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1 Notations

Throughout this discussion we will abbreviate ‘independent and identically distributed’ as ‘i.i.d.’
and denote ‘X is Gaussian with mean m and variance σ2’ by X ∼ N (m,σ2).

2 The AWGN channel

The AWGN channel and coding for it in an intuitive sense has been known since Shannon. The
AWGN channel model is

Y = X + N

where N ∼ N (0, σ2
N ) is independent of the transmitted signal and the transmitted codeword

must satisfy the power constraint 1
n

∑n

i=1 X2
i ≤ PX . Shannon showed that the capacity of the

Gaussian channel with power constraint PX and noise variance σ2
N is

C =
1

2
log2 (1 + SNR)

where SNR = PX

σ2

N

.

Shannon showed that in the limit of using long block length n, generating 2nC i.i.d. N (0, PX)
codewords and averaging across all codebooks is a capacity-achieving strategy: with high like-
lihood the power constraint will be satisfied and the average probability of error under ML
decoding tends to 0 as n → ∞.

This result can be derived geometrically as well. With very high likelihood, from the law
of large numbers, a length-n i.i.d. N (0, σ2) vector lies on the boundary shell of an n-sphere of
radius

√
nσ2. Since we’ve generated X ∼ N (0, PX) and N ∼ N (0, σ2

N ), the received signal is
N (0, PX + σ2

N) and thus with very high likelihood lies on the boundary shell of an n-sphere of
radius

√

n(PX + σ2
N). So we can choose codewords as the centers of spheres of radius

√

nσ2
N ,

choose the decoding region of each codeword to be that particular sphere, and observe that if
all the codeword spheres are non-overlapping, then the probability of error will tend to 0 as
n → 0. The question becomes, how many such disjoint spheres can we pack and meet our power
constraint? See Figure 1.
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Figure 1: Sphere-packing for the AWGN channel.

The volume of an n-sphere with radius r is of the form Anr
n. Since the decoding spheres

are of radius
√

nσ2
N and the received vector lies in an n-sphere of radius

√

n(PX + σ2
N), the

maximum number of non-overlapping decoding spheres is given by

An [n(PX + σ2
N)]

n
2

An [nσ2
N ]

n
2

= 2
n
2

log
2

(

1+
PX

σ2

N

)

= 2nC

Researchers for decades have been interested in constructing structured codes, encoding mech-
anisms, and decoding mechanisms that can achieve capacity on the AWGN channel for arbitrary
SNRs. We will devote our attention in this discussion to codes that are based on lattices, which
are algebraic in nature. Specifically, we will discuss how Uri Erez and Ram Zamir solved the
decades-old problem of achieving the AWGN channel capacity at all SNRs, using lattice codes
and lattice decoding. Surprisingly, (and non-intuitively at first glance), using a biased MMSE
estimator is essential to achieve capacity. This is also related to the recently shown deep connec-
tion between mutual information and estimation theory (which will be discussed in more depth
by Baris in a couple of weeks).

3 Introduction to Lattices

• A lattice Λ is a discrete group which is a subset of R
n. As in the case of binary linear

codes, a lattice can be described in terms of a generator matrix.

Λ = {λ = Gx : x ∈ Z
n}

where G is an n by n real matrix. Note that for any lattice, 0 ∈ Λ.

• A fundamental Voronoi region of Λ is denoted by V and is the set of all x ∈ R
n such that

‖x − 0‖ ≤ ‖x − λ‖ ∀ λ ∈ Λ,
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where ties are broken consistently in such a way that every x ∈ R
n can be expressed as

x = λ + r

where λ ∈ Λ and r ∈ V . Thus, the Voronoi region can be thought of as the remainder in
modular arithmetic. We denote

λ = QV (x)

as the nearest neighbor of x in Λ and

r = x modV Λ = x − QV (x)

as the error. In some cases, when considering the modulo operation with the fundamental
Voronoi region, we will drop the V subscript and simply write

r = x mod Λ .

