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1 Outline

This report is based primarily on [KGG], which deals with relay networks —
multi-terminal networks where a single pair of terminals wish to communicate
and all other terminals function as relays, assisting communication between the
pair. In the special case where there is only a single relay, forming a three-
terminal network, we have a relay channel. Such channels were first studied
by van der Meulen [vdM71] and finding their capacity has remained an open
problem since. We therefore have little hope of finding the capacity of relay
networks, but we can bound it through the design of particular strategies and
assessing the rates that they achieve.

We commence by introducing a model for relay networks in Section 2. Then,
in Section 3, we give an upper bound on the capacity of relay networks. The two
strategies that we consider, decode-and-forward and compress-and-forward, are
discussed in Sections 4 and 5, respectively, whilst a mixture of the two strategies
is discussed in Section 6. We specialize to the wireless setting in Section 7.

2 Model

We consider networks consisting of T terminals: a source terminal (terminal
1), T − 2 relays (terminals t with t ∈ T := {2, 3, . . . , T − 1}), and a desti-
nation terminal (terminal T ). The source has a message W that it wishes to
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W ŴXn
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Xn
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2 Xn
T−1Y n

T−1

Y n
TpY2···YT |X1···XT−1

. . .

Figure 1: The relay network model.
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communicate to the destination. At each time i ∈ {1, 2, . . . , n}, each terminal
t ∈ {1, 2, . . . , T −1} sends Xti ∈ Xt, and each terminal t ∈ {2, 3, . . . , T} receives
Yti ∈ Yt. The {X1i} are a function of W , and the Xti are functions of terminal
t’s past outputs Y i−1

t = (Yt1, Yt2, . . . , Yt(i−1)). The network is memoryless and
time-invariant, so

pY2i···YT i|Xi
1···Xi

T−1Y i−1
2 ···Y i−1

T
(y2i, . . . , yTi|xi

1, . . . , x
i
T−1, y

i−1
2 , . . . , yi−1

T )

= pY2··· ,YT |X1···XT−1(y2i, . . . , yTi|x1i, . . . , x(T−1)i)

The destination makes its message estimate Ŵ from Y n
T . See Figure 1 for an

illustration of the model.

3 An upper bound on capacity

A capacity upper bound is obtained by straightforward application of the cut-set
bound for multi-terminal networks [CT91, Section 14.10]. Let XS := {Xt}t∈S .
Then we have

Proposition 1 The T -terminal relay network capacity satisfies

C ≤ max
pX1X2···XT−1

min
S⊂T

I(X1XS ;YScYT |XSc)

where Sc is the complement of S in T .

For the relay channel, for example, we have T = 3, so

C ≤ max
pX1X2

min(I(X1;Y2Y3|X2), I(X1X2;Y3)). (1)

4 Decode-and-forward

In decode-and-forward schemes, the relays are able to fully decode the message
and use their knowledge of the message to assist the source’s transmission. Thus,
in a wireless setting, decode-and-forward achieves the gains related to multi-
antenna transmission. The particular decode-and-forward scheme we consider
is that from [XK].

4.1 Single relay

For simplicity, we first consider the case of a single relay. We divide the message
w into B blocks w1, w2, . . . , wB of nR bits each, where

R < max
pX1X2

min(I(X1;Y2|X2), I(X1X2;Y3)).

Note that the maximum allowable rate differs from the upper bound on capacity
(1). The transmission is performed in B+1 blocks by using random codewords
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Block 1 Block 2 Block 3 Block 4
Xn

1 = xn
11(1, w1) xn

12(w1, w2) xn
13(w2, w3) xn

14(w3, 1)

Xn
2 = xn

21(1) xn
22(w1) xn

23(w2) xn
24(w3)

Figure 2: A decode-and-forward strategy for the single-relay network.

of length n. Hence, the overall rate is B · nR/{(B + 1)n} = R ·B/(B + 1) bits
per use, which can be made arbitrarily close to R by taking B arbitrarily large.
Code construction: Take a joint distribution pX1X2 . For block b, b = 1, 2, . . . , B+
1, generate 2nR codewords xn

