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Capacity Theorems for the Relay Channel 
THOMAS M. COVER, FELLOW, IEEE, AND ABBAS A. EL GAMAL , MEMBER, IEEE 

Abstract-A relay channel consists of an input x,, a relay output yl, a 
cJmnnel output y, and a relay sender x2 (whose trasmission is allowed to 
depend on the past symbols y,). l%e dependence of the received symbols 
upm the inpnts is given by p(y,y,lx,,x,). ‘l%e channel is assumed to be 
memoryless. In this paper the following capacity theorems are proved. 

1) Ifyisadegnukdformofy,,the.n 

C-m=Phx2) min(l(X,,X,; Y),I(X,; Y,lX&). 
2) Ify,isadegradedformofy,tben 

C==maxpcx,) m=JXI; Ylx2). 
3) If p(y,yllx,,x2) is an arWnuy relay chaonel 4th feedback from 

Crud to both x1 and ~2, then 

C=maXpcx,.x*, min(W,,X*; Y)J(x,; y9 Y,lX3). 
4) For a general relay channel, 

C< max+,,,d min(Z(Xl,X2; YMX,; K Y,lXJ. 

Superposition block Markov encoding is used to show achievabiiity of C, 
and converses are established. ‘Ihe capacities of the Gaussian relay dum- 
WI and certain discrete relay channels are evaluated. Finally, an acbiev- 
able lower bound to the capacity of the general relay channel is estab- 
lished. 
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I. INTRODUCTION 

T HE DISCRETE memoryless relay channel denoted 
by @I x %P(Y,Y,~ xi,x.J, % X %i) consists of four 

finite sets: %, , %,, ‘% , %,, and a collection of probability 
distributionsp(-, .Jxi,xJ on 9 Xql, one for each (x1,x2) 
E %Xx, x $X2. The interpretation is that x, is the input to the 
channel and y is the output, y, is the relay’s output and x2, 
is t@ input symbol chosen by the relay as shown in Fig. 1. 
The problem is to find the capacity of the channel be- 
tween the sender xi and the receiver y . 

The relay channel was introduced by van der Meulen 
[l], [2], [3, p. 7 and pp. 32-341, and has also been studied 
by Sato [4]. In [l] a timesharing approach was used to find 
inner bounds for C. Outer bounds were found in [l] and 
[4]. However, C was established only for relatively degen- 
erate channels. 

The model that motivates our investigation of degraded 
relay channels is perhaps best illustrated in the Gaussian 
case (see Fig. 3 and the example in Section IV). Suppose 
the transmitter x1 has power P, and the relay transmitter 
has power Pz. The relay receiver yi sees xi +zi, zr~ 
N(0, N,). The intended receiver y sees the sum of the relay 
signal x2 and a corrupted version of y,, i.e., y = x,+y, + 
,721 z2-N(O,N,). How should x2 use his knowledge of x, 
(obtained through yr) to help y understand x,? We shall 
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Fig. 1. Relay channel. 

show that the capacity is given by 
, I -. 

C* = aF;:i min C i ( P, + P, + 2jlP,P, 

N,+N2 1 ( 
,c g 

I 1) 

where C(x) = (1/2)log( 1 + x). An interpretation consistent 
with achieving C* in this example is that y, discovers xi 
perfectly, then x2 and xi cooperate coherently in the next 
block to resolve the remaining y uncertainty about xi. 
However, in this next block, fresh xi information is super- 
imposed, thus resulting in a steady-state resolution of the 
past uncertainty and infusion of new information. 

An (M,n) code for the relay channel consists of a  set of 
integers 

%={1,2;** ,M} ii [‘Jf] 

an encoding function 

x,: nt+~ 

a set of relay functions {f.}?= i such that 

(1) 

(2) 

x2i =h( y, 1, y,2, * . ’ > y,i- I)> 1 <i<n, (3) 
and a decoding function 

g: 9P-+%. (4) 
For generality, the encoding functions x1( .),J;( *) and de- 
coding function g(e) are allowed to be stochastic func- 
tions. 

Note that the allowed relay encoding functions actually 
form part of the definition of the relay channel because of 
the nonanticipatory relay condition. The relay channel 
input x2i is allowed to depend only on the past yi= 
(Yl,,Y,,Y. - * ,yli-i). This is the definition used by van der 
Meulen [l]. The channel is memoryless in the sense that 
(yi,y,J depends on the past (xf,xi) only through the 
current transmitted symbols (xli,xzi). Thus, for any choice 
p(w), WE M, and code choice xi: Em+% and relay 
functions {A}?= i, the joint probability mass function on 
%  X x X !??j X 9” X ?(’ is given by 

P(w,x19x2~Y~Y1)=P(w) ii P(xIilwlP(x2ilY~~~Y~2~~~ ’ >Yli-1) 
i=l 

‘P(Yi2Y,ilx,i>x2i)’ t5) 

Remark: Throughout this paper we shall use the nota- 
tional convenience pVIU(olu)=p(vlu), where the dropped 
subscripts will be obvious by inspection of the arguments 
of the function. We  shall also write X-p(x) to indicate 
that the random variable X is drawn according to the 
probability mass function p(x). 

If the message w E ?JR is sent, let 

h(w)=Pr{g(Y)#w} (6) 

denote the conditional probability of error. We  define the 
average probability of error of the code to be 

P,(e) = -& x X(w). 
w 

The probability of error is calculated 
distribution- the uniform distribution 
words w E [l,M]. Finally, let 

h  = fgg, Mw) 

(74 
under a special 
over the code- 

P’b) 

be the maximal probability of error for the (M, n) code. 
The rate R of an (M, n) code is defined by 

l+ogM bits/transmission. (8) 

The rate R is said to be achievable by a relay channel if, 
for any e > 0 and for all n  sufficiently large, there exists an 
(M,n) code with 

M  > 2”R (9) 
such that X, <E. The capacity C of the relay channel is the 
supremum of the set of achievable rates. 

We  now consider a family of relay channels in which 
the relay receiver yi is better than the ultimate receiver y 
in the sense defined below. 

Definition: The relay channel (%, X x2,p(y, 
y,]x,,x2),% X%1) is said to be degraded if p(y,y,lx,,x,) 
can be written in the form 

P(Y,Y,I~,,x2)=P(YIIx1,x21P(YIYI7x2). (10) 
Equivalently, we see by inspection of (10) that a relay 
channel is degraded if p(yIx1,x2,y,)=p(y)x2,yl), i.e., X1-+= 
(X2, Y,)+ Y form a Markov chain. The previously dis- 
cussed Gaussian channel is therefore degraded. For the 
reader familiar with the definition of the degraded broad- 
cast channel, we observe that a degraded relay channel 
can be looked at as a family of physically degraded 
broadcast channels indexed by x2. A weaker form of 
degradation (stochastic) can be defined for relay channels, 
but Theorem 1 below then becomes only an inner bound 
to the capacity. The case in which the relay y, is worse 
than y is less interesting (except for the converse) and is 
defined as follows. 

Definition: The relay channel (%, X X2,p(y, 
yIIxI,x2), %I X ql) is reverse& degraded if p(y,y,Ix,,x2) 
can be written in the form 

P~Y~Y,I~,~~2~=P~Yl~,~~,lP~Y,lY~~2~. (11) 

The main contribution of this paper is summarized by 
the following three theorems. 