• More generally, we can consider any fundamental region and quantizer. A fundamental
region Ω of Λ has the property that every x ∈ R

n can be uniquely expressed as x = λ + e
where λ ∈ Λ and e ∈ Ω. The quantizer and modulo-Λ operations associated with Ω are
given by

QΩ (x) = λ if x ∈ λ + Ω

x modΩ Λ = x − QΩ (x) .

• For any region R, we denote its volume as V (R).

• For any R ⊂ R
n, we define its second moment per dimension to be

P (R) =
1

n

∫

R
‖x‖2dx

V (R)
,

which is the average energy per dimension of a uniform probability distribution over R.

• The normalized second moment of a region R is given by

G(R) =
P (R)

V (R)
2

n

• Let us denote the n-sphere with radius
√

nσ2 as Sn,σ2 . As n → ∞ it is known that

V (Sn,σ2)
2

n → 2πeσ2

P (Sn,σ2) → σ2

⇒ G(Sn,σ2) → 1

2πe

We denote a sphere of volume V as SV . Since a sphere has the minimal moment of inertia
of all shapes with equal volume, it follows that for any lattice,

G(V) ≥ G(SV (V)) →
1

2πe
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• We say that high-dimensional lattices have Voronoi regions that are quasi-spherical if
G(V) → 1

2πe
. It is well-known that such lattices exist. They are termed ‘good for quan-

tization’ or ‘good for shaping’, and we will denote those wich such a desired property as
ΛS.

• We also note for any 0 < ε < σ2, the probability that an i.i.d. N (0, σ2 − ε) n-tuple falls
outside Sn,σ2 can be made arbitrarily small.

• There also exist high-dimensional lattices whose Voronoi regions are quasi-sphereical in the
above sense: For any ε > 0, for all n > n0(ε):

Sn <
V (V)

2

n

2πe
⇒ P ([X ∼ N (0, Sn)] /∈ V) < ε.

Such lattices are termed ‘sphere-bound achieving ’ or ‘good for AWGN channel coding ’ and
we will denote those with such a desired property as ΛC .

• A lattice code C is simply the intersection of a lattice with a bounded shaping region S:

C = ΛC ∩ S.

The shaping region S helps to impose any signaling constraint on the communication
problem (for instance the input power constraint for the AWGN channel).

• A lattice decoder is simply a quantizer QΩC
(x) with respect to some fundamental region

ΩC of ΛC . Namely, a lattice decoder for a lattice ΛC takes as input y ∈ R
n and for some

fundamental region ΩC of ΛC (not necessarily the fundamental Voronoi region VC of ΛC),
it performs the operation

λ = QΩC
(y) ∈ ΛC .

It is important to note that when applied to a received signal across a channel whose input
was a lattice code symbol, a lattice decoder does not take into account the shaping region
S associated with the lattice code, which simplifies the decoding process.

4 Spherical lattice codes

It has been known that a spherical lattice code (where S is a thin spherical shell) with a second
moment PX can achieve the AWGN channel capacity.

4.1 Spherical Lattice codes with ML decoding

It has been shown by numerous researchers that provided that ΛC is ‘good for channel coding’,
then with ML decoding, capacity can be achieved. Because of the intersection of Λ with the
spherical shell, ML decoding requires finding the lattice point inside the shell that is closest to
the received signal. This does not correspond to true lattice decoding and the decoding regions
associated with any codeword lose structure. Furthermore, almost all of the signal points in a
spherical lattice code lie near the boundary of the sphere, where Euclidean minimum-distance
lattice decoding (or any form of lattice decoding for that matter) significantly differs from ML
decoding.
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Figure 2: Canonical model of a mod ΛS channel.

4.2 Spherical lattice codes with lattice decoding

It has also been shown in the research literature that if we replace the ML-decoder, which differs
significantly from a lattice decoder, with a more structured lattice decoder, then the maximum
achievable rate is 1

2
log2(SNR). So at high SNR, this essentially achieves capacity, but it exhibits

significant performance loss at low SNR. We will discuss later why this decoding strategy cannot
fully attain the 1

2
log2(1 + SNR).

