiver with r antennas�

The received signal y is given by

y � 	H� � � �HM 


�
	
 x�
���

xM

�
� � n

where xm is the signal transmitted by the m
th transmitter� n is Gaussian noise as

in ���� andHm�m � �� � � � �M are r�t complex matrices� We assume that the receiver
knows all the Hm�s� and that these have independent circularly symmetric complex

Gaussian entries of zero mean and unit variance� The multiuser capacity for this

communication scenario can be evaluated easily by exploting the nature of the solution

to the single user scenario discussed above� Namely� since the capacity achieving

distribution for the single user scenario yields an i�i�d� solution for each antenna� that

the users in the multiuser scenario cannot cooperate becomes immaterial� A rate

vector �R�� � � � � RM� will be achievable if

mX
i��

R�i � C�r�mt�mP �� for all m � �� � � � �M

where �R��� � � � � R�M � is the ordering of the rate vector from the largest to the small�

est� and C�a� b� P � is the single user a receiver b transmitter capacity under power

constraint P �

� Conclusion

The use of multiple antennas will greatly increase the achievable rates on fading

channels if the channel parameters can be estimated at the receiver and if the path

gains between di�erent antenna pairs behave independently� The second of these

requirements can be met with relative ease and is somewhat technical in nature� The

�rst requirement is a rather tall order� and can be justi�ed in certain communication

scenarios and not in others� Since the original writing of this monograph in late ����

and early ����� there has been some work in which the assumption of the availability

of channel state information is replaced with the assumption of a slowly varying

channel� see e�g�� 	�
�

��



Appendix

Theorem� Given m functions ��� � � � � �m� orthonormal with respect to F � i�e��Z
�i����j��� dF ��� � �ij�

let

Dk���� � � � � �k� �

�
	
������ � � � ����k�

���
���

�m���� � � � �m��k�

�
�

and Ak���� � � � � �k� � Dk���� � � � � �k�
yDk���� � � � � �k�� ThenZ

det
�
Ak���� � � � � �k�

�
dF ��k� � �m� k � �� det

�
�Ak������ � � � � �k���

�
� ����

Proof� Let %��� � 	������ � � � � �m���

y� Then the �i� j�th element of Ak���� � � � � �k� is

%��i�
y%��j�� Note that

R
%���y%��� dF ��� � m and

R
%���%���y dF ��� � Im� By

the de�nition of the determinant

det�Ak���� � � � � �k�� �
X
�

����per���Qk
i��%��i�

y%���i�

where the sum is over all permutations 
 of f�� � � � � kg� Let us separate the summation
over 
 into k summations� those for which 
j � k� j � �� � � � � k� and consider each

sum in turn� For the jth sum� j � �� � � � � k � �� 
j � k for j �� k� For such an 


we can de�ne  as i � 
i for i �� j� k� and j � 
k� Note that  ranges over all

permutations of f�� � � � � k � �g and that per�� di�ers from per�
� by ��X
�
�j�k

����per���Qk
i��%��i�

y%���i�

�
X

�
�j�k

����per���
�Q

i��j�k%��i�
y%���i�

�
%��j�

y%���j �%��k�
y%���k�

� �
X
�

����per���
�Q

i��j%��i�
y%���i�

�
%��j�

y%��k�%��k�
y%���j ��

Integrating over �k� and recalling
R
%���%���y dF ��� � Im�Z X

�
�j�k

����per���Qk
i��%��i�

y%���i� dF ��k� � �
X
�

����per���Qk��
i��%��i�

y%���i�

� � det�Ak������ � � � � �k����

��



So� the contribution of the �rst k�� sums to the integral in ���� is ��k��� det�Ak����

For the last sum 
k � k� De�ne  as i � 
i for i �� k� As before  ranges over the

permutations of f�� � � � � k � �g� but now per�� � per�
��X
�
�k�k

����per���Qk
i��%��i�

y%���i� �
X
�

����per���
�Qk��

i��%��i�
y%���i�

�
%��k�

y%��k��

Integrating over �k� and recalling
R
%���y%��� dF ��� � m�Z X

�
�k�k

����per���Qk
i��%��i�

y%���i� dF ��k� � m
X
�

����per���Qk��
i��%��i�

y%���i�

� m det�Ak������ � � � � �k����

And so� the contribution of the last sum to the integral in ���� is m det�Ak���� The

result now follows by adding the two contributions�
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