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Abstract

We consider a game theoretic framework to analyze traffic in a congested network, where a

profit-maximizing monopolist sets prices for different routes. Each link in the network is associated

with a flow-dependent latency function which specifies the time needed to traverse the link given

its congestion. Users have utility functions defined over the amount of data flow transmitted,

the delays they incur in transmission, and the expenditure they make for using the bandwidth.

Given the prices of the links, each user chooses the amount of flow to send and the routes to

maximize the utility he receives. We define an equilibrium of user choices given the prices, show

its existence and essential uniqueness, and characterize how this equilibrium changes in response

to changes in prices. We then define a monopoly equilibrium (ME) as the equilibrium prices set

by the monopolist and the corresponding user equilibrium, and characterize this equilibrium.

We also study the performance of the ME relative to the user equilibrium at zero prices and

the social optimum, which would result from the choice of a network planner with full information

and full control over the flow and routing choices of users. Although equilibria for a given price

vector or without prices are typically inefficient relative to the social optimum, we show that the

ME achieves full efficiency for the routing problem (i.e., where each user has a fixed amount of

data to transmit).
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1. INTRODUCTION

A fundamental problem in communication and data networks is the management of congestion,

both to ensure timely transmission of information and to prevent loss of data in transmission.

The standard approach is to use optimization methods to achieve the best potential network

performance by adjusting the input flow rates of users and routing the resulting traffic. However,

in many scenarios, it is impossible or impractical to regulate the traffic in such a centralized manner.

Moreover, this approach requires considerable knowledge about the needs (preferences) of all the

users in the network, an increasingly unrealistic assumption in the major networks of today such

as the Internet.

The recognition of this problem has motivated a recent theoretical literature to consider the

selfish flow choice and routing behavior of users in the absence of central planning (see, among

others, [ORS93], [Kel97], [KMT98], [LoL99], [ABS02], [BaS02], [RoT02], [JoT03]). In these models,

individuals choose their input flow rates and the routes to optimize their own objective, and are

assumed to form conjectures about the behavior of other users consistent with the game theoretic

notion of Nash Equilibrium or the notion of Wardrop Equilibrium first introduced in the analysis

of congestion in transport networks (see [War52]). Not surprisingly, the resulting allocation differs

markedly from the full-information social optimum, which would be chosen by a network manager

with full information. For example, a recent paper by Roughgarden and Tardos [RoT03] studies a

model where agents decide the routing of a given flow of information and finds that generally the

performance of selfish routing can be much worse than the full-information optimum, but they also

provide a bound on the performance gap in a specific case (when the latency functions are linear).

With a few notable exceptions (e.g., [BaS02]), however, this literature considers only situa-

tions in which users face no monetary costs of sending information. In contrast, most networks in

practice are for-profit entities that charge prices for transmission of information. In this paper, we

construct a model to analyze traffic in a congested network where there are prices associated with

different routes and a profit-maximizing monopolist setting prices. Our objective is twofold. First,

we develop a tractable framework to analyze both the sensitivity of the total flow of information and

the routing choices to prices, and the determination of the equilibrium prices. Second, we use this

model to study the performance gap between the monopolized network and the full-information

social optimum.

Our model consists of a given network, a large number of users, and a profit-maximizing

monopolist. To emphasize the main ideas, we consider a network with parallel links accessed by
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a number of heterogeneous users. Each link in the network is associated with a flow-dependent

latency function specifying the time needed to traverse this link given the total flow through

this link. Users have potentially different utility functions defined over the amount of data flow

transmitted, the delays they incur in transmission and the expenditure they make for using the

bandwidth. The monopolist sets prices per unit bandwidth for each link, and each user pays a price

proportional to the amount of bandwidth he uses over the links. Given prices of the links, each

user chooses the amount of flow to send and the routes. Formally, this corresponds to a two-stage

game, where the monopolist is the Stackelberg leader setting prices anticipating the subsequent

behavior of users. Each price vector defines a different subgame, and users play this (sub)game

taking prices as given. It is important to note that, even though users are price-takers, they have

to anticipate the amount of congestion on all routes, which they do according to the notion of Nash

Equilibrium (NE) or Generalized Wardrop Equilibrium (GWE— we refer to this as “generalized”

because each Wardrop Equilibrium is now conditional on a given vector of prices). In the NE,

users take the effect of their own flow on congestion into account, while in the GWE, they ignore

their own effect. Therefore, in terms of the general equilibrium analysis in the economics literature,

the GWE also corresponds to a generalized competitive equilibrium where agents are both price

takers and “latency takers” (i.e., they take latency on each route as given).1 We define a Monopoly

Equilibrium (ME) as the equilibrium prices set by the monopolist and the corresponding GWE or

NE.

