
An Overview of The Application of Heavy Traffic Theory
and Brownian Approximations to the Control of Multiclass

Queueing Networks

Elif Uysal

1

Stochastic Networks

• Jobs (packets, customents), servers (resources), queues (buffers)
• Often cannot be analyzed exactly
• Fluid and diffusion models as approximation methods
• Theory developed by Riemann, Harrison, Williams, Bramson, ... using
fluid and diffusion approximations to analyze stability, performance of

open multiclass HL queueing networks

2

Goals of this Overview

• Heavy traffic (HT) scaling
• HT analysis technique

• Convergence to Brownian motion (BM)
• Resource pooling (RP)
• State-space collapse (SSC)

3

Brownian Motion

• A stochastic process B(t) is a standard Brownian Motion if and only if it

has

– Continuous sample paths

– Stationary increments: B(t1) −B(t0) depends only on t1 − t0

– Independent increments: B(t1) −B(t0), . . . , B(tn) −B(tn−1) are

indep. for any 0 ≤ t1 < t2 < . . . < tn < ∞
– Gaussian increments: B(tn) −B(tn−1) ∼ N (0, tn−1 − tn)

• Y (t) = Y (0) + µt+ σB(t) is a Brownian motion with drift µ and variance

σ2

4

General Procedure of Heavy Traffic Analysis

Methodology developed by [Reimann 1984], [Harrison 1988] and [Harrison and

Williams 1992]:

1. Set up the dynamic scheduling problem, define “heavy traffic”

2. Derive a limiting Brownian control problem that plausibly approximates

the original problem (after some scaling.)

3. Solve the Brownian control problem (much simpler than original

problem)

4. Interpret the solution in original context

5. Ideally, prove that proposed solution is asymptotically optimal in the

original problem.

5

A Parallel-Server System with Resource Pooling (Harrison

and Lopez 1999)

λ λ λ λ1 2 3 4

µ

µ µ

1

2

3µ 7 5
4

8

6

µ
µ

µµ

1 2 3

m classes

n activities

l servers

• r job classes, n activities, l servers
• λi: avg. arrival rate of class i jobs; µj: reciprocal of mean service time
for activity j

• Queue i incurs ”holding cost” at a rate ci per unit time per job in queue

6

A Parallel-Server System with Resource Pooling (Harrison

and Lopez 1999)

• Problem: dynamically allocate jobs to servers to minimize avg holding
cost per unit time

7

Heavy Traffic?

• Not obvious: multiple queues can share servers
• Consider:

minimize ρ

subject to Rx = λ

Ax ≤ ρe

x, ρ ≥ 0

where Aij = 1 if server i serves activity j, Aij = 0 o.w.

Rij = µj if server i serves activity j, Rij = 0 otherwise

x is n× 1 the vector of fractions of times allocated to each activity by its server

8

Heavy Traffic

• Heavy traffic assumption: The data (R,A, λ) of the static

allocation problem are such that

– its solution (x∗, ρ∗) is unique;

– ρ∗ = 1, and

– Ax∗ = e.

• x∗: nominal processing plan

• Activities for which x∗j > 0 are basic activities

• When ρ∗ = 1, the system manager is just able, using the basic activities,

to process jobs of the various classes at the required average rates

9

Dynamic Scheduling Question

Can server work assignments be dynamically adjusted, relative to the nominal

processing plan x∗, to minimize cost?
Recall: queues have different holding cost rates

10

Resource Pooling

Definition: Communicating Servers. Server k communicates directly with

server k′ if there exist basic activities j and j′ such that j = j(i, k) and

j′ = j(i, k′) for some class i.
Server k communicates with server k′ if there exist servers k1, . . . , kw such that

k1 = k, kw = k′, and kα communicates directly with kα+1 for all

α = 1, . . . , w − 1.

11

Resource Pooling

• Servers can be partitioned into disjoint communicating sets
• 1 Partition = CRP

• Intuition: Under CRP, can shift load from one queue to another

• Perhaps in heavy traffic scaled system this can be done in zero time?

12

Wait: We Need to Define HT Scaling

• Xr(t) = X(rt)/
√
r

• F 0
i (t): number of arrivals into buffer i in [0, t]

• Fj
i (t): number of departures from buffer i resulting from the first t time

units devoted to activity j by its server

• The scaled process F 0(rt)/
√
r − λt

√
r converges weakly as r → ∞ to a

Brownian motion with zero limit and with an m×m covariance matrix Γ0

• “Shrink time, expand space”

13

Convergence to Brownian Motion

• For all j and t ≥ 0

Fj(rt)/
√
r −Rjt

√
r

converge weakly to BM with zero drift, covariance matrix Γj

14

Policy and System Dynamics

• Scheduling Policy: n-dimensional stochastic process T = {T (t), t ≥ 0}
• Tj(t): total time devoted to activity j over [0, t]

