An Overview of The Application of Heavy Traffic Theory and Brownian Approximations to the Control of Multiclass Queueing Networks

Elif Uysal

Stochastic Networks

- Jobs (packets, customents), servers (resources), queues (buffers)
- Often cannot be analyzed exactly
- Fluid and diffusion models as approximation methods
- Theory developed by Riemann, Harrison, Williams, Bramson, ... using fluid and diffusion approximations to analyze stability, performance of open multiclass HL queueing networks

Goals of this Overview

- Heavy traffic (HT) scaling
- HT analysis technique
- Convergence to Brownian motion (BM)
- Resource pooling (RP)
- State-space collapse (SSC)

Brownian Motion

- A stochastic process B(t) is a standard Brownian Motion if and only if it has
 - Continuous sample paths
 - Stationary increments: $B(t_1) B(t_0)$ depends only on $t_1 t_0$
 - Independent increments: $B(t_1) B(t_0), \ldots, B(t_n) B(t_{n-1})$ are indep. for any $0 \le t_1 < t_2 < \ldots < t_n < \infty$

- Gaussian increments: $B(t_n) - B(t_{n-1}) \sim \mathcal{N}(0, t_{n-1} - t_n)$

• $Y(t) = Y(0) + \mu t + \sigma B(t)$ is a Brownian motion with drift μ and variance σ^2

General Procedure of Heavy Traffic Analysis

Methodology developed by [Reimann 1984], [Harrison 1988] and [Harrison and Williams 1992]:

- 1. Set up the dynamic scheduling problem, define "heavy traffic"
- 2. Derive a limiting Brownian control problem that plausibly approximates the original problem (after some scaling.)
- 3. Solve the Brownian control problem (much simpler than original problem)
- 4. Interpret the solution in original context
- 5. Ideally, prove that proposed solution is asymptotically optimal in the original problem.

A Parallel-Server System with Resource Pooling (Harrison and Lopez 1999)

- r job classes, n activities, l servers
- $\lambda_i:$ avg. arrival rate of class i jobs; $\mu_j:$ reciprocal of mean service time for activity j
- Queue *i* incurs "holding cost" at a rate c_i per unit time per job in queue

A Parallel-Server System with Resource Pooling (Harrison and Lopez 1999)

• Problem: dynamically allocate jobs to servers to minimize avg holding cost per unit time

Heavy Traffic?

• Not obvious: multiple queues can share servers

• Consider:

 $\begin{array}{lll} \mbox{minimize} & \rho \\ \mbox{subject to } Rx & = & \lambda \\ & Ax & \leq & \rho e \\ & x, \rho & \geq & 0 \end{array}$

where $A_{ij} = 1$ if server *i* serves activity *j*, $A_{ij} = 0$ o.w. $R_{ij} = \mu_j$ if server *i* serves activity *j*, $R_{ij} = 0$ otherwise *x* is $n \times 1$ the vector of fractions of times allocated to each activity by its server

Heavy Traffic

- Heavy traffic assumption: The data (R, A, λ) of the static allocation problem are such that
 - its solution (x^*, ρ^*) is unique;

–
$$ho^*=1$$
, and

$$-Ax^* = e$$

- x^* : nominal processing plan
- Activities for which $x_i^* > 0$ are *basic activities*
- When $\rho^* = 1$, the system manager is just able, using the basic activities, to process jobs of the various classes at the required average rates

Dynamic Scheduling Question

Can server work assignments be *dynamically* adjusted, relative to the nominal processing plan x^* , to minimize cost? Recall: queues have different holding cost rates

Resource Pooling

Definition: **Communicating Servers.** Server k communicates *directly* with server k' if there exist basic activities j and j' such that j = j(i, k) and j' = j(i, k') for some class i. Server k communicates with server k' if there exist servers k_1, \ldots, k_w such that $k_1 = k$, $k_w = k'$, and k_{α} communicates directly with $k_{\alpha+1}$ for all $\alpha = 1, \ldots, w - 1$.

Resource Pooling

- Servers can be partitioned into disjoint communicating sets
- 1 Partition = CRP
- Intuition: Under CRP, can shift load from one queue to another
- Perhaps in heavy traffic scaled system this can be done in zero time?

Wait: We Need to Define HT Scaling

- $\bullet \; X^r(t) = X(rt)/\sqrt{r}$
- $F_i^0(t)$: number of arrivals into buffer i in [0, t]
- $F_i^j(t)$: number of departures from buffer *i* resulting from the first *t* time units devoted to activity *j* by its server
- The scaled process $F^0(rt)/\sqrt{r} \lambda t \sqrt{r}$ converges weakly as $r \to \infty$ to a Brownian motion with zero limit and with an $m \times m$ covariance matrix Γ^0
- "Shrink time, expand space"

