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1 Introduction

Stochastic networks are used to model communication networks as well as
other networks such as those in complex manufacturing systems. These net-
works are characterized by having entities such as packets, jobs, customers
(in this report we will call these jobs), that receive processing at various
servers (resources), wait in buffers (queues), and which, in general, may have
random arrival times, random processing times, and routing protocols. These
networks often cannot be analyzed exactly. Among approximation methods
used for the analysis and control of such systems, this week and next week
we will look at two levels of approximation: first order (functional law of
large numbers) approximations called fluid models (which will be one of the
topics of next week), and second order (functional central limit theorem)
approximations which are diffusion models (which will be the focus of this
summary.)

The term “heavy traffic” is used to mean that the nominal load on the
system is approximately equal to the system’s capacity. In this regime, it
is sometimes possible to approximate the stochastic processes of interest by
processes which are easier to analyze, such as Brownian motion. Heavy
traffic analysis can provide conditions under which such approximations are
mathematically justified. This area of research has a strong tradition going
back to the 1960’s and has reached a considerable level of mathematical
maturity.

An important class of stochastic processing networks is open multiclass
queueing networks operating under a head-of-the-line (HL) service policy. In
a multiclass queueing network, there is a many-to-one function describing the
association between buffers and resources (also called servers), and a HL pol-
icy for such a network assumes that jobs in a queue are ordered and selected



for processing by the associated resource on a first-in-first-out (FIFO) basis.
Since the late 1980’s an extensive mathematical theory has been developed
[e.g., Riemann, Harrison, Williams, Bramson]| for using fluid and diffusion ap-
proximations to analyze the stability and heavy traffic performance of open
multiclass HL. queueing networks. The goal of this summary will be to pro-
vide a simple introduction and to try to illustrate some important ideas and
results such as convergence to a reflected Brownian motion under heavy
traffic scaling, resource pooling, and state-space collapse. We will
introduce those notions inside scheduling paradigms such as minimum-cost
scheduling in a multiclass queuing system, staying mainly within the frame-
works of [Harrison and Lopez 1999], [Harrison and Van Mieghem 1997] and
[Harrison 1988].

2 Preliminaries

For the definition of Brownian motion, we quote [Harrison 1985]: A stochastic
process X(t) is said to have independent increments if the random variables
X(t1) — X(to), ..., X(t,) — X(tn—1) are independent for any n > 1 and 0 <
1 <ty <...<t, <oo. Itissaid to have stationary independent increments
if moreover the distribution of X (¢) — X (s) depends only on ¢ — s. We will
use the standard notation Z ~ N(p,0?) to mean that the random variable Z
is Normal (Gaussian) with mean p and variance 0. A standard Brownian
motion, or Wiener process, is defined as a stochastic process B(t) having
continuous sample paths, stationary independent increments, and B(t) ~
N(0,t). A Brownian motion Y(t) with drift g and variance o has the form
Y(t) = Y(0) + ut + 0B(t). An m-dimensional Brownian motion is defined
with a mean vector and a covariance matrix, in the obvious way.

3 The general procedure of heavy traffic anal-
ysis

Early work in the development of heavy traffic theory for complex queuing
systems include [Reimann 1984], [Harrison 1988] and [Harrison and Williams
1992].

The general procedure laid out in [Harrison 1888] has been applied suc-
cessfully in many contexts. First, one derives a limiting Brownian control



problem that plausibly approximates the original dynamic scheduling prob-
lem (after some scaling.) The second step is to solve the Brownian control
problem. Because fine structure is supressed in the Brownian problem, it is
usually a much simpler problem than the original. Third, using some creativ-
ity, one interprets the solution in the context of the original problem. Finally,
ideally one would like to prove that the proposed solution is asymptotically
optimal in the original problem.