We first establish a number of important results on the behavior of such a network. In

particular, under some relatively natural and general assumptions, we show that:

1. Given a vector of prices, there always exists a GWE and in every GWE, there is a unique

distribution of flow rates among users and traffic load on the links of the network.

2. In every GWE, the flow rate of each user is continuous and non-increasing in the price vector.

3. In every GWE, the traffic load on each link is continuous in the price vector, non-increasing

in its own price and non-decreasing in other links’ prices.

4. There always exists a pure strategy NE, and the link loads at an NE converges to the link

1 See, for example, Debreu [Deb59], or Arrow and Hahn [ArH71] on general competitive anal-

ysis. The major difference between the analysis here and the standard models of competitive

analysis is the presence of congestion externalities. See the second footnote on the next page for a

definition of externality.
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loads at a GWE as the number of users approaches infinity.

5. There always exists a pure strategy ME. We further study properties and provide a charac-

terization of equilibrium prices.

These results are not only useful for our subsequent analysis, but also provide a framework

for future studies of network equilibria with flow control and routing in the presence of for-profit

service providers.

We next study the performance of the ME relative to the full-information social optimum

and the GWE without any prices (i.e., at zero prices). There has been a lot of interest in monopoly

distortions among economists, where the focus is generally the price distortion created by monopoly

versus its potential innovation benefits.1 In our setting, the issue is rather different. We show

that the GWE without prices always generates too much flow for each user relative to the social

optimum. This is because each user creates an externality on other users by making the routes

that he or she uses more congested.2 Monopoly pricing may improve the performance of the

system because the monopolist internalizes this externality. In particular, a key insight of our

analysis is that the monopolist realizes that a higher price for a particular route may not reduce

the attraction of this route to users by much, because, with any reduction in traffic, there will be

a corresponding decrease in congestion. We show that for the routing problem (i.e., where each

user has a predetermined amount of data that he or she wants to transmit), the ME achieves the

full-information social optimum despite the selfish behavior of both users and the monopolist.

Although the ME with pure routing achieves the same load as the social optimum for each

1 Monopoly distortions refer to the fact that because of monopoly pricing consumers reduce

their demands below the social-welfare maximizing (“optimal”) allocation. Monopoly distortions

are the focus of the bulk of economic research on monopoly. Economists also emphasize that

monopoly sometimes emerges because of technological reasons (the so-called “natural monopoly”),

in particular when economies of scale and fixed costs imply that only one firm can cover its costs in

the market. Balancing the pricing distortions of monopoly may be the potential gains in innovation

under monopoly, first proposed by Joseph Schumpeter [Sch75]. See, for example, Tirole [Tir90].
2 An externality arises when an individual’s actions affects the utility of others through non-

market means. For example, in our framework when latency functions are not constant, by using

a particular link, an individual creates a negative externality on all other users transmitting data

through that link. The negative externality implies that individuals tend to transmit too much

data and create too much congestion.
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link, it provides different levels of utilities to users than the choice of a fully-informed network

planner who would implement the same allocation without charging users.1 In fact, in the ME,

users pay a considerable amount to the monopolist (in fact, all of their consumer surplus is taken

by the monopolist.2) In a companion paper, we study a similar model with multiple providers

controlling various links, and show that, under certain circumstances, the corresponding Oligopoly

Equilibrium also achieves the social optimum, but in addition, transfers the entire consumer surplus

to the users.

Our paper is related to the burgeoning literature on network pricing and selfish routing

mentioned above. Much of this work does not consider price-setting by a service provider. Our

model differs from these papers by incorporating simultaneously flow control, routing, and service

provision. In this regard, it is most closely related to [BaS02], which studies the asymptotic behavior

of equilibrium with specific utility and latency functions. Our work is therefore a generalization

of this model to more general utility and latency functions, and contains a full characterization

of the monopoly equilibrium (which is made difficult by the fact that the monopolist problem is

not convex). There has been considerable research to design strategies and economic incentives

to cope with the inefficiency created by the selfish behavior of the agents (e.g., taxing, artificial

Stackelberg games, see for example [KLO97], [CDR03]). But, except for special scenarios, these

can be viewed as outside interventions in the system. In this paper, we analyze the performance of

the ME and show that it may improve performance since it internalizes congestion externalities.