2b(v), v = 1, 2, . . . , 2nR, by choosing the symbols
{x2bi(v)} independently using pX2 . Then, for every x

n
2b(v), generate 2

nR code-
words xn

1b(v, w), w = 1, 2, . . . , 2nR, by choosing the {x1bi(v, w)} independently
using {pX1|X2(·|x2bi(v))}.
Source terminal: In block b, the source transmits xn

1b(wb−1, wb), where w0 =
wB+1 = 1.
Relay terminal: For the first block, the relay transmits xn

21(1). After transmis-
sion of block b, the relay tries to find a w̃b such that

(xn
1b(ŵ

(2)
b−1, w̃b), xn

2b(ŵ
(2)
b−1), y

n
2b) ∈ A(n)

ε (pX1X2Y2), (2)

where ŵ(2)
b−1 is the relay terminal’s estimate of wb−1. If one or more such w̃b are

found, then the relay chooses one of them and sets ŵ(2)
b equal to it; otherwise,

it sets ŵ(2)
b = 1. The relay transmits xn

2(b+1)(ŵ
(2)
b ) in block b+ 1.

Destination terminal: After transmission of block b, the destination tries to find
a w̃b−1 such that

(xn
1(b−1)(ŵ

(3)
b−2, w̃b−1), xn

2(b−1)(ŵ
(3)
b−2), y

n
3(b−1)) ∈ A(n)

ε (pX1X2Y3) (3)

and
(xn

2b(w̃b−1), yn
3b) ∈ A(n)

ε (pX2Y3), (4)

where ŵ(3)
b−2 is the destination terminal’s estimate of wb−2. If one or more such

w̃b−1 are found, then the destination chooses one of them and sets ŵ(3)
b−1 equal

to it; otherwise, it sets ŵ(3)
b−1 = 1.

The scheme is depicted in Figure 2 for B = 3. To see that it achieves reliable
communication, note that the probability that there exists w̃b �= wb satisfying
(2) can be made arbitrarily small by taking n arbitrarily large provided that its
past message estimate ŵ(2)

b−1 was correct and

R < I(X1;Y2|X2), (5)

and that the probability that there exists w̃b−1 �= wb−1 satisfying (3) and (4)
can be made arbitrarily small by taking n arbitrarily large provided that its
past message estimate ŵ(3)

b−2 was correct and

R < I(X1;Y3|X2) + I(X2;Y3) = I(X1X2;Y3). (6)
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Block 1 Block 2 Block 3
Xn

1 = xn
11(1, 1, w1) xn

12(1, w1, w2) xn
13(w1, w2, w3)

Xn
2 = xn

21(1, 1) xn
22(1, w1) xn

23(w1, w2)

Xn
3 = xn

31(1) xn
32(1) xn

33(w1)

Block 4 Block 5 Block 6
Xn

1 = xn
14(w2, w3, w4) xn

15(w3, w4, 1) xn
16(w4, 1, 1)

Xn
2 = xn

24(w2, w3) xn
25(w3, w4) xn

26(w4, 1)

Xn
3 = xn

34(w2) xn
35(w3) xn

36(w4)

Figure 3: A decode-and-forward strategy for the two-relay network.

By assumption, there exists a distribution pX1X2 such that conditions (5) and
(6) are both satisfied.

4.2 Multiple relays

The generalization to multiple relays follows quite straightforwardly from the
single relay case. For two relays, for example, we divide the message w into B
blocks w1, w2, . . . , wB of nR bits each, where

R < max
pX1X2X3

min(I(X1;Y2|X2X3), I(X1X2;Y3|X3), I(X1X2X3;Y4)).

The transmission is performed in B + 2 blocks by using random codewords of
length n. Hence, the overall rate is B · nR/{(B + 2)n} = R · B/(B + 2) bits
per use, which can be made arbitrarily close to R by taking B arbitrarily large.
The scheme for B = 4 is depicted in Figure 3.

In this case, terminal 2 can reliably decode wb after the transmission of block
b if n is large, its past message estimates, ŵ(2)

b−2 and ŵ(2)
b−1, were correct, and

R < I(X1;Y2|X2X3).

Terminal 3 can reliably decode wb−1 after the transmission of block b if n is
large, its past message estimates, ŵ(3)

b−3 and ŵ(3)
b−2 were correct, and

R < I(X1X2;Y3|X3).