Theorem I: The capacity C of the degraded relay 
channel is given by 

C= sup min{Z(X,,X,; Y),I(X,; Y,lX,)} (12) 
P(XI,XZ) 

where the supremum is over all joint distributions p(x,, x2) 
on %,X??L2. 

Theorem 2: The capacity C, of the reversely degraded 
relay channel is given by 

(13) 
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Theorem 2 has a simple interpretation, Since the relay 
yi sees a corrupted version of what y sees, x2 can contrib- 
ute no new information to y-thus x2 is set constantly at 
the symbol that “opens” the channel for the transmission 
of x, directly toy at rate Z(X,; Y [x2). The converse proves 
that one can do no better. 

Theorem 1 has a more interesting interpretation. The 
first term in the brackets in (12) suggests that a rate 
Z(X,,X,; Y) can be achieved where p(x,,x,) is arbitrary. 
However, this rate can only be achieved by complete 
cooperation of x, and x2. To set up this cooperation x2 
must know xi. Thus the x, rate of transmission should be 
less than Z(X,; Y,]X,). (How they cooperate given these 
two conditions will be left to the proof.) Finally, both 
constraints lead to the minimum characterization in (12). 

The obvious notion of an arbitrary relay channel with 
causal feedback (from both y and y, to x, and x2) will be 
formalized in Section V. The following theorem can then 
be proved. 

Theorem 3: The capacity of C,, of an arbitrary relay 
channel with feedback is given by 

GB=p;px2) min{z(X,,X,; Y),z(X,; Y, YJX,)}. (14) 

Note that C,, is the same as C except that Y, is 
replaced by (Y, Y,) in Z(X,; Y,]X,). The reason is that the 
feedback changes an arbitrary relay channel into a de- 
graded relay channel in which x, transmits information to 
x2 by way of y, and y. Clearly Y is a degraded form of 
(K y,>* 

Theorem 2 is included for reasons of completeness, but 
it can be shown to follow from a chain of remarks in van 
der Meulen [l] under slightly stronger conditions. Specifi- 
cally in [l] see Equation (8.1) Lemma 4.1, Theorem 10.1, 
and Theorem 7.1. 

Before proving the theorems, we apply the result (12) to 
a simple example introduced by Sato [4]. The channel as 
shown in Fig. 2 has xi=% =‘%,={0,1,2}, x2=(0,1}, 
and the conditional probabilityp(y,y,lx,,x,) satisfies (10). 
Specifically, the channel operation is 

Yl -x1 (154 

and 
y=o y=l y=2 

P(YlY,J,=o)= y,=o 1 1 0 0 
y 1 =1 0 0.5 0.5 

1 (15b) 

y1=2 lo 0.5 0.5 1 

y=o y=l y=2 

P(YlY*J,= I)= y,=o I 0.5 0.5 0 y,=l 0.5 0.5 0 1 
y1=2 lo 0 ‘1 

(15c) 
Sato calculated a cooperative upper bound to the capacity 
of the channel, RUG=maxg(x,,x,) Z(X,,X,; Y)= 1.170. By 
restricting the relay encoding functions to 

9 x2i=fi(YllP* ” ,Yli-l)‘f(Yli-1) l<i<n, 

ii) X2i=J(yl,,. . . ,Yli-l)=f(Yli-ZPYli-1) l<i<n. 

x,;o x2' 

Xl  Yl  
0 -0 
1 -1 
2 -2 

Fig. 2. Ternary relay channel. 

TABLE I 
OPTIMAL p( X, , x2) FOR THE TERNARY RELAY CHANNEL. 

Sato calculated two lower bounds to the capacity of the 
channel: 

i) R, = 1.0437 

ii) R, = 1.0549. 

From Theorem 1 we obtain the true capacity C= 
1.161878.,.. The optimal joint distribution on %, X xx, is 
given in Table I. 

We shall see that instead of letting the encoding func- 
tions of the relay depend only on a finite number of 
previous y, transmissions, we can achieve C by allowing 
block Markovian dependence of x2 and y, in a manner 
similar to [6]. 

II. ACHIEVABILITY OF C IN THEOREMS 1,2,3 

The achievability of Co = supP(,,) max+ Z(X,; Y [x2) in 
Theorem 2 follows immediately from Shannon’s basic 
result [5] if we set X2i = x2, i = 1,2,. . . . Also, the achieva- 
bility of C,, in Theorem 3 is a simple corollary of 
Theorem 1, when it is realized that the feedback relay 
channel is a degraded relay channel. The converses will be 
delayed until Section III. 

We are left only with the proof of Theorem l-the 
achievability of C for the degraded relay channel. We 
begin with a brief outline of the proof. We consider B 
blocks, each of n symbols. A sequence of B - 1 messages 
~~E[1,2”~], i= 1,2; * f , B - 1 will be sent over the channel 
in nB tranmissions. (Note that as B-cc, for fixed n, the 
rate R(B - l)/ B is arbitrarily close to R.) 

In each n-block b = 1,2,. . . , B, we shall use the same 
doubly indexed set of codewords 

62 = M%l%)J2m; w,E[1,2”R], s,E[1,2”RO], 

x,(.~.)E%, x2(.)~w2. (16) 

We shall also need a partition 

s ={S,,&;-* ,S2”RO} of Gx={1,2; *.,2nR} 
into 2nRo cells, Si n Sj =0, i #j, u Si = 9lL. (17) 
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The partition S will allow us to send information to the 
receiver using the random binning proof of the source 
coding theorem of Seplian and Wolf [7]. 

The choice of e and S achieving C will be random, but 
the description of the random code and partition will be 
delayed until the use of the code is described. For the time 
being, the code should be assumed fixed. 

We  pick up the story in block i- 1. First, let us assume 
that the receiver y knows wip2 and sip1 at the end of block 
i - 1. Let us also assume that the relay receiver knows 
wi- ,. We  shall show that a good choice of { (?, s } will 
allow the receiver to know (wi- ,,si) and the relay receiver 
to know wi at the end of block i (with probability of 
error <e). Thus the information state (wi- ,,si) of the re- 
ceiver propagates forward, and a recursive calculation of 
the probability of error can be made, yielding probability 
of error < BE. 
We  summarize the use of the code as follows. 
Transmission in block i - 1: x,(w,- ,I.s- ,), x,(.s- ,). 
Received signals in block i - 1: Y,(i - l), Y(i - 1). 

Computation at the end of block i - 1: the relay re- 
ceiver Y,(i - 1) is assumed to know wi-,. The integer wi-i 
falls in some cell of the partition S . Call the index of this 
cell si. Then the relay is prepared to send x2(si) in block i. 
Transmitter x1 also computes si from wi-,. Thus si will 
furnish the basis for cooperative resolution of they uncer- 
tainty about wi- ,. 

Remark: In the first block, the relay has no information 
s, necessary for cooperation. However any good sequence 
x2 will allow the block Markov scheme to get started, and 
the slight loss in rate in the first block becomes asymptoti- 
cally negligible as the number of blocks B-+oo. 

Transmission in block i: x,(wilsi), x2(si). 
Received signals in block i: y,(i), y(i). 
Computation at end of block i: 1) The relay calculates 

wi from y,(i). 2) The unique jointly typical x2(si) with 
the received y(i) is calculated. Thus si is known to 
the receiver. 3) The receiver calculates his ambiguity 
set C(y(i- l)), i.e., the set of all wi-, such that 
(x,(w,- ,Isi- ,),x2(.s- ,),y(i - 1)) are jointly e-typical. 