Hence, we show that having a service provider in the system automatically creates a natural market

mechanism and the right incentives to price the effects of congestion. To the best of our knowledge,

this is a new insight in the literature.

The paper is organized as follows. In Section 2, we introduce our model in detail. For a

given price vector, we define a GWE among the users of the network and explore the properties

1 Note that the standard definition of efficiency in economics does not make any reference to

the utilities of the users, but is in terms of the allocation, here flow rates and link loads; see [Deb59]

or [MWG95].
2 Consumer surplus refers to the net utility that the individual obtains over and above what

he would have obtained had he not participated in this market. In other words, since his utility

without participation is 0, the consumer surplus is the net utility level that he achieves by choosing

his optimal flow rates and routing at a given vector of prices. Note that in the pure routing case,

the monopolist captures all the consumer surplus, i.e., all consumers obtain zero utility from the

network (see Section 6).
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of this equilibrium. In Section 3, we study the relation of the GWE to the Nash Equilibrium, and

explain why the focus on the GWE in this context is natural. In Section 4, we characterize the

Monopoly Equilibrium. In Section 5, we compare the ME to the social optimum. In Section 6, we

present a model for the routing problem under monopoly pricing and analyze the performacne of

the monopolized system. We present our conclusions and summarize future directions in Section

7.

2. MODEL

We consider a network with I parallel links accessed by J users. Let I = {1, . . . , I} denote the set

of links and J = {1, . . . , J} denote the set of users. Let xi
j denote the flow of user j on link i and

xj = [x1
j , . . . , x

I
j ]

′ denote the vector of flows of user j. We assume that user j receives a utility of

uj(Γj), where

Γj =
I

∑

i=1

xi
j

denotes the total flow rate of user j on all links. Throughout the paper, we will refer to Γj as the

flow rate of user j. Each link in the network has a flow-dependent latency function li(γi), where

γi =
J

∑

j=1

xi
j (2.1)

denotes the total flow (link load) on link i. This latency function specifies the delays in transmission

as a function of the link load. We denote the price per unit bandwidth of link i by pi, and we will

later allow a monopolist service provider to control prices.

An important aspect of our model is our assumption that each user is “small” in the sense

that when he switches his flows from one path to another, there is no considerable change in the

link latencies. This is known as the “Wardrop’s Principle”, due to a paper by Wardrop [War52].

Wardrop’s Principle is used extensively in problems where users have fixed rates to transmit and

only their routing choices are subject to optimization; see [RoT02], [HaM85], [ScS03], [CSS03].

Here, we extend this idea to the problem of combined flow control and routing. In addition, we

establish below that, similar to [HaM85], the equilibria that we characterize are limits of sequences

of Nash Equilibria obtained from sequences of games as the number of users goes to infinity.

We denote the vector of total flows on the links [cf. Eq. (2.1)] by γ = [γ1, . . . , γI ], and the

vector of prices of the links by p = [p1, . . . , pI ]. Given γ and p, each user chooses xj ≥ 0 to

maximize its payoff function vj(xj ; γ, p), given by

vj(xj ; γ, p) = uj

(

I
∑

i=1

xi
j

)

−
I

∑

i=1

li(γi)xi
j −

I
∑

i=1

pixi
j . (2.2)
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The fact that user utility is additively-separable between total flow, Γj , and delay on link i, li(γi),

is a useful simplification in line with the rest of the literature. The important feature is that the

utility of each user (or alternately the total flow allocated to each user) depends on the flows of all

the users.

Implicit in our notation is the fact that each user acts as a “price taker” and a “link load

taker” (the utility function is conditioned on the price vector, p, and the link load vector, γ). This

is a natural assumption when there are many users, and we show in Section 3 that there is no loss

of generality in this assumption as the number of users becomes large.

An equilibrium of this game is defined as follows.

Definition 2.1: Let x = [x′
1, . . . , x

′
J ] denote the vector of flows of all the users in the network.

For a given price vector p ≥ 0, a flow vector x is an equilibrium of the game where the payoff

functions of the users are given by Eq. (2.2) if

xj ∈ arg max
0≤yi

j
≤Ci, ∀ i

vj(yj ; γ, p), ∀ j ∈ J ,

where Ci denotes the capacity of link i, and

γi =
J

∑

j=1

xi
j , ∀ i ∈ I.