With this general overview of heavy traffic analysis, we are ready to look
at the specific problem formulated in [Harrison and Lopez 1999]

4 A parallel-server system with resource pool-
ing [Harrison and Lopez 1999]

Consider the multi-class multi-server queuing system described in Figure 1.
The job classes (i.e., the input queues) are indexed by i = 1,...,m, and
the servers are k = 1,...,l. Several different classes may be processed at the
same server, several different servers may be capable of processing jobs of the
same class. This is summarized by saying that there are n < ml activities
available to the system manager. Let \; be the average arrival rate of class
i jobs, and p; the reciprocal of the mean service time for activity j. At each
queue, there is a "holding cost” that is incurred at a rate of ¢; per unit time
for each job in the queue. The scheduling problem is that of dynamically
allocating jobs to servers so that long-run average holding costs per time
unit are minimized.

Note that, since there are multiple queues that can share servers, it is not
obvious what is meant by "heavy traffic” in this system. Let p be the long-
run utilization of the busiest server. Harrison and Lopez start by obtaining
the solution of the static allocation problem by solving the following linear
program:

minimize p

subject to Rx = A
Ax < pe
z,p =2 0

In the above, A;; = 1 if server i serves activity j, and A;; = 0 otherwise.
R;; = p; if server i serves activity j, and R;; = 0 otherwise. Note that
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Figure 1: Example for the multiclass parallel server system studied in [Har-
rison and Lopez 1999 ]

e is an [-vector of ones. Assuming that the above problem has a unique
optimal solution (z*, p*), the n-vector z* will be called the nominal processing
plan, and that z; gives the long-run proportion of time that activity j is
performed by its server. So, the first constraint simply enforces material
conservation, the second requires that each server’s utilization not exceed the
busiest server’s. Activities for which z} > 0 are called basic activities. Let b
be the number of basic activities, and assume that the activities 7 =1,...,b
are the basic ones. Note that when p* = 1, the system manager is just able,
using the basic activities, to process jobs of the various classes at the required
average rates. Any other feasible processing plan would necessarily exceed
capacity of at least one server.

The question posed by the authors is “can server work assignments be
dynamically adjusted, relative to the nominal processing plan x*, to minimize
cost?” Recall that different queues have different holding cost rates in the
model. To answer this question, they first make the following definition:

Definition 1. (Communicating Servers.) Server k communicates directly
with server k' if there exist basic activities j and j' such that j = j(i, k) and
Jj =7, k") for some class i. Server k communicates with server k' if there
exist servers ki, ...k, such that kv = k, k, = k', and k, communicates
directly with koyq for alla=1,...,w — 1.

Note that communication is an equivalence relation, hence the servers
can be partitioned into disjoint sets in which each server communicates only
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with those servers in its set. There is only one such set in Figure 1. The
intuition is that, if all servers communicate, one can schedule jobs (by shifting
from one activity to another) such that the most backlog is accumulated at
the queue with the smallest holding cost; which would minimize overall cost
(Note that this is related to the well-known cu rule. This is the idea behind
“resource pooling.”

To formally introduce resource pooling, Harrison and Lopez introduce the
limiting Brownian problem (which, they loosely argue based on earlier theory
(see [Harrison 1988], is the heavy-traffic limit of the original problem):

Let F?(t) be the number of arrivals into buffer 4 in the time interval [0, ¢].
Let F/(t) be the number of departures from buffer i resulting from the first
t time units devoted to activity j by its server (note that this is a counting
process.) It can be shown ([Reiman 1984], [Harrison 1988]), that the scaled
process:

FO(rt) /7 — XtT

converges weakly as r — oo to a Brownian motion with zero limit and
with an m x m covariance matrix I'°. !

Similarly, for all j and ¢t > 0

Fi(rt)/\/r — Rit\/r
converge weakly to a Brownian motion with zero drift and covariance matrix
7.2
One can describe this scheduling policy by means of an n-dimensional
stochastic process T = {T'(t),t > 0} with components Tj(t), the total time

devoted to activity j by its server over [0, ] (In fact this is quite standard.)
The m-dimensional jobcount process is defined as:

Q) = F'(t) = Y P(T,(0),t 2 0

The cost rate process is then

C(t) = cQ(t)

One may wonder here how this functional central limit theorem works, since the sample
paths of the processes F°(rt) for every r have discrete jumps (They are right-continuous
with left-limits.) But since the sample paths of Brownian motion are continuous, conver-
gence on the Skorohod J-1 topology is the same as convergence u.o.c. For the definition
of weak stochastic convergence, see [Siegman 2002]

I is the m x m matrix whose i(j) th diagonal element is M?U? and all other elements
are zero.