The receiver then intersects C( y(i - 1)) and the cell S,. 
By controlling the size of C, we shall (1 - <)-guarantee 
that this intersection has one and only one member-the 
correct value wi- ,. We  conclude that the receiver y(i) 
has correctly computed (wi-,,si) from (w~-~,s~-,) and 
(.v(i - lLv(i)). 

Proof of achievability of C in Theorem I: We  shall use 
the code as outlined previously in this section. It is im- 
portant to note that, although Theorem 1 treats degraded 
relay channels, the proof of achievability of C and all 
constructions in this section apply without change to 
arbitrary relay channels. It is only in the converse that 
degradedness is needed to establish that the achievable 
rate C is indeed the capacity. The converse is proved in 
Section III. 

We  shall now describe the random codes. Fix a proba- 
bility mass function p(x,,x,). 

Random Coding: First generate at random Me =2”R0 
independent identically distributed n-sequences in w2, 
each drawn according to p(x2) = IIT, ,P(x~~). Index them 
as x2(s), s E [ 1, 2nRo]. For each x2(s), generate M= 2”R 
conditionally independent n-sequences x,(w(s), w E [ 1, 2nR] 
drawn according to p(x,lx,(s)) = II:= ,p(~,~lx~~(s)). This 
defines a random code book e = {xl(w]s),x2(s)}. 

The random partition S = {S,, S,, * * * , Sz”R,,} of 
{ 1,2;. . ,2nR} is defined as follows. Let each integer w E 
[ 1, 2nR] be assigned independently, according to a uniform 
distribution over the indices s = 1,2, + . . , 2nRo, to cell S,. 
We  shall use the functional notation s(w) to denote the 
index of the cell in which w lies. 

Typical Sequences: We  recall some basic results con- 
cerning typical sequences. Let {X(l), Xc2), * . . , Xck)} denote 
a finite collection of discrete random variables with some 
fixed joint distribution p(x(‘), xc2), * * . , xc@), for (x(l), 
xm,. . . ) Xw) E 6Jy’ x 9p’ x . . . X !??). Let S denote an 
ordered subset of these random variables, and consider n 
independent copies of S. Thus 

Pr {S=s} = .cr Pr { S,=.s,}, SEP. (18) 

Let N(s; s) be the number of indices i E { 1,2; . . , n} such 
that Si = s. By the law of large numbers, for any subset S 
of random variables and for all s E S , 

(19) 

Also 

- l/nlogp(s,,s,; . . ,s,)= - l/n 2 1 * ogP(si)+H(S)* 
i=l 

(20) 
Convergence in (19) and (20) takes place simultaneously 
with probability one for all 2k subsets 

s ~{x(1),x(2),* *. ,XCk)}. 
Consider the following definition of joint typicality. 

Definition I: The set A, of e-typical n-sequences 
(xwJ(2) . . . , ,xck)) is defined by 

A,(X”‘,J’2’, . . . ,x(k))=,+ (x(1),x(2) ,..., x(“9: 

$ N(x(‘),X(2), . . . ,XW; ,(1),x(2), . . . )X(k)) 

-p(xU),xW . . . ,XW) 

<EII%~‘) X fXc2) X - . . X %(k)II, for (,$),J2), . . . ,xck)) 

E x(l) x xX(2)x . . . x x(k) (21) 

where II& 1) is cardinality of the set &. 
Remark: This definition of typicality, sometimes called 

strong typicality, can be found in the work of Wolfowitz 
[13] and Berger [12]. Strong typicality implies (weak) typi- 
cality used in [8], [14]. The distinction is not needed until 
the proof of Theorem 6 in Section VI of this paper. 



576 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-25, NO. 5, SEF-TBMBER 1979 

The following is a version of the asymptotic equiparti- 
tion property involving simultaneous constraints [ 121, [ 141. 

Lemma I: For any e>O, there exists an integer n such 
that A,(S) satisfies 

i) Pr{A,(S)}> l-e, for all S C {X(l), . . + ,XCk)} 

ii) sEA,(S)+[-$logp(s)-H(S)I<c 

iii) (l- E)Y(~(~)-‘) < IIAc(S)II < 2n(H(S)+‘). (22) 
We shall need to know the probability that condition- 

ally independent sequences are jointly typical. Let S,, S,, 
and S, be three subsets of X”),XC2), * * * ,XCk). Let S;, S; 
be conditionally independent given S,, with the marginals 

P(S2l4 = r, P(~l~~,J,)/P(4. 
SI 

(23) 

The following lemma is proved in [14]. 
Lemma 2: Let (S,, S,, S,) -II:=, p(sli, szi, sgi) and 

(s;,s~,s~)-n~,,~(s,ils~i)p(s2ils~iIp(s,,). Then, for n such 
that P { A,(S,, S,, S,)} > 1 - l , 

(1 - ~)2-“(I(~,;~21~3)+‘~) <P { (S;,S;,S,) E A,(S,, S,,S,)} 
< 2-“u(s’;w,)-74 (24) 

Encoding: Let wi E [ 1, 2nR] be the new index to be sent 
in block i, and assume tliat wi- , E Ss. The eccoder then 
sends xl(wi]si). The relay has an estimate Gi-, of the 
previous index wi- ,. (This will be made precise in the 
decoding section.) Assume that Gjii-, E S;. Then the relay 
encoder sends the codeword x2($) in block i. 

Decoding: We assume that at the end of block (i - 1) 
the receiver knows (w1,w2; * * ,wi-J and (s1,s2;. * ,si-,) 
and the relay knows (w,, w2,. . . , wi- ,) and consequently 
(sl~s2~ ’ ’ * Tsi>* 

The decoding procedures at the end of block i are as 
follows. 

1) Knowing si, and upon receiving y,(i), the ,reZay re- 
ceiver estimates the message of the transmitter Gi = w iff 
there exists a unique w such that (xl(wlsi),x2(si),yl(i)) are 
j_ointly e-typical. Using Lemma 2, it can be shown that 
Ci = wi with arbitrarily small probability of error if 

R <z(X,; Y,lX,) (25) 
and n is sufficiently large. 

2) The receiver declares that $ = s was sent iff there 
exists one and only one s such that (x2(s), Y(i)) are jointly 
e-typical. From Lemma 2 we know that si can be decoded 
with arbitrarily small probability of error if s, takes on less 
than 2”1(x2; ‘) values, i.e., if 

R, <z(X,; Y) (26) 
and n is sufficiently large. 

3) Assuming that si is decoded successfully at the re- 
ceiver, then ki-, = w is declared to be the index sent in 
block i - 1 iff there is a unique w E Ss n C(y(i - 1)). It will 
be shown that if n is sufficeintly large and if 

R<Z(X,; Y/X,)+ R, (27) 

then Gi-, = wi- , with arbitrarily small probability of error. 
Thus combining (26) and (27) yields R <Z(X,,X,; Y), 

the first term in the capacity expression in Theorem 1. 
The second term is given by constraint (25). 

Calculation of Probability of Error: For the above 
scheme, we will declare an error in block i if ine or more 
of the following events occurs. 

E,,i (xl(wiJsi),x2(si),yl(i),y(i)) is not jointly e-typical. 
Eli in decoding step 1, there exists iit#w, such that 

(xl(9]si), x2(si), Y,(i)) is jointly typical. 
E2i in decoding step 2, there exists ?#s, such that 

(x2(s?),y(i)) is jointly typical. 
EJi decoding step 3 fails. Let E3i = Eii u E$, where 

E;i Wi-14S,nC(y(i-I)), and 
E$ there exists 3 E[ 1, 2nR], G#wi- ,, such that 

GES,nC(y(i-1)). 