We will refer to this flow vector as the Generalized Wardrop Equilibrium (GWE) of this

game. Note that the GWE is a function of the price vector p. We will write it as x(p) to make the

dependence on price explicit, whenever there is a danger of confusion. Note also that whenever we

are talking about a GWE, we will use the notation Γj to denote the flow rate of user j, and γi to

denote the load of link i.

Assumption 2.1: Assume that for each j, the utility function uj : [0,∞) 7→ [0,∞) satisfies the

following conditions:

(a) uj is strictly concave, nondecreasing, and continuously differentiable.

(b) 0 < u′
j(0) < ∞.

Also assume that for each i, the link latency function li : [0, Ci) 7→ [0,∞) satisfies the following

conditions:

(a’) li is continuous and strictly increasing.

(b’) li(0) = 0.
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(c’) li(x) → ∞ as x → Ci.

Assumption 2.1 is natural in this context. It specifies that users derive greater utility from

transmitting more data. Concavity of the utility function implies that we are considering elastic

traffic (i.e., traditional data applications like file transfer and e-mail, which are tolerant of delays,

see [She95]), for which transmitting more and more data has diminishing returns for users. This

assumption enables us to obtain a characterization of the equilibrium. In Section 6, we will

also consider some non-concave utility functions. Assumption 2.1(a’) on the latency function

ensures that more data transmission creates greater congestion, which is the essence of the problem

understudy here. Assumption 2.1(b’) imposes that the cost of transmitting information without

any congestion is equal to 0 on all links.1 Finally, Assumption 2.1(c’) serves to capture the capacity

constraints on the links within the latency functions.2 In view of this assumption and Assumption

2.1(b), it can be seen that at any GWE, x(p), we have
∑

j∈J xi
j(p) < Ci. Therefore, the capacity

constraint in the definition of GWE could be neglected.

In the next proposition, we show that under Assumption 2.1, a GWE always exists. Although

the existence of an equilibrium (GWE) is a useful starting point, in many general equilibrium

environments there can be multiple equilibria, making comparisons between equilibria and optima

and the analysis of sensitivity of the equilibrium to underlying variables difficult. Therefore in

the next proposition, we also establish the essential uniqueness of the equilibrium. By essential

uniqueness, we mean that, even though the x’s may not be unique, the flow rate of each user and

the load of each link are uniquely defined. The proof uses a classical technique that was used for

showing related uniqueness results for the Wardrop equilibrium (see [BMW56], [Kel91]).

Proposition 2.1: (Existence-Essential Uniqueness) Let Assumption 2.1 hold. For a given

p ≥ 0, consider the J-player game where the payoff functions of the users are given by Eq. (2.2).

Then, there exists a GWE, and the flow rates and the link loads at any GWE are unique. In

particular, let x and x be two generalized Wardrop equilibria of this game. We define, for all i ∈ I,

γi =
∑

j∈J

xi
j , γi =

∑

j∈J

xi
j ,

1 This assumption simplifies the analysis. It could be relaxed at the expense of added notation.
2 An alternative assumption could be that, for each j, there exists a nonzero scalar Bj such

that u′
j(Bj) = 0. This assumption would guarantee that no individual has an infinite demand or

infinite willingness to pay for data transmission.
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and for all j ∈ J ,

Γj =
∑

i∈I

xi
j , Γj =

∑

i∈I

xi
j .

We have

γi = γi, ∀ i ∈ I,

Γj = Γj , ∀ j ∈ J .

Proof: Given any p ≥ 0, consider the following optimization problem

maximize
∑

j∈J

uj(Γj) −
∑

i∈I

∫ γi

0

li(z)dz −
∑

i∈I

piγi

subject to Γj =
∑

i∈I

xi
j , ∀j

γi =
∑

j∈J

xi
j , ∀i

xi
j ≥ 0, ∀ i, j.

(2.3)

It can be seen by checking the first order necessary and sufficient conditions that the optimal

solutions of this problem correspond exactly to the set of GWE at the price vector p. In view

of Assumption 2.1, the objective function of problem (2.3) is continuous and the feasible set is

compact. Hence, this problem has an optimal solution, showing the existence of a GWE. Note

further that, since uj is strictly concave for all j and li is strictly increasing for all i, it follows that

the objective function of problem (2.3) is a strictly concave function of Γ and γ. Hence, there exists

a unique optimum for the flow rate vector Γ and the link load vector γ, showing the uniqueness of

the flow rates and the link loads at a GWE. Q.E.D.

Sensitivity to Prices

The essential uniqueness of the equilibrium enables us to examine the continuity and monotonicity

properties of the link loads and flow rates of users as functions of the link prices. We will see that

the key equilibrium notions, the flow rates and the link loads, are both continuous and monotonic

functions of prices.

