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Background: the AWGN Channel

Y = X + N

where N ∼ N
(
0, σ2

N

)
, 1
n

∑n
i=1 X2

i ≤ PX.

• Shannon: capacity is

C =
1

2
log2 (1 + SNR) , SNR =

PX

σ2
N

• Random coding argument: generate 2nC

i.i.d. N (0, PX) codewords. Averaging

across all codebooks: under ML

decoding P (e) → 0 as n →∞.



Geometrically Achieving Capacity

• LLN: N
(
0, σ2

)
i.i.d. n-vector lies in sphere

of radius
√

nσ2.
• X ∼ N (0, PX) , N ∼ N

(
0, σ2

N

)
⇒ Y ∼

N
(
0, PX + σ2

N

)
. ⇒ Y lies in sphere of

radius
√

n(PX + σ2
N).

• Codewords chosen as centers of
non-overlapping spheres w/ radius

√
nσ2

N• Volume of n n-sphere w/ radius r is Anrn.
• ⇒ max no. of non-overlapping decoding

spheres:

An

[
n(PX + σ2

N)
]n
2

An

[
nσ2

N

]n
2

= 2

n
2 log2

(
1+

PX
σ2
N

)

= 2nC



Structured Coding for AWGN channels

• Researchers for decades interested in

structured codes, encoding mechanisms,

and decoding mechanisms

• Desire: achieve capacity on the AWGN

channel for arbitrary SNRs.

• Devote our attention to lattices:

algebraic in nature.

• Basis of today’s talk: How Uri Erez

and Ram Zamir solved the decades-old

problem of achieving the AWGN channel

capacity at all SNRs, using lattice codes

and lattice decoding.

• Surprisingly and non-so-intuitive at first

glance:

– using a biased MMSE estimator at the

decoder is essential to achieve capacity.

– related to deep connection between

mutual information and MMSE

estimation (Baris’s talk in a couple weeks).



Lattices

• Lattice: a discrete group which is a
subset of Rn. Described in terms of a
generator matrix:

Λ = {λ = Gx : x ∈ Zn} , G ∈ Rn×n

• Fundamental Voronoi region of Λ:

V = {x ∈ Rn|‖x− 0‖ ≤ ‖x− λ‖ ∀ λ ∈ Λ} .

• Any x ∈ Rn uniquely expressed as

x = λ + r, where λ ∈ Λ, r ∈ V
= QV (x) + x modVΛ .

V analogous to remainder in modular
arithmetic.

• Generally: any fundamental region Ω
satisfies x ∈ Rn uniquely expressed as

x = λ + r, where λ ∈ Λ, r ∈ Ω

= QΩ (x) + x modΩΛ .



Desired Properties of Good Lattices

• Denote volume of any R ⊂ Rn as V (R).
• 2nd moment per dim. of R:

P (R) =
1

n

∫
R ‖x‖2dx

V (R)

– Avg energy per dim. of U ∼ unif (R).
• Normalized 2nd moment of R:

G(R) =
P (R)

V (R)
2
n

• Sn,σ2: the n-sphere with radius
√

nσ2.

a) V (Sn,σ2)
2
n → 2πeσ2, P (Sn,σ2) → σ2,

⇒ G(Sn,σ2) → 1

2πe

b) σ2
N < σ2 ⇒ P

(
[X ∼ N

(
0, σ2

N

)
] /∈ Sn,σ2

)
→ 0.

• ΛS ‘good for shaping’ if a):

G(VS) → 1

2πe
.

• ΛC ‘good for channel coding’ if b):

σ2
N <

V (VC)
2
n

2πe
⇒ P

(
[X ∼ N

(
0, σ2

N

)
] /∈ VC

)
→ 0.



Lattice Codes

• Lattice code C:

C = ΛC ∩ S.

Shaping region S imposes signaling

constraint (such as power constraint for

AWGN channel).

• Lattice decoder C: simply a quantizer

QΩC
(x) for ΛC. Performs the operation

λ = QΩC
(y) ∈ ΛC.

Note the decoder does not take into

account the shaping region S associated

with the lattice code, which simplifies

the decoding process.



Previous Work on Lattice Codes

• De Buda considered a spherical lattice

code where S is a sphere and is ΛC ‘good

for channel coding’

• Numerous authors: S should be a thin

spherical shell. Under ML decoding, the

capacity is achieved.

– But ML decoding requires finding the

lattice point closest to the received

signal inside the shell .

– Decoding regions lose structure, have

no relation to true lattice decoding.

• A spherical lattice code with a Euclidean

minimum-distance decoder can achieve
1
2 log2(SNR).

– At high SNR, this essentially achieves

capacity.

– At low SNR, significant performance

loss. We will discuss why 1 is missing

here later.



Mod-Lattice Transmission and Lattice

Decoding

• Now temporarily step away from ‘good

for channel coding’ codes ΛC and con-

sider ΛS that is ‘good for shaping’.

• Desire: VS will serve as S and allow more

structured encoding/decoding.