Now we bound the probability of error over the B 
n-blocks. Let W=( W,, W,; . . , W,- ,,0) be the trans- 
mitted sequence of indices. We assume the indices Wi are 
independent identically distributed random variables uni- 
formdy diatrib-uted on-[ 1,2”R]. The relay estimates W  to 
be W=(F@,,$;;..,FkB-,, 0). The receiver estimates S= 
(0,4, $3, * * * , S,) and $=(0, I@,, G2; . . , F@s- ,). Define 
the error events q for decoding errors in block i by 

A 

q=( Fki#Wior $‘~,#Wi~,or,$#Si)= ; Eki. 
k=O 

(28) 
We have argued in encoding-decoding steps 1) and 2) 

that 

P(EoilFic-,) <c/4B (29 
P(E,,n E&IFi’_,) <e/4B (30) 
P(E2in E&Iqic_,) <e/4B. (31) 

We now show that P(E,, n E&n E&IFi’_ ,) can be made 
small. 

Lemma 3: If 

R<Z(X,; YlX,)+ R,-7c, 

then for sufficiently large n 

P(E,,n E&n E&I&L,) <c/4B. (32) 
Proof: First we bound E { 11 C( Y(i - l)III&C- I}, where 

]I C ]I denotes the number of elements in l?. Let 

1 

1, (xl(wIsi- 1),x2(si- l>,Yti- ‘1) 
#(W I v(i - 1)) = is jointly typical, (33) 

0, otherwise. 

The cardinality of C(y(i - 1)) is the random variable 

IlKv(i- l>)ll= Z  44wlv(i- 1)) (34) 
w 

and 
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From Lemma 2 we obtain, for each w l [l,Ml, The conditional probabilities of error are bounded by 

E{#(wly(i- l))IFi’_,} <2-“(‘(X~;yIx+7c)~ w#w,-,. P(E,, n  E&. . . nE,'-,iIc,'_,)< &. 

(35) Thus, 
Therefore 

E{~~~(y(i-l))~~~~~,} < 1+(2”R- 1)(2-“(‘(X,;YIX+7E)) 
P(Ff#W)<E. (42) 

This concludes the proof of Lemma 3. 
< 1+ y(R-I(X,; YIX,)+‘c) (36) 

The event F-, implies that wi- , E C(y(i - 1)). Also 
It is now standard procedure to argue that there exists a 

code (P!? * such that P( W#  IVIe*) GE. Finally, by throwing 
E&=Si = si*wi-, E S,. Thus away the worst half of the w in { 1;. . ,2nR}B-1 and 

P(E;,nE&nE&f&?,)=O. (37) reindexing them, we have the maximal error 

Hence P( Fv#wipi‘?*, W i) < 2E, for iE [ 1,2nR(B-,)-‘]. (43) 

P( EJi n  E$ n  E&l 4’f- ,) 
=P(E;:.nE&nE,$l<i'_,) 
<P {there exists w # IV-, such that 

wE~(y(i-l))ns,l~~-,) 

<E 
1 

2 P(wE Ss,)lKl 
W#W,-, 

wE!Z(y(i-I)) 1 

GE{ IIC(y(i- 1))]12-“Rol~?,} 
<2-n& 

( 
1  +y(R-1(X,; YIX2))+7~ 

)* 

Thus, if 
R,>R-Z(X,; Y/X*)+76 

then for sufficiently large n, 

Thus, for e > 0, and n sufficiently large, 

h, < 2e for rates R”= nR(B - ‘) - ’ nB where R < C. 

(44) 
First letting n+oo, then B+oo, and finally e-+0, we see 
that R <C is achievable. Thus the achievability of C in 
Theorem 1 is proved. 

III. CONVERSE 

First we show that for the general (not necessarily 
degraded) relay channel an upper bound to the capacity C 
is given by 

CG p;px2) min{Z(X,,X,; Y),Z(X,; K Y,I&)}. (45) 

P{E3inE,CinE&lct,}<c/4B. Theorem 4: If 

But, from (26), we required R > sup min{Z(X,,X,; Y),I(X,; Y, Y,IXJ} 

R,<Z(X,; Y). 

Combining the two constraints, R, drops out, leaving 

R<Z(X,; YlX,)+Z(X,; Y)-7c=Z(X,,X,; Y)-7~. 

P(XI&) 
then there exists A > 0 such that p,(e) >X for all n. 

Before proving Theorem 4, we note that this theorem 
can be specialized to give the converses to Theorems 1, 2, 

The probability of error is given by 

P(W#@)<P 

(38) and 3. - 
Corollary I: (Converse to Theorem 1). For the de- 

graded relay channel 
(39) c< sup min{Z(X,A; YMX,; YJW. p(x, ,x 2) 

Proof: It follows from the degradedness assumption 
(10) that 

But 

Thus, 

. . 

= $, P{<.nF,“nF,“... n&Y,} 

G $ P{Z$nE;;.'_,}. 
i=l 

{Fin&?,}= I.J Ekinc?,. 
k=O 

1(X,; y, Y,lX*)= Z (X,; Y,IX*) 
thus rendering the upper bound in Theorem 4 and the 
bound in Corollary 1 equal. 

(40) Corollary 2: (Converse to Theorem 2). The reversely 
degraded relay channel has capacity 

(41) 
Co< y; my {Z(X,; % )I. 

Proof: Reverse degradation (11) implies in Theorem 
4 that 

P(FinFic_1) < i,P( ( Eki- govern) n&Y,) 

< i P({E,,nE,$.. 1 n EL-,i} IFi’- ,)a 
k=O 

qx,; y, Y,IX,)= 1(X,; Y/X,). 
Also, the second term in the brackets is always less 
than the first: 

Z(X,,&;Z) >Z(X,; YIX,)=Z(X,; y, Y’IX,). 
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Finally, 

since Z is linear in p(x2), and p,,( *) takes values in a 
simplex. Thus Z is maximized at an extreme point. Q.E.D. 

Proof of Theorem 4: Given any (M,n) code for the 
relay channel, the probability mass function on the joint 
ensemble W, X,, X,, Y, Y, is given by 

*P(Yi~Ylilxli~x*i)~ 
Consider the identity 

nR=H(W)=Z(W; Y)+H(WIY). 

By Fano’s inequality 

H(WIY)<P,(e)nR+l 4 A,. 

Thus 
nR<Z(W; Y)+n6,. 

(46) 

(47) 

(48) 

We now upper bound Z( W; Y) in a lemma that is essen- 
tially similar to Theorem 10.1 in van der Meulen [l, p. 
1521. 