Proposition 2.2: (Continuity) Let Assumption 2.1 hold. For a given p ≥ 0, let x(p) be a

GWE of the J-player game where the payoff functions of the users are given by Eq. (2.2). Denote

the corresponding link loads and flow rates by

γi(p) =
J

∑

j=1

xi
j(p), ∀ i ∈ I,
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Γj(p) =
I

∑

i=1

xi
j(p), ∀ j ∈ J .

For all i and j, γi(p) and Γj(p) are continuous at all p ≥ 0.

Proof: Let {pk} be some nonnegative sequence that converges to some p ≥ 0. We show that

γi(pk) converges to γi(p) for all i, and Γj(pk) converges to Γj(p) for all j. By Proposition 2.1, for

each pk, there exists a GWE of this game, denoted by x(pk), which satisfies,

γi(pk) =
J

∑

j=1

xi
j(pk), Γj(pk) =

I
∑

i=1

xi
j(pk).

The sequence
{

x(pk)
}

lies in the compact set since xi
j(pk) ∈ [0, Ci] for all k (cf. Assumption

2.1). Therefore, it has a limit point, denoted by x̃. We assume without loss of generality that the

sequence
{

x(pk)
}

converges to x̃, which implies that

γi(pk) → γ̃i =
J

∑

j=1

x̃i
j ,

Γj(pk) → Γ̃j =
I

∑

i=1

x̃i
j .

We next show that x̃ is a GWE of this game with the prices given by p, which by Proposition 2.1,

guarantees that γi(pk) → γi(p) and Γj(pk) → Γj(p). Assume, to arrive at a contradiction, that x̃

is not a GWE. This implies that for some j ∈ J ,

x̃j /∈ arg max
yj≥0







uj

(

I
∑

i=1

yi
j

)

−
I

∑

i=1

li
(

J
∑

j=1

x̃i
j

)

yi
j −

I
∑

i=1

piyi
j







.

Hence, there exists some ε > 0 and some yj ≥ 0 such that

uj

(

I
∑

i=1

yi
j

)

−
I

∑

i=1

li(γ̃i)yi
j −

I
∑

i=1

piyi
j ≥ uj

(

I
∑

i=1

x̃i
j

)

−
I

∑

i=1

li(γ̃i)x̃i
j −

I
∑

i=1

pix̃i
j + 3ε.

Since uj is continuous (which follows by concavity of uj , see [BNO03]), li is continuous (cf. As-

sumption 2.1), and pk → p, x(pk) → x̃, we have, for k sufficiently large,

uj

(

I
∑

i=1

yi
j

)

−
I

∑

i=1

li
(

γi(pk)
)

yi
j −

I
∑

i=1

pi
kyi

j ≥ uj

(

I
∑

i=1

yi
j

)

−
I

∑

i=1

li(γ̃i)yi
j −

I
∑

i=1

piyi
j − ε

≥ uj

(

I
∑

i=1

x̃i
j

)

−
I

∑

i=1

li(γ̃i)x̃i
j −

I
∑

i=1

pix̃i
j + 2ε

≥ uj

(

I
∑

i=1

xi
j(pk)

)

−
I

∑

i=1

li
(

γi(pk)
)

xi
j(pk)

−
I

∑

i=1

pi
kxi

j(pk) + ε,
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contradicting the fact that x(pk) is a GWE for each pk. This shows that x̃ is a GWE for the game

with the prices given by p, and completes the proof. Q.E.D.

The next proposition establishes the monotonicity of flow rates in prices, and captures the

intuitive notion that when prices are higher, users choose lower(no higher) flow rates. Although

this result is intuitive, it can be seen through simple examples that concavity of utility functions is

not strong enough to guarantee it, and we need strict concavity of the utility functions, as imposed

in Assumption 2.1, for the result to hold.

Proposition 2.3: (Monotonicity of Flow Rates) Let Assumption 2.1 hold. Let p and p̃ be

two price vectors such that p ≥ p̃. Then, we have

Γj(p) ≤ Γj(p̃), ∀ j ∈ J ,

where Γj(p) and Γj(p̃) are the flow rates of user j at a GWE given prices p and p̃, respectively.

Proof: Let us partition the set of users into two sets R and S as

R =
{

r ∈ J | Γr(p) > Γr(p̃)
}

,

S =
{

s ∈ J | Γs(p) ≤ Γs(p̃)
}

.