If ΛS is ‘good for shaping’ (G(VS) → 1
2πe),

X ∼ unif (VS), and f an MMSE estimator

of X, then 1
2 log2(1 + SNR) is achievable.



Mod-Lattice Transmission and Lattice

Decoding (Cont’d)

• Introduce dither U ∼ unif (VS), known to

both the encoder and decoder.

• Given any C ∈ VS, the channel input is

X = C + U modΛS .

• ⇒ X ∼ unif (VS) and X ⊥ C.

Why: PU (u) constant ∀ u ∈ VS.

As x ↗ VS, x− c modΛS ↗ VS.

⇒ PX|C (x|c) = PU (x− c modΛS ),

constant ∀ x ∈ VS, c ∈ VS.



Mod-Lattice Transmission and Lattice

Decoding (Cont’d)

• Dither contributes 2 nice things:

– X ∼ unif (VS),

⇒ power constraint met with equality.

– X ⊥ C; C ↔ X ↔ Y ⇒ (Y, X) ⊥ C.

• ⇒ Ef = f(Y )−X ⊥ C.

• Z = C + Ef modΛS .

⇒ now an additive noise channel:

⇓



Equivalent Channel Model

C ∼ unif (VS) optimal ⇒ Z ∼ unif (VS) .

E′f , Ef modΛS .

C ≥ C(ΛS, f) =
1

N
[h(Z)− h(Z|C)]

=
1

N

[
log2 V (ΛS)− h(E′f)

]

=
1

2
log2 2πePX − 1

2
log2 2πeG(VS)− 1

N
h(E′f)

≥ 1

2
log2 2πePX − 1

2
log2 2πeG(VS)− 1

N
h(Ef)

• EPI: 1
Nh(Ef) ≤ log2 2πePEf

.

⇒ C(ΛS, f) ≥ 1

2
log2

PX

PEf

− 1

2
log2 2πeG(VS).

• ΛS ‘good for shaping’: G(VS) → 1
2πe.

⇒ C ≥ C(ΛS, f) ≥ 1

2
log2

PX

PEf

.



MMSE Estimation

⇓

C ≥ C(ΛS, f) ≥ 1

2
log2

PX

PEf

• Let f(Y ) = X̂(Y ) = αY :

Ef = αY −X = αN − (1− α)X

⇒ PEf
= α2σ2

N + (1− α)2PX
• minimize PEf

⇔ choose α∗ to be linear
MMSE estimate:

α∗ =
PX

PX + σ2
N

=
SNR

1 + SNR

⇒ P ∗Ef
=

PXσ2
N

PX + σ2
N

⇒ C(ΛS, f∗) =
1

2
log2(1 + SNR).



Comments on Dither, MMSE scaling

⇓

C ≥ C(ΛS, f) ≥ 1

2
log2

PX

PEf

f(Y ) = αY ⇒ PEf
= α2σ2

N + (1− α)2PX

• Dither U used in non-symmetric way:

– At encoder, simply added to codeword,

followed by modΛS

– At decoder, Y is scaled followed by dither

subtraction and modΛS operation

• Prev. ways of using modΛS : no scaling

⇔ α = 1 ⇒ C(ΛS, f) = 1
2 log2(SNR)

• α∗ 6= 1: estimator is biased.

• MMSE scaling minimizes var(Ef) and

increases ‘effective’ SNR by factor SNR+1
SNR .



Nested Lattice Codes

⇓

• Desire: use structured coding scheme to
signal C ∈ VS. Consider lattice codes.

• Fine ΛC: ‘good for channel coding’.
• Shape with VS, ΛS ‘good for shaping’.
• Nested lattice code: ΛS ⊂ ΛC.



Nested Lattice Codes (cont’d)

C = {ΛC modΛS } = {ΛC ∩ VS}
R =

1

n
log2 |C| =

1

n
log2

V (VS)

V (VC)
• Erez, Zamir show that nested lattice codes

with desired properties exist for all SNRs.
• ML decoding with nested lattices is

equivalent to lattice decoding.
– ML decoder’s quantizer:

Ω∗
C = {e : fEf

(e) ≥ fEf
(e−c modΛS ) ∀ c ∈ C}

– Note that Ω∗
C 6= VS.

• Using VS instead suffices and can achieve
capacity.



Discussion

• Inflated lattice

• Geometry

– Force αY to lie in same sphere as X:

α̃ =
√

SNR
SNR+1. ⇒ not the right intuition

– But since α∗ = SNR
SNR+1 < α̃, with high

prob. from LLN, no information loss in

α∗Y → α∗Y modΛS transformation.



Other Coding problems with Gaussian

Distributions

• Costa’s ‘Dirty paper coding’

Y = S + X + N

S known to encoder, not to decoder.

– Constructively and trivially addressed

with Erez/Zamir technique: add α∗S
to channel input

• Wyner-Ziv: rate-distortion bound achieved

with these codes.

• Error exponents: α∗ only optimal as

R → C.

– Lower rates: α∗ suboptimal.

– Random coding error exponent can be

achieved at all rates with proper choice

of α.

• MIMO flat fading channels:

generalization of these codes achieves

diversity-multiplexing tradeoff.