Lemma 4: 

i) Z( W; Y) < i: Z(X,i,X,i; Yi) (494 
i=l 

ii) Z( W; Y) < 2 Z(Xu; Yli, YJXzi). (49b) 
i=l 

Proof: To simplify notation, we shall use Y’= 
(Y,, y*,* - * 7 Yi) throughout the rest of this paper. First 
considering i), we apply the chain rule to obtain 

Z( w; Y)’ i z( w; Yil Yi-1) 
i=l 

= i@qqY”)-H(Yi~W,Y”)) 

< i (H(Yi)-H(YilW,Yi-‘)) 
i=l 

By discrete memorylessness of the channel, Y and 
(W, Yi-‘) are conditionally independent given (X,,,Xzi). 
Thus the conditioning can be dropped in the last term, 
yielding 

Z( w; Y) < 5 z(x,i,x,i; lg. 
i=l 

Considering ii) we have 

Z( w; Y) <I( w; Y, Y,) 

= $, z( w; Yi, Y,J yi-1, r:-') 

= i H(WIY'-',yf-')-H(WIY'-',yf-1). 
i= 1 

(51) 

It is easy to see that W and Xzi are conditionally indepen- 
dent given (Yip’, Yi-‘). Hence 

H( WI Yi-‘, Yf-‘,Xzi) = H( WI Yi-‘, Y;-‘) (52) 

and continuing the sequence of upper bounds in (51), we 
have 

I( W; Y) < i (H( WI Yip’, Y{-‘,x*i)-H( wI “> y:9x2i)) 
i=l 

= i$, ‘( W; y*iY ql yi-‘> y:-‘,x~i) 

= $, (H( y*i, &I yi-‘> y{-‘?x*i) 

- H( Yli, Yy w, yi-1, r;-1,x*,)) 

( $I CH( ‘*iY yilx2i) - H( ‘li, KlxX,i~x2i)) 

= i$I ‘txli; K:., yliIx2i) 
and Lemma 4 is proved. 

From (48) and Lemma 4 it follows that 

i ,$ Z(X,i>Xai; Y,), $ $ Z(X,i; Yi:., Y,iIXzi) + 6,. 
r-l r-l I 

(53) 
We now eliminate the variable n by a simple artifice. 

Let 2 be a random variable independent of X1,&, Y, Y, 
taking values in the set { 1,. . + ,n} with probability 

p(z=i)=; 1 <i<n. (54) 

Set 

x, p x,,, x, p xzz, Y p Y,, Y, p Y,,. 

Then 

$ ,$ Z(x*i,xzi; yi)=z(x*>x2; ‘lz) Gz(x*9x2; ‘) 
r-l 

by the Markovian relation Z+(X,,X,)-+( Y, Y,) induced 
by the channel and the code. Similarly 

i i*, z(x*i; 5, yIiIx~i)=z(xI~ ‘> y*lx2>z> 

(1(X,; K Y’IX,). 

Thus 

R < min{ Z(X,,X2; Y),Z(X,; Y,, YIX,)} + S,, (55) 

and Theorem 4 is proved. 

IV. THE GAUSSIAN DEGRADED RELAY CHANNEL 

Suppose a transmitter x, with power P, sends a signal 
intended for receiver y. However, this signal is also re- 
ceived by a relay y, that is perhaps physically closer to x1 
than is y. Transmissions are corrupted by additive Gaus- 
sian noise. How can the relay x2 make good use of y, to 
send a signal at power P2 that will add to the signal 
received by the ultimate receiver y? 



COVER AND EL GAMAL: CAPACITY THEOREMS FOR RELAY CHANNEL 579 

First we define the model for discrete time additive 
white Gaussian noise degraded relay channel as shown in 
Fig. 3. 

Let Z, =(Z,,; * * ,Z,,,) be a sequence of independent 
identically distributed (i.i.d.) normal random variables 
(r.v.‘s) with mean zero and variance N,, and let Z,= 
(Z,,; * - 9  Z,,) be i.i.d. normal r.v.‘s independent of Z, 
with mean zero and variance N2. Define N= N, + N,. At 
the ith transmission the real numbers xii and xzi are sent 
and 

Yli = xii + ‘li 
yi=xzi+yli+zi (56) 

are received. Thus the channel is degraded. 
Let the message power constraints on the transmitted 

power be 
1 n 

and 

for the transmitted signal x, =(x1,, * 9  * ,xln) and the relay 
signal x2 = (x,,, * * * , xZn), respectively. 

The definition of a code for this channel is the same as 
given in Section I with the additional constraints in (57). 

Theorem 5: The capacity C* of the Gaussian degraded 
relay channel is given by 

C* = oF;:l min 
( ( 

C 
P, + P, + 2$Z 

N H i) 
,c g 

1 

(58) 
where E=(l-a) and 

C(x)=$log(l+x) x >o. 

Remarks: 1) If 

P,/Nz >P,IN, (59) 
it can be seen that C* = C(P,/ N,). (This is achieved by 
(Y = 1.) The channel appears to be noise free after the relay, 
and the capacity C(P,/N,) from x, to the relay can be 
achieved. Thus the rate without the relay C(P,/(N, + N,)) 
is increased by the relay to C(P,/N,). For large N,, and 
for P,/N, > P,/N,, we see that the increment in rate is 
from C(P,/(N, + NJ)%0 to C(P,/N,). 

2) For Pz/ N2 < P,/ N,, it can be seen that the maxi- 
mizing (Y = (Y* is strictly less than one, and is given by 
solving for (Y in 

P, + P, + 2$?P, P2 
N,+N2 )=fln(l+$) (61) 

yielding C*= C(a*P,/N,). 

Proof: We  first sketch the achievability of C* and the 
random code that achieves it. For 0 <(u < 1, let X,- 
WO, PJ, X,,- N(0, “P,), with Xlo, X, independent, and let 

Xl 
POWER P, DEGRADED N=N,+N? 

Fig. 3. Degraded Gaussian relay channel. 

X,=jl&P,/P, x, + X,,. Then, referring to Theorem 
evaluate 

Z(X,,X,; Y) = $log 1+ 
( 

P, + P, + 2$5qq 

N,+N2 1  

Z(X,; Y,IX,)= ;1og 1+ $ 
( 1  

. 
1  

1, we 

(62) 

The assertion that this distributionp(x,,x,) actually maxi- 
mizes min{Z(X,; Y,IX2),Z(X,,X2; Y)} will follow from the 
proof of the converse. 

The random code book (Section II) associated with this 
distribution is then given by a random choice of 

z,(w) i.i.d.-NN,(O, aP,Z) wE[ 1,2”R] 

X,(s) i.i.d.-N,(O, P,Z) sE[ 1,2”RO] 

where R,=(1/2)log(l+(fi +*)‘/(aP,+N))--c, 
and N,,(O,Z) denotes the n-variate normal distribution 
with identity covariance matrix I. The code book is given 
by 

CUP, 
x,(w~s)=a,(w)+ p d-- x2(s) 

2  

x2(s), WE [ 1,2nR1, .sE [ 1,2nRo]. 

The codewords so generated (1 - e)-satisfy the power con- 
straints with high probability, and thus the overall average 
probability of error can be shown to be small. 