Terminal 4 can reliably decode wb−2 after the transmission of block b if n is
large, its past message estimates, ŵ(4)

b−4 and ŵ(4)
b−3 were correct, and

R < I(X1X2X3;Y4).

By assumption, there exists a distribution pX1X2X3 such that the above condi-
tions are all satisfied, and reliable communication is achieved.
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By generalizing to T -terminal relay networks, the following theorem can be
proved. Let π be a permutation on T , and define π(1) := 1, π(T ) := T , and
π(i : j) := {π(i), π(i+ 1), . . . , π(j)}.

Theorem 1 Decode-and-forward achieves any rate up to

RDF = max
pX1X2···XT−1

max
π

min
1≤t≤T−1

I(Xπ(1:t);Yπ(t+1)|Xπ(t+1:T−1)). (7)

5 Compress-and-forward

In compress-and-forward strategies, the relays do not decode the message and,
rather, forward compressed versions of their observations. Thus, in a wireless
setting, compress-and-forward achieves the gains related to multi-antenna re-
ception.

5.1 Single relay

Again, we first consider the case of a single relay. The scheme we describe is
essentially due to Cover and El Gamal [CEG79, Section VI]. We divide the
message w into B blocks w1, w2, . . . , wB of nR bits each, where

R < max
pX1pX2pŶ2|X2Y2

I(X1; Ŷ2Y3|X2)

subject to the constraint

I(Ŷ2;Y2|X2Y3) ≤ I(X2;Y3).

The transmission is performed in B + 1 blocks by using random codewords of
length n. Hence, the overall rate is B ·nR/{(B+1)n} = R ·B/(B+1) bits per
use, which can be made arbitrarily close to R by taking B arbitrarily large.
Code construction: For block b, b = 1, 2, . . . , B + 1, generate 2nR codewords
xn

1b(w), w = 1, 2, . . . , 2nR by choosing the {x1bi(w)} independently using pX1 .
Similarly, generate 2nR2 codewords xn

2b(v), w = 1, 2, . . . , 2nR2 by choosing the
{x2bi(v)} independently using pX2 . Define pŶ2|X2

using pX1 , pŶ2|X2Y2
, and

pY1Y2|X1X2 ; then, for each x
n
2b(v), generate a “quantization” code-book by gen-

erating 2n(R2+R′
2) codewords ŷn

2b(v, t, u), t = 1, 2, . . . , 2nR′
2 , u = 1, 2, . . . , 2nR2 ,

by choosing the {ŷ2bi(v, t, u)} independently using {pŶ2|X2
(·|x2bi(v))}.

Source terminal: In block b, the source transmits x1b(wb), where wB+1 = 1.
Relay terminal: For the first block, the relay transmits xn

21(1). After transmis-
sion of block b, the relay tries to find a (t̃b, ũb), such that

(ŷn
2b(vb, t̃b, ũb), xn

2b(vb), yn
2b) ∈ A(n)

ε (pŶ2X2Y2
).

If one or more such (t̃b, ũb) are found, then the relay chooses one of them and
sets vb+1 = ũb; otherwise, it sets vb+1 = 1. The relay transmits xn

2(b+1)(vb+1) in
block b+ 1.
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Block 1 Block 2 Block 3 Block 4
Xn

1 = xn
11(w1) xn

12(w2) xn
13(w3) xn

14(w4)

Xn
2 = xn

21(1) xn
22(v2) xn

23(v3) xn
24(v4)

Ŷ n
2 = ŷn

21(1, t1, v2) ŷn
22(1, t2, v3) ŷn

23(v2, t3, v4)

Figure 4: A compress-and-forward strategy for the single-relay network.

Destination terminal: After transmission of block b, the destination tries to find
a ṽb such that

(xn
2b(ṽb), yn

3b) ∈ A(n)
ε (pX2Y3).