• The m-dimensional jobcount process:

Q(t) = F 0(t) −
n∑

j=1

Fj(Tj(t)), t ≥ 0

The cost rate process:

C(t) = cQ(t)

15

Queuing System Dynamics

Under the HT assumption

• Define the centered allocation: V (t) = x∗t− T (t)

• Define ”cumulative idleness process” I(t): vector of cumulative idle time
for the n activities

• All components of I(t) must be nondecreasing for T to be an admissible

policy

• Scaled processes
Y r(t) = V (rt)/

√
r

Zr(t) = Q(rt)/
√
r

Ur(t) = I(rt)/
√
r and,

ξr(t) = C(rt)/
√
r

16

Limiting Brownian control problem

• Under HT assumption, as r → ∞, the scaled dynamic scheduling

problem is well approximated by

Z(t) = X(t) + RY (t)

where X = {X(t), t ≥ 0} is the m-dimensional Brownian motion with
zero drift, covariance matrix Γ = Γ0 +

∑b
j=1 x

∗
jΓ

j [Reiman 1984]

• Note that Y (t) is our n-dimensional control

• The problem:
Y is non-anticipating with respect to X

Z(t) ≥ 0 for all t ≥ 0, and

U is nondecreasing with U(0) ≥ 0

Z(t) = X(t) + RY (t) for all t ≥ 0

U(t) = KY (t) for all t ≥ 0

17

How big is the state space of this problem?

• The original state Q(t) is an m-dimensional vector

• But the limiting Brownian problem will have a 1-dimensional state space!

• State space collapse

18

State Space Collapse [Harrison and Van Mieghem 1997]

• In the Brownian control problem apply an immediate impulse control

Y (0) = δ at t = 0.

• Then, initial values Z(0) = z + δ and U(0) = u, where δ = Ry and

u = Ky.

• The impulse control is admissible only of z + δ ≥ 0 and u ≥ 0

• If u = 0 (i.e. Ky = 0), can immediately apply another control increment

of −y which returns the system to state z

• Thus, if Ky = 0, the control increment y is reversible

• Any two state vectors whose difference is a reversible displacement are
equivalent!

• Summary of the system is given by W (t) = MZ(t), where M is a matrix

whose rows are orthogonal to all reversible displacements, meaning

MRy = 0 if Ky = 0. (So, M gets rid of the reversible component of the

system state.)

19

Equivalent Workload Formulation

• From SSC, we obtain ”equivalent workload formulation”

• state of the system at any time t is described by a workload vector W (t)

having dimension d ≤ m

• In our case d = 1. Specifically, W (t) = y∗Z(t) where y∗ is the unique
optimal dual solution of the static allocation problem

• The simplified problem is to choose the pair (Z,U) such that:

U is non-anticipating with respect to X

Z(t) ≥ 0 for all t ≥ 0, and

U is nondecreasing with U(0) ≥ 0

W (t) = Ψ(t) + GU(t) for all t ≥ 0

W (t) = y∗Z(t) for all t ≥ 0

20

Pathwise solution of Brownian control problem

• Define L(t) = GU(t)

• Recall W (t) = Ψ(t) + GU(t)

• Let W ∗(t) = Ψ(t) + L∗(t) where

L∗(t) = − inf
0≤s≤t

Ψ(s), t ≥ 0

• W ∗(t) is a regulated Brownian motion with a regulating barrier at 0

21

Pathwise solution of Brownian control problem

• Note that L∗ is continuous, non-decreasing, L∗(0) = 0

• Note also that L∗ is the only choice of feasible L’s such that L increases

only at times t when W ∗(t) = 0

• So, for any admissible strategy (Z,U), the workload process W satisfies

W (t) ≥ W ∗(t) for all t ≥ 0!

• That is, idle only when there is no work!
• Note that this is a pathwise bound
• Then, cost rate process satisfies, for any admissible strategy,
ξ(t) ≥ ξ∗(t). Hence the policy (Z∗, U ∗) is pathwise optimal

22

What is this policy doing?

• System manager tries to keep the system non-idle

• When workload is approaching zero, rather than idling, it engages some
server on a non-basic activity. Since non-basic activities are inefficient,

workload rises fast under Brownian scaling, so shortly the system

manager can return to a mode in which all servers are fully occupied

with basic activities.

23

Back to the original queuing system

• Authors conjecture ideal system behavior can be approached through a

family of simple scheduling policies related to the cµ rule

• Rank classes in increasing order of the index ciµi = ci/y
∗
i

• Higher ranked classes given priority

24

Simplified case

• Multiple classes, single server, equal holding costs across classes
[Harrison 1988]

• Solution: server should serve last the class k for which µk is smallest,
and that this class gets service only when the system is empty of all

other classes

• Note that in the Brownian limit this corresponds to only one queue being
in heavy traffic, and a SSC to 1 dimension.

25