Now the converse. Any code for the channel specifies a 
joint probability distribution on W ,X,,X2, Y,, Y. Lemma 4 
gives 

n 
ii) nR < 2 Z(X,,; Yli, Yi/X2i) + n6,, 

i=l 
n 

= 2 z(x*i; y*iIx2i) + n& (63) 
i=l 

by degradedness.Thus, 
n 

nR ( 2  [ H( Y,iIXzi) - H(Y,iIX,i,X2i)] + 4  
i=l 

= i$, [ H( Y,,IX,,) - fln2reN,] + nS,. (64) 

Now, for any i, 

ff( Y,iIX2i) = EH( YliIX2i) 
<Efln2revar( Y,iJx2i) 

< iln2aeEvar( Y,iIx2i). (65) 

The last step is an application of Jensen’s inequality. Since 
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Yli = Xii + Zli, then 

Evar( Y,ilX2i)= Evar(XlilX2,)+E(Z~) 

=Ai+ N, (66) 

where Evar(X,i(X2i) p A,, 1 <i <n. Substituting in (64), 
we have 

<+ln l+ 
: 3,Ai 

Nl 
+ RI 

J 
again by Jensen’s inequality. However 

$ $, Ai= $ $, (E(X12i)-E(E2(XlilX2i))) 
(PI - i F  EE2(X,iIX2i) 

z-l 

by the power constraint on the code book. 
Define 

tip, = $ ,$ EE2(X,ilX2i), (YE[O,l]. 
r-l 

Thus (67) becomes 

R< iln 

Next consider Lemma 4i): 
n 

nR < c Z(X,i,X2i; Yi) + n8, 
i=l 

n 

(67) 

(68) 

( zzl [ H( yii) - H( ~lxli~xZi>] + nsn 

= s, [H(X,i+X2i+Z,i+Zi)-~ln2~eN]+n~n. 

For any i, 

H(x,,+x~,+z,~+ zi) < fln2re(E(X,i+X2i)2+N). 

(69) 
Hence 

R<i 5 11, 
n i=* 2 

l+ E(X,i + X2i12 
N 

+ 6 
n 

+a,. 

Now 

i i$, E(X,i + X2i12= $ ,$I EXl’i 
r-l 

+ + ,$ EXti + ; ,$ EXliXzi 
I-l I-1 

(P,+P2+ i $I E{X2iE{X,iIX2i}). 
r-l 

(70) 

w&?fJ&f!+ckti 
Fig. 4. Relay channel with feedback. 

Applying the Cauchy-Schwartz inequality to each term in 
the sum in (70), we obtain 

$ ,$ E(Xli+X2i)2<Pl+P2 r-1 

{ E2(XlilX2i)}Ex~ ’ (71) 

From (68) and the power constraints we know that 

Again applying the Cauchy-Schwartz inequality, we have 

2 i E{ E2{XliIX2i)} 
i=l n 

)“‘( %)‘, < 2\lm 

where the maximum occurs when E { E2(X,iIX2i)} = tip, 
and EX;i = P2 for all i. Therefore 

R< iln 1+ 4+p2+2~~Gz 
‘2 ( N 1 

+6 
II* (72) 

The converse follows directly from (68) and (72). 

V. THE CAPACITY OF THE GENERAL RELAY 
CHANNEL WITH FEEDBACK 

Suppose we have a relay channel (%, X %,,p(y, 
y,Ix,,x2), 9 x %,). No degradedness relation between y 
and y, will be assumed. Let there be feedback from (y,y,) 
to x, and to x2 as shown in Fig. 4. 

To be precise the encoding functions in (2) and (3) now 
become 

x*i(w,Y*>Y2?* ‘. YYi-*>Y**9Y*2~’ *. JYli-1) 
x2i(Y*YY2>* * ’ ~Yi-l~Yll~Yl2~’ * ’ ,Yli-l)e (73) 

Placing a distribution on w E [ 1, 2nR] thus induces the joint 
probability mass function. 

P~w~xl~x2~Y~Yl~~P~w~i~lP(xlilw~Yi~’-V:~’) 

*P(x2ilYi-‘~Y~-‘)P(Yi~Y*ilxli~x2i) (74) 

where Y~=(Y,,Y~,. *. ,yk)- Theorem 3 states that the 
capacity C,, of this channel is 

C,, = pfZl,a;2)min{Z(Xl,X2; Y),Z(X,; K Y,IX,)}. (75) 

Proof of Theorem 3: The relay channel with feedback 
is an ordinary degraded relay channel under the substitu- 
tion of (Y, Y,) for Y,. Thus the code and proof of the 
forward part of Theorem 1 apply, yielding the e-achieva- 
bility of C,,. For the converse, inspection of the proof of 
Theorem 4 reveals that all the steps apply to the feedback 
channel-the crucial step being (52). Thus the proof of 
Theorem 3 is complete. 
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Remark: The code used in Theorem 1 will suffice for 
the feedback channel. However, this code can be sim- 
plified by eliminating the random partition s , because the 
relay knows they sequence through the feedback link. An 
enumeration encoding for the relay can be used instead 
(see Fl). 

Corollary to Theorem 4: If the channel (%, X x2, 
p(y,y I(x,, x1), %  x %,) is degraded or reversely degraded, 
then feedback does not increase the capacity. 

z,-NfO.N,) 

!pd%sL~y ~ERP 

Fig. 5. General  Gaussian relay channel.  

Proof: If the channel is degraded, then 

1(X,; y,y,pg=qx,; Y,lX,>. 
Thus C,, = C. If the channel is reversely degraded, then 

1(X,; Y, Y,IX*)= 1(X,; YIX,). 

Thus C,, = C. 

VI. AN ACHIEVABLE RATE FOR THE GENERAL 
RELAY CHANNEL 

We are now in a position to discuss the nature of the 
capacity region for the general relay channel. First, if we 
have feedback, we know the capacity. Next, we note that 
the general relay channel will involve the idea of coopera- 
tion (for the degraded relay channel) and facilitation (for 
the reversely degraded relay channel). If y1 is better than 
y, then the relay cooperates to send x,; if y1 is worse than 
y, then the relay facilitates the transmission of x1 by 
sending the best x2. Yet another consideration will un- 
doubtedly be necessary-the idea of sending alternative 
information. This alternative information about x, is not 
zero, thus precluding simple facilitation, and is not per- 
fect, thus precluding pure cooperation. 

Finally, we note that the converse (Theorem 4) yields 

C general G p~f;2jminM&J2; YMX,; K WG)) 

for the general channel. Moreover, the code construction 
for Theorem 1 shows that 

C general> py;2jmin{I(X1J2; VJ(X12 YIlX2)). 

Also, from Theorem 2, we see 

C general > z:a$ mxF 1(X,; Yl-% ). 

If the relay channel is not degraded, cooperation may not 
be possible and facilitation can be improved upon. As an 
example, consider the general Gaussian relay channel 
shown in Fig. 5. 

If we assume that N, >N, then cooperation in the sense 
of Section II cannot be realized, since every (2”R,n,~) code 
for y1 will be a (2nR ,n,e) code for y. However, the relay 
sequence Y, is an “observation” of Xl that is independent 
of Y. Thus sending Y, toy will decrease the effective noise 
in they observation of xl. If the relay power P, is finite, 
and therefore we cannot send Y, to y precisely, then we 
send an estimate 9, of Y1. The choice of the estimate ?, 
will be made clear in Theorem 6 for the discrete memory- 
less relay channel. Then in Theorem 7, we shall combine 
Theorems 1 and 6. 

Theorem 6: Let (%, X %xz,p(y,yIJxI,xZ), 9  X ql) be 
any discrete memoryless relay channel. Then the rate RT 
is achievable, where 

R: =supI(X,; Y, E,lX,) (764 
subject to the constraint 

1(X,; Y) >I( Y,; qx2, y) P’6b) 
where the supremum is _taken over all joint distributions 
on %,x’?Xx,x‘?4  x~,x~, of the form 

P~~l~~,~Y~Y,~~,~=P~~llP~~*lP~Y~Yll~l~~,~P~y^,lYl~~,~ 

(77) 
and ?, has a finite range. 

Outline of Proof: A block Markov encoding is used. 
At the end of any block i, the x2 information is used to 
resolve the uncertainty of the receiver about wi-,. 