5 Mod-Lattice Transmission and Lattice Decoding

We now continue to consider lattice codes ΛC , but the shaping region S is not a spherical shell
but rather is a fundamental Voronoi region VS of another lattice ΛS. We now show that for the
canonical model given in Figure 2, the AWGN channel capacity can be achieved [1], [2], [3]:

Theorem 5.1. Consider the encoding/decoding mechanism given in Figure 2. If ΛS is ‘good for
shaping’ (G(VS) → 1

2πe
), the transmitted signal X is uniformly distributed over VS, and f is an

MMSE estimator of X, then the rate 1
2
log2(1 + SNR) is achievable.

Note that this differs from Section 4 in that i) the shaping region S is now the Voronoi region
of a ‘good for shaping’ lattice ΛS, and ii) there is no ‘good for channel coding’ lattice ΛC ; the
channel inputs are simply uniformly distributed over ΛS. We will resolve ii) shortly, but for now
let us go ahead with the outline of the proof.

Proof:
Introduce a dither random variable U that is uniformly distributed over ΛS and known to both
the encoder and decoder. Given any data vector C ∈ VS, the channel input is

X = C + U modVS
ΛS .

This makes X uniformly distributed over VS, and independent of C. This is because PU (u)
is constant over any u ∈ VS, and as x runs through VS, x − c modVS

ΛS runs through VS, so
PX|C (x|c) = PU (x − c modVS

ΛS ) is constant for any x ∈ VS and c ∈ VS.
The dither contributes two nice things: first of all, it allows the transmitted vector to be

uniformly distributed across VS and thus the power constraint is met with equality. More impor-
tantly, it allows the transmitted vector (and thus the received vector after the mod operation)
to be independent of the data vector C ∈ VS. See Figure 3.
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Figure 3: Using a mod ΛS channel along with dither U .

Figure 4: Equivalent mod ΛS channel model.

Since X is independent of C, and since Y = X + N , it follows that the estimation error

Ef = f(Y ) − X (1)

is also independent of any codeword C. Thus we now have an additive noise channel (see Figure
4) whose input and output alphabets are a fundamental Voronoi region VS of a lattice ΛS,
such that Z = C + Ef mod ΛS and Ef is independent of C. We note that a uniform input is
capacity-achieving and in this case the output is also uniform.

Thus

C ≥ C(ΛS, f) =
1

N
[h(Z) − h(Z|C)]

=
1

N

[

log2 V (ΛS) − h(E ′
f )

]

(2)

=
1

2
log2 2πePX − 1

2
log2 2πeG(VS) − 1

N
h(E ′

f )

≥ 1

2
log2 2πePX − 1

2
log2 2πeG(VS) − 1

N
h(Ef ) (3)

≥ 1

2
log2 2πePX − 1

2
log2 2πeG(VS) − 1

2
log2 2πePEf

(4)

=
1

2
log2

PX

PEf

− 1

2
log2 2πeG(VS).

where (2) follows by defining E ′
f = Ef mod ΛS , (3) follows from Lemma A.1, and (4) follows

from the entropy-power inequality where PEf
is the average energy per dimension of Ef . Now

suppose that ΛS is ‘good for shaping’. Then we have that log2 2πeG(VS) → 0 and thus

C ≥ C(ΛS, f) ≥ 1

2
log2

PX

PEf

. (5)
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Finally, suppose we let f(Y ) = αY . Then

Ef = αY − X = αN − (1 − α)X

⇒ PEf
= α2σ2

N + (1 − α)2PX

By choosing f to be a MMSE estimator, we minimize PEf
and obtain

α∗ =
PX

PX + σ2
N

=
SNR

1 + SNR

⇒ P ∗
Ef

=
PXσ2

N

PX + σ2
N

⇒ C(ΛS, f ∗) =
1

2
log2(1 + SNR)

5.1 Comments on dither and MMSE scaling

Note that the dither U is used in a non-symmetric way. At the encoder it is simply added to
the codeword and then the mod ΛS operation is performed. However, at the decoder, a scalar
multiplies the received signal and then the dither is subtracted out after the mod ΛS operation.
This is somewhat un-intuitive at first glance, since the dither contributes to part of the equivalent
noise Ef . Moreover, we note that when we think of α∗ in terms of estimation, we note that since
Ef = αY − X, and α∗ 6= 1, the optimal estimator is biased. Thus, the only way to achieve
capacity using lattice decoding is to first perform biased estimation.