If one or more such ṽb are found, then the destination chooses one of them and
sets v̂(3)

b equal to it; otherwise, it sets v̂(3)
b = 1. Next, the destination tries to

find a t̃b−1 such that

(ŷn
2(b−1)(v̂

(3)
b−1, t̃b−1, v̂

(3)
b ), xn

2(b−1)(v̂
(3)
b−1), y

n
3(b−1)) ∈ A(n)

ε (pŶ2X2Y3
),

where v̂(3)
b−1 is the destination terminal’s estimate of vb−1. If one or more such

t̃b−1 are found, then the destination chooses one of them and sets t̂(3)b−1 equal to

it; otherwise, it sets t̂(3)b−1 = 1. Finally, the destination tries to find a w̃b−1 such
that

(x1(b−1)n(w̃b−1), ŷn
2b(v̂

(3)
b−1, t̂

(3)
b−1, v̂

(3)
b ), xn

2(b−1)(v̂
(3)
b−1), y

n
3(b−1)) ∈ A(n)

ε (pX1Ŷ2X2Y3
).

If one or more such w̃b−1 are found, then the destination chooses one of them
and sets ŵ(3)

b−1 equal to it; otherwise, it sets ŵ(3)
b−1 = 1.

The scheme is depicted in Figure 4 for B = 3. The relay can reliably encode
to (tb, ub) after the transmission of block b provided that n is large and

R2 +R′
2 > I(Ŷ2;Y2|X2). (8)

The destination can reliable decode (vb, tb−1, wb−1) after the transmission of
block b provided that n is large, its past estimate v̂(3)

b−1 was correct,

R2 < I(X2;Y3), (9)

R′
2 < I(Ŷ2;Y3|X2), (10)

and
R < I(X1; Ŷ2Y3|X2). (11)

By assumption, there exist distributions pX1 , pX2 , and pŶ2|X2Y2
such that con-

dition (11) is satisfied. We can satisfy (10) by setting R′
2 := I(Ŷ2;Y3|X2)− ε for

some ε > 0. Then, condition (8) becomes

R2 > I(Ŷ2;Y2|X2)− I(Ŷ2;Y3|X2) + ε = I(Ŷ2;Y2|X2Y3) + ε, (12)
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and we see that conditions (9) and (12) can be satisfied since we have imposed
the constraint

I(Ŷ2;Y2|X2Y3) ≤ I(X2;Y3).

5.2 Multiple relays

The compress-and-forward strategy just described does not generalize to multi-
ple relays as straightforwardly as the decode-and-forward strategy of Section 4.
The main complication that arises is that when the relays forward their ob-
servations to the destination, they do so simultaneously, interfering with each
other’s observations as well as causing interference at the destination. Kramer
et al. [KGG] deal with this complication by allowing for terminals to partially
decode each other’s codewords, and they prove the following theorem.

Theorem 2 Compress-and-forward achieves any rate up to

RCF = max
pX1{pUtXtpŶt|UT XtYt

}t∈T
I(X1; ŶT YT |UTXT ) (13)

where

I(ŶS ;YS |UTXT ŶScYT ) +
∑
t∈S

I(Ŷt;XT \{t}|UTXt)

≤ I(XS ;YT |USXSc) +
M∑

m=1

I(UKm
;Yr(m)|UKc

m
Xr(m)) (14)

for all S ⊂ T , all partitions {Km}M
m=1 of S, and all r(m) ∈ {2, 3, . . . , T} such

that r(m) /∈ Km. For r(m) = T , we set XT := 0.

6 Mixed strategies

The decode-and-forward and compress-and-forward strategies can be combined
so that the relays partially decode the source’s message and use their partial
decoding for co-operative transmission while compressing and forwarding the
remainder. Such a scheme is described for the single-relay network in [CEG79,
Section VI].

A more restrictive, but more analytically tractable, approach is taken by
Kramer et al. [KGG] where each relay chooses either decode-and-forward or
compress-and-forward. Thus, the relay indices are divided into two sets T1 =
{2, 3, . . . , T1 +1} and T2 = {T1 +2, . . . , T − 1}, and the relays in T1 use decode-
and-forward while the relays in T2 use compress-and-forward. They prove the
following theorem.

Theorem 3 Choosing either decode-and-forward or compress-and-forward achieves
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any rate up to

RDCF

= max
pX1XT1

{pUtXt pŶt|UT2
XtYt

}t∈T2

min
(

min
1≤t≤T1

I(Xπ(1:t);Yπ(t+1)|Xπ(t+1:T1+1)),

I(X1XT1 ; ŶT2YT |UT2XT2)
)

(15)

where π is a permutation on T1, we set π(1) := 1, and

I(ŶS , YS |UT2XT2 ŶScYT ) +
∑
t∈S

I(Ŷt;XT2\{t}|UT2Xt)

≤ I(XS ;YT |USXSc) +
M∑

m=1

I(UKm
;Yr(m)|UKc

m
Xr(m))

for all S ⊂ T2, all partitions {Km}M
m=1 of S, and all r(m) ∈ T2 ∪ {T} such that

r(m) /∈ Km. Here, Sc denotes the complement of S in T2. For r(m) = T , we
set XT := 0.