Random Coding. 
1) Choose 2nRl i.i.d. x1 each with probability p(x,)= 

III- ,p(xli). Label these x1(w), w ~[1,2”~1]. 
2) Choose 2nRo i.i.d. x2 each with probability p(x)= 

II?, ,p(xZi). Label these x2(s), s E [ 1, ?“o]. 
3) Choose, for each x2(s), 2”R i.i.d. P, each with 

probability P($~[x,(s)) = DYE ,p(y^lilxZi(s)), where, for X,E 
5% *,$I E‘%,, we define 

PbGl4= I? P(X,lP(Y~YllXl~X,)P(B,lY,~XZ). (78) XI.Y.YI 
Label theseil(zIs), SE[~,~“~O], z~[1,2”‘]. 

4) Randomly partition the set { 1,2, * . . ,2”‘} into 2nRo 
cells S,, s E [ 1, 2nRo]. 

Encoding: Let wi be the message to be sent in block i, 
and assume that ( fl(zi- IJsi- 1), Y1(i - l), x2(+ ,)) are 
jointly c-typical, and that Zip, ES,. Then the codeword 
pair (x,(wi),x2(si)) will be transmitted in block i. 

Decoding: At the end of block i we have the following. 
i) The receiver estimates si by $. by looking for the 

unique typical xZ(si) with y(i). If R,<I(X,; Y) and n is 
sufficiently large, then this decoding operation will incur 
small probability of error. 

ii) The receiver calculates a set L( y(i - 1)) of z such 
that z E L(y(i- 1)) if (~,(~J~~~,),x~(~~-~),y(i- 1)) are 
jointly e-typical. The receiver then declares that z+~ was 
sent in block i- 1  if 

But, from an argument similar to that in Lemma 3, we see 
that ii-, = zi- 1  with arbitrarily high probability provided 
n is sufficiently large and 

k<Z(f,; Y(X,)+ R,. (79) 
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Fig. 6. Relationship of auxiliary variables. 

iii) Using both 31(,?i-,].?i- i) and y(i- l), the receiver 
finally declares that Gi-, was sent in block i- 1 if 
(x,(~i-J,~1(.2i-1~~~-l),y(i- l)>X,(@?i-,)) are jointly dypi- 
cal. Thus +?-, = wi-, with high probability if 

R, <1(X,; Y, ?,I&) 630) 
and sufficiently large. 

iv) The relay, upon receiving y,(i), decides that z is 
“received” if ($,(z]sJ,yi(i),x,(s,)) are jointly c-typical. 
There will exist such a z with high probability if 

zt >I( f,; Y,IX,) (81) 
and n is sufficiently large. (See [lo], [ll], 1121 and espe- 
cially the proof of Lemma 2.1.3 in [ 121.) 

The decoding error calculations for steps i)-iii) are 
similar to those in Section II. The decoding error in step 
iv) follows from the theory of side information in [lo], 
[ll]. Let 

R, = Z(X,; Y) - c 

k=z(E,; Y,Ix*)+E. (84 
This together with the constraint in (79) collapses to yield 

Z(X,; Y) >I( &; Y,lX*, Y). 

Thus we see that the rate Rf given in (76) is achievable. 
Remarks: 

1) Small values of Z(X,; Y) will constrain fi to be a 
highly degraded version of Yi in order that (76b) be 
satisfied. 

2) The reversely degraded relay capacity C,, is always 
less than or equal to the achievable rate RT given in (76). 

We have seen in Section II that the rate of the channel 
from X, to Y can be increased through cooperation. 
Alternatively we have clajmed in Theorem 6 that by 
transmitting an estimate Y, of Y, the rate can also be 
increased. The obvious generalization of Theorems 1 and 
6 is to superimpose the cooperation and the transmission 
of P,. 

Consider the probabikty structure of Fig. 6, on ?rX % 
X%,X%,X% ~94, ~'3, where ‘V, %, and %i are arbi- 
trary sets. The auxiliary random variables have the follow- 
ing interpretation: 

i) Y will facilitate cooperation to resolve the residual 
uncertainty about U. 

ii) U will be understood by Y, but not by Y. (Infor- 
mally, UFlays the role of Xl in Theorem 1). 

iii) Y, is the estimate of Y, used in Theorem 6. 
iv) X, is used to resolve Y uncertainty about Y,. 

Finally it can be shown that the following rate is 
achievable for any relay channel. 

Theorem 7: For any relay channel (%, X ?&,p(y, 
y1]x1,x2), % x %i), the rate R* is achievable, where 

R* = sup {min{ Z(X,; Y, ?,]Xz, V) 
P 

+ I( u; Y,lX,, V),~(X,J*; Y) 

- 0,; ylIxz,xl, u, y)}} (834 

where the supremum is taken over all joint probability 
mass functions of the form 

subject to the constraint 

I( f,; Y,I YJ,, u) <I(&; Yl VI. @3c) 
Remarks: The forward parts of Theorems 1, 2, and 6 

are special cases of R* in Theorem 7, as the following 
substitutions show: 

1) (Degraded ch_annel, Theorem 1) R* > C. Choose 
V =X2, U =X1, and Y, r+. 

2) (Reversely degradedA channel, Theorem 2) R* > C. 
Choose V E +, U E +, and Y, =+. 

3) (Theorem 6) R* Z R:. Choose V E +, U E$J. 

Proof of Theorem 7 (Outline): As in Theorems 1 and 
6, a block Markov encoding scheme is used. At the end of 
block i, v is used to resolve the uncertainty of y about the 
past u, and x2 is used to resolve the y uncertainty about 
?,, thus enabling y to decode wi _ i. 

Random Coding: 
1) Generate 2’@fy; ‘)-‘) i.i.d. V, each with probability 

p(u)=II~, ,p(o,). Label these v(m), m ~[1,2”(‘(~ ‘)-‘)I. 
2) For every u(m), generate 2”(‘(x2; ‘Iv)-‘) i.i.d. x2, 

each with probability 

~W+N = z~IP(x2iloi(m)). 
Label these x#lm), s E [ 1, 2n(1(xz; ylV)--E)]. 

3) For every u(m), generate 2nRl i.i.d. u each with 
probability 

P(Ul4~i))= It P(%ldm))* 
i=l 

Label these u(w’Im), w’E[~,~“~I]. 
4) For every u(w’(m) generate 2nRz i.i.d. xi, each with 

probability 

~N4w’lm))= ii P(x,ilui(w’lm))* 
i=l 

Label these x,(w”lm,w’), w”E[~,~~~z]. 
-5) For every (x,(slm), u(w’lm)), generate 

2n(‘(Yl; y1Ixz, v+‘) i.i.d. 3, each with probability 

P(Pllx,tslm)yu(w’lm))= i~,P(3,ilX*i(~lm),Ui(W’lm)) 
where, for every x1 E ‘?&, u E %, we define 

” x~:yy,p(u,u,xl,x,,y,yl,y^,) 

p(.F,lx*,u)= ’ ’ ’ 
c P(u~uJlJ,~Y~Yl~y^l) 

634) 

~~Xl,Y>Yl>Yl 
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and p(o,u,x1,x2,y,yI,y^,), is defined in (83b). Label these 
P,(zIw’,s,m), ~E[1,2”(‘(~~~~~~~~~~)+~)]. 

Random Partitions: 
1) Randomly partition the set { 1,2; * . , 2nR1} into 

yV(v; V-r) cells s,,. 