Traditional ways of using a mod-lattice system (without MMSE scaling) in the research
literature have only been able to attain achievable rates of 1

2
log2(SNR), which amounts to

letting α = 1 in the previous section. The MMSE scaling operation f(Y ) = α∗Y = SNR
SNR+1

Y

minimizes the variance of Ef and increases the ‘effective SNR’ by a factor of SNR+1
SNR

. For this
reason, this is sometimes called an ‘inflated lattice decoder’ because relative to the noise, the
decoding regions for the lattice are larger. This accounts for the jump from 1

2
log2(SNR) to

1
2
log2(1 + SNR).

5.2 Nested lattices (Voronoi codes)

Note that in the previous section we discussed shaping lattices ΛS and required them to be
‘good for shaping’. We discussed maximizing mutual information and spoke of a data vector
C ∈ VS but did not go into more detail. Here Erez and Zamir consider using structured coding
schemes that use the dither and MMSE estimation as in the previous section, along with more
constructive ways to signal a codeword C ∈ VS. They choose the shaping lattice ΛS to be ‘good
for shaping’ as in the previous section and choose it to be a sublattice of a fine lattice ΛC that
is ‘good for channel coding’. Define

C = {ΛC mod ΛS } = {ΛC ∩ VS}
The rate is given by

R =
1

n
log2 |C| =

1

n
log2

V (VS)

V (VC)
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Figure 5: Example of a pair of nested lattices.

Figure 5 gives an example of what a pair of nested lattices looks like.
Erez and Zamir have shown using clever random coding techniques that for all SNRs, there

exist nested lattices (ΛC , ΛS) where ΛS ⊂ ΛC , ΛC is ‘good for channel coding’, and ΛS is ‘good
for shaping’.

It is also important to note that under the mod-ΛS transformation, on the equivalent channel,
ML decoding coincides with lattice decoding. Thus once constrained to this type of signaling,
there is no penalty paid by performing structured lattice decoding. However, the fundamental
region associated with the ML decoder’s quantizer

Ω∗
C = {e : fEf

(e) ≥ fEf
(e − c mod ΛS ) ∀ c ∈ C}

is not that of a Euclidean minimum-distance lattice decoder.
Erez and Zamir also show that one can in fact use a Euclidean minimum-distance lattice

decoder (i.e. replace QΩ∗

C
(x) with QVC

(x)) and still achieve capacity.

6 More on MMSE, bias, inflated lattice

One of the most interesting aspects of these results (in my opinion) is that if one is to use a lattice
decoder for lattice transmission, then scaling the output by a factor α∗ = SNR

SNR+1
is necessary.

Let us compare MMSE scaling and lattice decoding to simply non-scaled lattice decoding. Note
that in high dimensions the Gaussian noise lies on the surface of a sphere around the transmitted
point. If non-scaled lattice decoding works, then correct decoding only occurs when the noise
falls within the Voronoi region. If ΛC is ‘good for channel coding’, then this corresponds to the
noise falling within the spherical shell corresponding to the power constraint. Thus 1

2
log2 SNR

can only be attained.
Using an inflated lattice decoder, correct decoding only occurs when the noise falls within the

Voronoi region of the inflated lattice (see Figure 6),which corresponds to a larger spherical shell
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Figure 6: Inflated lattice.