7 The wireless setting

In the wireless setting, we have

Y t =
∑
s �=t

Ast√
dα

st

Xs + Zt,

where dst is the distance between terminals s and t, α is an attenuation expo-
nent, Xs is a ns × 1 complex vector, Ast is a nt × ns matrix whose A(i,j)

st is a
complex fading random variable, and Zt is a nt×1 noise vector whose entries are
i.i.d. circularly-symmetric complex Gaussian random variables of unit variance.
There are per-symbol power constraints E[X†

sXs] ≤ Ps for all s, where X†
s is

the complex-conjugate transpose of Xs.
Several different kinds of fading are considered in [KGG]. We shall only

review the case of no fading, where A(i,j)
st is constant for all s, t, i, and j. The

results with fading are of a somewhat similar nature.
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7.1 Single relay

In this case, it is shown that the cut-set bound (1) is maximized by making
(X1,X2) zero-mean jointly Gaussian, so the bound becomes

C ≤ max
0≤ρ≤1

min
(
log

(
1 + P1

(
1
dα
12

+
1
dα
13

)
(1− |ρ|2)

)
,

log

(
1 +

P1

dα
13

+
P2

dα
23

+
2ρ

√
P1P2

d
α/2
13 d

α/2
23

))
,

where ρ is the correlation coefficient of X1 and X2.
The best decode-and-forward rate (7) is

RDF = max
0≤ρ≤1

min
(
log

(
1 +

P1

dα
12

(1− |ρ|2)
)
,

log

(
1 +

P1

dα
13

+
P2

dα
23

+
2ρ

√
P1P2

d
α/2
13 d

α/2
23

))
.

For the compress-and-forward strategy, we choose X1 and X2 to be Gaussian
and Ŷ2 = Y2 + Ẑ2, where Ẑ2 is a Gaussian random variable with zero-mean and
variance N̂2. The rate (13) is then

RCF = log

(
1 +

P1

dα
12(1 + N̂2)

+
P1

dα
13

)
,

where the choice

N̂2 =
P1(1/dα

12) + 1/dα
13) + 1

P2/dα
23

satisfies (14) with equality.
Suppose d13 = 1. As the relay moves towards the source (d12 → 0), the

quantities C and RDF converge towards

log
(
1 + P1 + P2 + 2

√
P1P2

)
,

whilst RCF converges towards

RCF = log(1 + P1 + P2),

so RDF tends towards capacity. Similarly, as the relay moves towards the des-
tination (d23 → 0), the quantities C and RCF converge towards

log(1 + 2P1),

whilst RDF converges towards

log(1 + P1),

so RCF tends towards capacity. These observations are consistent with the inter-
pretation that decode-and-forward achieves the gains related to multi-antenna
transmission while compress-and-forward achieves the gains related to multi-
antenna reception.
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7.2 Multiple relays

Suppose we have two relays and that d14, the distance between the source and
destination terminals, is 1. If the relays are within a distance d of the source,
then the decode-and-forward rate (7) becomes the capacity as d→ 0, which is

RDF = log
(
1 +

[√
P1 +

√
P2 +

√
P3

]2
)
.

Similarly, if the relays are within a distance d of the destination, then the
compress-and-forward rate (13) becomes the capacity as d→ 0, which is

RCF = log(1 + 3P1).

Finally, if one of the relays moves towards the source and the other towards the
destination (for example, d12 → 0 and d34 → 0), then the mixed-strategy rate
(15) tends towards the capacity, which is

RDCF = log
(
1 + 2

[
P1 + P2 + 2

√
P1P2

])
.

These results relating to the case of two relays generalize to T terminals; hence,
if we have T terminals forming two closely spaced clusters, then choosing either
decode-and-forward or compress-and-forward at each relay approaches capacity.
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