SENDER 

-2) Randomly partition the set { 1, 2, * * . , 
2”C1Cyli ylIx2~u)+~)} into 2”C1Cx2; ylv)Pr) cells S,,. 

e  

RECEIVER 

Encoding: Let wi = (wi, w:) be the message to be sent in Fig. 7. Single sender single receiver network. 

block i, and assume that 

(31(zi-~IW~-~,Si-l,mi-~),Y,(i-1), v) The relay upon receiving yi(i) declares that 6 was 

‘UCwi’- IIm i-i)~x,(si-iIm i-l)) received if (u(S’Jmi),yl(i),xz(siJmi)) are jointly e-typical. 

are jointly e-typical and that w;-i E Slmi and zip1 ES,,. 
w,!= G’ with high probability if 

Then the codeword pair (x,(w,Njm,, w,!),xZ(siImi)) will be R, <z(U; Y,IX,, V) (90) 

transmitted in block i. and n is sufficiently large. Thus, the relay knows that 
Decoding: At the end of block i we have the following. w,! E Slnz+,. 

i) The receiver estimates m, and si, by first looking vi) The relay also estimates zi such that 
for the unique e-typical u(m,) with y(i), then for the (~,(zi~w~~,si,mi),yl(i),xz(si~mi)) are jointly e-typical. Such a 
unique e-typical xZ(silmi) with (y(i), v(m,)). For zi will exist with high probability for large n, therefore the 
sufficiently large n this decoding step can be done with relay knows that zi E SZq+,. 
arbitrarily small probability of error. Let the estimates of From (86), (89), and (90), we obtain 
si and m, be ii, fii respectively. 

ii) The receiver calculates a set L,( y(i - 1)) of w’ 
such that w’~L,(y(i-- 1)) if (u(w’lm,-J,y(i- 1)) are 
jointly e-typical. The receiver then declares that G$, was 
sent in block i - 1  if 

R, <I( V; Y) + I( U; YIX,, V) - E 

R, <I( u; Y,IX,, V) 

R,=Z(X,; Y,f,(X,,U)-c 
$ii-l Es,,, II Ll(Y(i- l)). (85) 

From Lemma 3, we see that G$- i = wZ!- i with arbitrarily 
high probability provided n is sufficiently large and 

R,<Z(V;Y)+Z(U;Y~X,,V)-4. (86) 
iii) The receiver calculates a set L2( y(i - 1)) of z such 

that z E L,(y(i - 1)) if (pi(z]G,(- ,, ii- i, riz,- i), 
xZ(& ,]$ti- i),y(i - 1)) are jointly r-typical. The receiver 
declares that ii-, was sent in block i - 1  if 

ii-,ES,,nL,(y(i- 1)). (87) 
From [12] we see that ii-t = zi-, with arbitrarily small 
probability of error if n  is sufficiently large and 

z(~,;Y,Ix,,u)+~<z(~,;YIx,,u)+z(x,;Yp)-E 
i.e., 

Z(X*; YlV)>Z(E,; Y,lX,,U)-I(?,; YJx,,u)+2c 

(88) 
But since 

I(?,; Y,,YlX*,U)=~(~,; y,p&,u) 
then condition (88) becomes 

Z(X*; YIV)>Z(P,; Y,]Y,x,,u)+2e 

which as e-0 gives condition (83~) in Theorem 7. 
iv) Using both 31(ii-ll~~i’-,,~i-l,~ii-1) and y(i- l), 

the receiver finally declares that $k, was sent in block 
i - 1  if (x,(+$?iJfii-,, fi’li- l>,$i(ii-l]~Z~-l, &-,, +-,), 
y(i - 1)) are jointly e-typical. $F- i = w”-, with high prob- 
ability if 

R, = Z(X,; Y, ?,lXz, U) - E (89) 

Therefore, the rate of transmission from Xi to Y is 
bounded by 

R<Z(U;Y,IX,,V)+Z(X,;Y,~,IX,,V)-c 

R <I( v; Y) + I( U; Y(X,, V) + Z(X,; Y, plIXz, U) -2~. 

(91) 

Substituting from (88) we obtain 

R<Z(X,,V; Y)-Z(?,; Y,IY,X,,U)+Z(u; YlX,,V) 

+z(x,; Y, f,lXz, U)-4E 

= Z(X,,X,; Y) - I( 9,; Y,IX,,X,, u, Y)-4E (92) 

which establishes Theorem 7. 

VII. CONCLUDINGREMARKS 

Theorems 1, 2, and 3 establish capacity for degraded, 
reversely degraded, and feedback relay channels. The full 
understanding of the relay channel may yield the capacity 
of the single sender single receiver network in Fig. 7. This 
will be the information theoretic generalization of the 
well-known maximum flow-minimum cut theorem [9]. 
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Computational Moments for Sequentia l 
Decoding o f Convolutional Codes 

TAKESHI HASHIMOTO AND SUGURU ARIMOTO, MEMBER, IEEE 

Absrracr-Tbe long standing conjecture is established that, for a dis- 
crete memoryless channel, tbere exists a linear convolutional code witb 
infinite constraint length such that tbe ptb (p > 1) moment of the number 
of F-hypotheses in tbe Fano sequential decoding algorithm is bounded, 
provided that tbe transmission rate R is less tban E&,r)/p, where r(x) is 
a distribution over the channel input alphabet. A new concept of indepen- 
dence for a finite set of message sequences plays an essential role in 
averaging a product of likeliiood ratios over an ensemble of code 
sequences in a code tree. A simpler version of the method can be applied 
to the proof of the conjecture for general tree codes. 

I. INTRODUCTION 

0 NE OF THE most important problems associated 
with sequential decoding for a class of discrete mem- 

oryless channels is to estimate a priori upper bounds on 
the moments of the number of computation steps or 
F-hypotheses in decoding. It has long been conjectured 
that for any p >O, the pth moment of the number of 
F-hypotheses is bounded for optimal tree codes or linear 
convolutional codes with rate R, provided that 

R < i %b , r), 
where r(x) is a probability distribution over the channel 
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inputs, 

E&r)= -In x 2 P(ylx)l’(‘+P)r(x) I+‘, 
[ Y x 1 

and P(y(x) is the transmission probability function of the 
discrete memoryless channel. 

This conjecture was first proved by Falconer [l] for 
p~[0, 11, by Savage [2] for integer values of p, and by 
Jelinek [3] for all p  > 1. However, the results by Savage 
and Jelinek do not necessarily imply the validity of the 
conjecture for the ensemble of linear convolutional codes, 
although Falconer’s result is valid for both tree codes and 
linear convolutional codes. In addition, Savage’s method 
[2], which is also used by Jelinek [3], is quite involved. 

In this paper we prove the correctness of the conjecture 
for any p > 1 in the case of infinite constraint-length linear 
convolutional codes. To prove this on the basis of random 
coding techniques we introduce a new concept of inde- 
pendence, called N-independence, for a finite set of 
message sequences with equal length. This is a generaliza- 
tion of the pairwise independence of Gallager [4] and 
Massey [6], and plays an essential role in averaging a 
function of likelihood ratios over an ensemble of code 
sequences in a code tree. A simpler version of the method 
gives rise to a self-contained proof of the conjecture for 
the case of general tree codes. 

Throughout the paper we will assume that the reader is 
familiar with the Fano algorithm for sequential decoding 

0018-9448/79/0900-0584$00.75 01979 IEEE 