(if the code is ‘good for channel coding’) than the original one whose radius corresponds to the
power constraint. Thus the spherical shell that the noise must lie in for correct decoding can in
fact be larger than the original spherical shell of radius corresponding to the power constraint.
It follows that we cannot inflate the lattice too much because as α tends to 0, the output signal
αY will have very small variance and thus will lie in a very small sphere. If this is the case
then with probability one it will lie inside the Voronoi region of ΛC , which means that the 0
codeword is always the output of the decoder, and thus P (error) → 1. So it makes sense that
scaling Y by some α between 0 and 1 is necessary if a mod-ΛS operation is to follow. At first
glance, just based on geometry, it would make sense to at least force the scaled version of Y ,
Ỹ = αY , to have the same volume as ΛS. However, the correct scaling coefficient in this case

would be α̃ =
√

SNR
SNR+1

rather than SNR
SNR+1

. So this does not appear to be the correct way to

look at the scaling operation. However, one thing we can gain from that geometric argument is
that by scaling by α∗ < α̃, we are guaranteeing that with high probability, from the law of large
numbers, there is no loss of information from the α∗Y → α∗Y mod ΛS transformation.

7 Extensions: Costa Precoding, Wyner-Ziv, etc.

The Erez/Zamir nested lattice construction can also address multiterminal information theory
problems involving Gaussian distributions. For instance, consider the Costa ‘Writing on Dirty
Paper’ problem, the AWGN channel w/ encoder side information. The channel model is

Y = S + X + N

where N ∼ N (0, σ2
N ), X must satisfy a power constraint PX , and S is an arbitrary additive

interference signal known to the encoder. Costa showed that the capacity of this channel is
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the same as a channel where S is not present. The capacity of this channel can be shown in
a constructive and trivial manner using the Erez/Zamir construction: apply all the arguments
previously with the extra twist that the channel input becomes X = C + U − α∗S mod ΛS

instead. Let the receiver perform the same operation as in the previous section, and it will
cancel out S entirely (without knowledge of it). The remaining signal is just as in the AWGN
channel case and all the arguments still hold. Thus the capacity is 1

2
log2(1 + SNR).

Also, Erez and Zamir show [2] how these same constructive nested codes with dithering and
MMSE scaling achieve the rate-distortion bound for the Wyner-Ziv quantization problem.

Error exponent analysis for nested lattice codes with lattice decoding is discussed in [4]. It is
shown that α = α∗ maximizes the error exponent only as R → C. At lower rates, α∗ is strictly
suboptimal. By choosing α correctly, however, the random coding exponent can be achieved at
all rates.

The lattice encoding/decoding with MMSE estimation has recently been applied to address
coherent communication over MIMO flat fading channels [5]. It has been shown that a class
of lattice codes generalized for the MIMO setting under lattice decoding achieve the optimal
optimal diversity-vs-multiplexing tradeoff, defined by Zheng and Tse.
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A Appendix

Lemma A.1. The random variables Ef ∈ R
n defined in (1) and E ′

f = Ef mod ΛS satisfy
h(E ′

f ) ≤ h(Ef ).

Proof. Denote the probability densities of Ef and E ′
f as fEf

(e) and fE′

f
(e), respectively. Let us

denote GS as the generator associated with ΛS. By the definition of the mod ΛS operation, we
have that for any e ∈ VS,

fE′

f
(e) =

∑

x∈Zn

fEf
(e + GSx) .
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Note that we can express h(Ef ) as

h(Ef ) = −
∫

e∈Rn

fEf
(e) log2 fEf

(e)

= −
∑

x∈Zn

∫

e∈VS

fEf
(e + GSx) log2 fEf

(e + GSx) .

We now discuss h(E ′
f ):

h(E ′
f ) = −

∫

e∈VS

fE′

f
(e) log2 fE′

f
(e)

= −
∫

e∈VS





∑

x∈Zn

fEf
(e + GSx)



 log2





∑

y∈Zn

fEf

(

e + GSy
)





= −
∑

x∈Zn

∫

e∈VS

fEf
(e + GSx) log2





∑

y∈Zn

fEf

(

e + GSy
)





≤ −
∑

x∈Zn

∫

e∈VS

fEf
(e + GSx) log2

[

fEf
(e + GSx)

]

(6)

= h(Ef )

where (6) follows from the monotonicity of the log function along with the non-negativity of
pdfs.
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