Now let us state the heavy traffic assumption:

Assumption 1. (Heavy Traffic)
The data (R, A, X) of the static allocation problem are such that

e its solution (x*, p*) is unique;

o p' =1, and

o Ax* =e.

Under Assumption 1, let us define the centered allocation:
V(t)=a"t—T(t)

This is the n-dimensional vector process of deviations from the nominal al-
location. The standard ”cumulative idleness process” I(t), is defined as the
vector of cumulative idle time for the n activities. Obviously, all components
of I(t) must be nondecreasing if T" is to be an admissible policy. Applying
heavy-traffic scaling to these processes, one obtains the scaled processes:

Y'(t) = V(rt)/Vr

Z"(t) Q(rt)/Vr

U™ (t) I(rt)/+/r and,
(t)

= COVE

To visualize this scaling, suppose r = 100. While () tells us how many
jobs get queued up in the first ¢ seconds, Z(t) talks about how many 10’s of
jobs in the first 100t seconds. We are looking at longer and longer stretches
of time, but also scaling the quantities of interest, in a way that should be
familiar from elementary central limit theorems. Of course, note that the
scaling of the r** system is only appropriate when time spans of order r are
relevant for purposes of performance measurement.

5 The limiting Brownian control problem

In [Harrison 1988], it is informally argued that under the heavy traffic as-
sumption, as r — oo, the scaled dynamic scheduling problem is increas-
ingly well approximated by a simpler dynamic control problem where the
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relationship between Z and Y is modeled by the linear system equation
Z(t) = X(t) + RY (t) involving the m-dimensional Brownian motion X =
{X(t),t > 0}. In the present case, X has zero drift, and covariance matrix

=TI%+ 23:1 2317 and initial state X(0) = 0. The limiting Brownian
problem then is the following (note that Y'(¢) is our n-dimensional control):

Y is non-anticipating with respect to X (1)
Z(t) > O0forall >0, and (2)
U is nondecreasing with U(0) > 0 (3)
Z(t) = X(t)+ RY(t)forallt >0 (4)
Ut) = KY(t)forallt>0 (5)

In the above problem, Y being non-anticipating simply means that Y(¢)
uses information only about X (s),s < ¢ and not the future of X. In prob-
abilistic terms, Y is adapted to the filtration JF_,, the filtration on which
X(t) is defined. A process P = {P(t),t > 0} is said to be adaptedif P(t) is
measurable with respect to F, for each fixed ¢t > 0.

At this point, we are ready to see one of the strengths of the Brownian
approximation: the Brownian system model above has an ”equivalent work-
load formulation” in which the state of the system at any time ¢ is described
by a workload vector W (t) having dimension d < m. In fact, in the present
system, d = 1. Specifically, W (t) = y*Z(t) where y* is the unique optimal
dual solution of the static allocation problem. Under SSC, the simplified
problem is to choose the pair (Z,U) such that:

U is non-anticipating with respect to X (6)
Z(t) > Oforallt>0, and (7)
U is nondecreasing with U(0) > 0 (8)
W(t) = W(t)+GU(t) forallt >0 9)
W(t) = y*Z(t) forallt >0 (10)

Before considering the solution of this problem, let us digress for a bit to
talk about SSC.



6 State Space Collapse

In the problem of Harrison and Lopez, the state space of the problem has
collapsed from m dimensions to 1 dimension. The state space collapse (SSC)
phenomenon was first observed by Whitt [1971]. In the present problem,
the reason that the system collapses to 1 dimension is that there is complete
resource pooling (CRP). Intuitively, under CRP as in Figure 1, under the
heavy traffic scaling, one has enough time to switch all the workload from any
queue to any other while keeping the total workload the same. In particular,
the system manager can keep as much workload as possible in the class with
minimum holding cost ¢, therefore in the limit only one queue is critically
loaded. Note that this is related to the well-known cpu rule.