Convergence to Brownian Motion

• For all
$$j$$
 and $t \ge 0$

$$F^j(rt)/\sqrt{r} - R^j t \sqrt{r}$$

converge weakly to BM with zero drift, covariance matrix Γ^j

Policy and System Dynamics

- Scheduling Policy: *n*-dimensional stochastic process $T = \{T(t), t \ge 0\}$
- $T_j(t)$: total time devoted to activity j over [0, t]
- The *m*-dimensional jobcount process:

$$Q(t) = F^{0}(t) - \sum_{j=1}^{n} F^{j}(T_{j}(t)), t \ge 0$$

The cost rate process:

$$C(t) = cQ(t)$$

Queuing System Dynamics

Under the HT assumption

- Define the centered allocation: $V(t) = x^*t T(t)$
- \bullet Define "cumulative idleness process" I(t): vector of cumulative idle time for the n activities
- \bullet All components of I(t) must be nondecreasing for T to be an admissible policy
- Scaled processes

$$\begin{array}{lll} Y^r(t) &= V(rt)/\sqrt{r} \\ Z^r(t) &= Q(rt)/\sqrt{r} \\ U^r(t) &= I(rt)/\sqrt{r} \text{ and,} \\ \xi^r(t) &= C(rt)/\sqrt{r} \end{array}$$

Limiting Brownian control problem

• Under HT assumption, as $r \to \infty$, the scaled dynamic scheduling problem is well approximated by

$$Z(t) = X(t) + RY(t)$$

where $X = \{X(t), t \ge 0\}$ is the *m*-dimensional Brownian motion with zero drift, covariance matrix $\Gamma = \Gamma^0 + \sum_{j=1}^b x_j^* \Gamma^j$ [Reiman 1984]

- Note that Y(t) is our *n*-dimensional control
- The problem:

 $\begin{array}{ll}Y & \text{ is non-anticipating with respect to } X\\ Z(t) \ \geq \ 0 \ \text{for all } t \geq 0, \ \text{and}\\ U & \text{ is nondecreasing with } U(0) \geq 0\\ Z(t) \ = \ X(t) + RY(t) \ \text{for all } t \geq 0\\ U(t) \ = \ KY(t) \ \text{for all } t \geq 0 \end{array}$

How big is the state space of this problem?

- \bullet The original state Q(t) is an m-dimensional vector
- But the limiting Brownian problem will have a 1-dimensional state space!
- State space **collapse**

State Space Collapse [Harrison and Van Mieghem 1997]

- In the Brownian control problem apply an immediate impulse control $Y(0) = \delta$ at t = 0.
- Then, initial values $Z(0) = z + \delta$ and U(0) = u, where $\delta = Ry$ and u = Ky.
- \bullet The impulse control is admissible only of $z+\delta \geq 0$ and $u \geq 0$
- If u = 0 (i.e. Ky = 0), can immediately apply another control increment of -y which returns the system to state z
- Thus, if Ky = 0, the control increment y is reversible
- Any two state vectors whose difference is a reversible displacement are equivalent!
- Summary of the system is given by W(t) = MZ(t), where M is a matrix whose rows are orthogonal to all reversible displacements, meaning MRy = 0 if Ky = 0. (So, M gets rid of the reversible component of the system state.)

Equivalent Workload Formulation

- From SSC, we obtain "equivalent workload formulation"
- \bullet state of the system at any time t is described by a workload vector W(t) having dimension $d \leq m$
- In our case d = 1. Specifically, $W(t) = y^*Z(t)$ where y^* is the unique optimal dual solution of the static allocation problem
- \bullet The simplified problem is to choose the pair $({\cal Z}, U)$ such that:

 $\begin{array}{ll} U & \text{is non-anticipating with respect to } X \\ Z(t) \geq 0 \text{ for all } t \geq 0, \text{ and} \\ U & \text{is nondecreasing with } U(0) \geq 0 \\ W(t) = \Psi(t) + GU(t) \text{ for all } t \geq 0 \\ W(t) = y^*Z(t) \text{ for all } t \geq 0 \end{array}$

Pathwise solution of Brownian control problem

- Define L(t) = GU(t)
- Recall $W(t) = \Psi(t) + GU(t)$
- \bullet Let $W^*(t) = \Psi(t) + L^*(t)$ where

$$L^*(t) = -\inf_{0 \le s \le t} \Psi(s), \ t \ge 0$$

 \bullet $W^*(t)$ is a regulated Brownian motion with a regulating barrier at 0

Pathwise solution of Brownian control problem

- Note that L^* is continuous, non-decreasing, $L^*(0) = 0$
- Note also that L^* is the **only** choice of feasible L's such that L increases only at times t when $W^*(t) = 0$
- So, for any admissible strategy (Z, U), the workload process W satisfies $W(t) \ge W^*(t)$ for all $t \ge 0$!
- That is, idle only when there is no work!
- Note that this is a pathwise bound
- Then, cost rate process satisfies, for any admissible strategy, $\xi(t) \ge \xi^*(t)$. Hence the policy (Z^*, U^*) is pathwise optimal

What is this policy doing?

- System manager tries to keep the system non-idle
- When workload is approaching zero, rather than idling, it engages some server on a non-basic activity. Since non-basic activities are inefficient, workload rises fast under Brownian scaling, so shortly the system manager can return to a mode in which all servers are fully occupied with basic activities.

Back to the original queuing system

- Authors conjecture ideal system behavior can be approached through a family of simple scheduling policies related to the $c\mu$ rule
- Rank classes in increasing order of the index $c_i \mu_i = c_i / y_i^*$
- Higher ranked classes given priority

Simplified case

- Multiple classes, single server, equal holding costs across classes [Harrison 1988]
- Solution: server should serve last the class k for which μk is smallest, and that this class gets service only when the system is empty of all other classes
- Note that in the Brownian limit this corresponds to only one queue being in heavy traffic, and a SSC to 1 dimension.