Although rigorous treatments of SSC in Brownian systems date back at
least to Reiman’s 1983 paper, Harrison and Van Mieghem [1997] have a quite
approachable treatment, which we will summarize. Consider the Brownian
control problem 1 to 5, with an arbitrary intial state z, and suppose that
an immediate impulse control Y (0) = ¢ is applied at time ¢ = 0. Then,
the initial values of Z and U will be Z(0) = z + ¢ and U(0) = u, where
0 = Ry and u = Ky. From (3) and (2), one sees that the impulse control
is admissible only of z + ¢ > 0 and u > 0. Let’s refer to y as a control
increment and to § as a displacement. If v = 0, (that is, Ky = 0), then
the system manager can immediately apply another control increment of —y
which causes a displacement of —) and thus returns the system to state z.
Thus, if Ky = 0, the control increment y is reversible. The idea behind SSC
is that any two state vectors whose difference is a reversible displacement are
equivalent, because a system manager can instantaneously exchange either
of those state vectors for the other without affecting the cumulative idleness
process U. Hence, in terms of decision making, an adequate summary of
the system is given by W (t) = M Z(t), where M is a matrix whose rows are
orthogonal to all reversible displacements, meaning M Ry = 0 if Ky = 0.
(So, M gets rid of the reversible component of the system state.) It is shown
by Harrison and Van Mieghem that MR = GK. In the reduced system of
d dimensions, the reduced system descriptor W evolves in the absence of
control as the d — dimensional Brownian motion ¥, and it depends on the
chosen control Y through the process U.



7 Pathwise solution of Brownian control prob-
lem

Now, we are ready to talk about the solution of the reduced Brownian prob-
lem. Define L(t) = GU(t). Recall from (9) that W(t) = V(t) + GU(t). Let
W*(t) = U(t) + L*(t) where

L*(t) = —Olggfgt\lf(s), t>0

Note that W*(t) is a reflected, or more correctly, regulated Brownian motion
with a regulating barrier at 0. Also, note that L* is continuous and non-
decreasing with L*(0) = 0, and by inspection one can see that L* increases
only at times ¢t when W*(¢) = 0. From these, it follows that for any admissible
strategy (Z,U), the workload process W satisfies W (t) > W*(t) for all ¢t > 0
(Note that this is a pathwise bound!). It is then easy to show (and we omit the
details here) that the cost rate process satisfies, for any admissible strategy,
£(t) > &*(t). Hence the policy (Z*, U*) is pathwise optimal. What this policy
is doing could be interpreted as follows: the system manager tries to keep the
system non-idle. Seeing the workload is approaching zero, rather than idling,
it engages some server on a non-basic activity. Since non-basic activities are
inefficient, workload rises fast under Brownian scaling, so shortly the system
manager can return to a mode in which all servers are fully occupied with
basic activities.

The next step is to interpret the policy in the actual queuing system, and
propose an algorithm that is asymptotically optimal, or reaches the Brownian
solution in the heavy traffic limit.

8 Back to the original queuing system

The authors conjecture that ideal system behavior can be approached through
a family of simple scheduling policies related to the cu rule. That is, rank
classes in increasing order of the index ¢;u; = ¢;/y;, and higher ranked classes
are given priority over lower rank ones. They also indicate that there is a
simple “discrete review policy” that should be asymptotically optimal.

The simpler problem with multiple classes and a single server, with equal
holding costs across classes, was analyzed in [Harrison 1988]. There, it is
argued that the server should serve last the class k£ for which puy is smallest,
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and that this class gets service only when the system is empty of all other
classes Note that in the Brownian limit this corresponds to only one queue
being in heavy traffic, and a SSC to 1 dimension.
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