We show that the set R is empty. Assume to arrive at a contradiction that the set R is nonempty.

Define a subset of links as

Iact =
{

i ∈ I | xi
j(p) > 0, for some j ∈ R

}

.

We show that, for all i ∈ Iact, we have

γi(p) < γi(p̃), (2.4)

and

xi
s(p̃) = 0, ∀ s ∈ S. (2.5)

Let i ∈ Iact. This implies that xi
j(p) > 0 for some j ∈ R. Using the first order optimality

conditions, we obtain

u′
j

(

Γj(p)
)

− li
(

γi(p)
)

− pi ≥ u′
j

(

Γj(p̃)
)

− li
(

γi(p̃)
)

− p̃i.
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Since j ∈ R and uj is strictly concave, we have u′
j

(

Γj(p)
)

< u′
j

(

Γj(p̃)
)

, which implies that

li
(

γi(p)
)

+ pi < li
(

γi(p̃)
)

+ p̃i, (2.6)

which together with p ≥ p̃ yields

γi(p) < γi(p̃),

hence proving claim (2.4). To show (2.5), suppose to arrive at a contradiction, that for some

i ∈ Iact, xi
s(p̃) > 0 for some s ∈ S. This implies by the first order optimality conditions that

u′
s

(

Γs(p̃)
)

− li
(

γi(p̃)
)

− p̃i ≥ u′
s

(

Γs(p)
)

− li
(

γi(p)
)

− pi.

Since s ∈ S and uj is concave, we have u′
s

(

Γs(p̃)
)

≤ u′
s

(

Γs(p)
)

, which together with Eq. (2.6)

implies that
li
(

γi(p̃)
)

+ p̃i ≤ li
(

γi(p)
)

+ pi

< li
(

γi(p̃)
)

+ p̃i,

thus yielding a contradiction and showing (2.5).

We next use Eqs. (2.4) and (2.5) to obtain

∑

i∈Iact

γi(p̃) =
∑

i∈Iact

J
∑

j=1

xi
j(p̃) =

∑

i∈Iact

∑

j∈R

xi
j(p̃) ≤

∑

j∈R

I
∑

i=1

xi
j(p̃) =

∑

j∈R

Γj(p̃),

where the second equality follows from Eq. (2.5). We also have

∑

i∈Iact

γi(p) ≥
∑

i∈Iact

∑

j∈R

xi
j(p) =

∑

j∈R

I
∑

i=1

xi
j(p) =

∑

j∈R

Γj(p),

where the second equality follows from definition of set R. The preceding sets of equations together

with the definition of set R imply that

∑

i∈Iact

γi(p) >
∑

i∈Iact

γi(p̃).

Summing Eq. (2.4) over all i ∈ Iact yields a contradiction, thus proving that the set R is empty.

Q.E.D.

The next proposition shows the monotonicity of link loads in prices. It establishes that link

loads are monotonically non-increasing in their own prices and monotonically non-decreasing in

other links’ prices. Both of these are intuitive; the first implies that a higher price reduces the

12



traffic on the link, while the second implies that, from the point of view of users, different links are

substitutes—a higher price for one increases the traffic on the others.

Proposition 2.4: (Monotonicity of Link Loads) Let Assumption 2.1 hold. For some scalar

ε > 0 and some t = 1, . . . , I, let et denote the vector whose tth component is ε and all the remaining

components are equal to 0. Then, we have

γt(p + et) ≤ γt(p), (2.7)

γs(p + et) ≥ γs(p), ∀ s 6= t. (2.8)

Proof: Let us partition the set of links into two sets R and S in the following way:

R =
{

r ∈ I | γr(p + et) > γr(p)
}

,

S =
{

s ∈ I | γs(p + et) ≤ γs(p)
}

.

Assume to arrive at a contradiction that γt(p + et) > γt(p). This implies that t ∈ R. Define a

subset of users as

Jε =
{

j | xr
j(p + et) > 0 for some r ∈ R

}

.

We show that, for all j ∈ Jε, we have

Γj(p) > Γj(p + et), (2.9)

and

xs
j(p) = 0, ∀ s ∈ S. (2.10)

Since x(p) and x(p + et) are GWE’s for the games with prices given by p and p + et, respectively,

we have, by Definition 2.1, that for all j = 1, . . . , J ,

xj(p) ∈ arg max
yj≥0

{

uj

(

Γj(p)
)

−
I

∑

i=1

li
(

γi(p)
)

yi
j −

I
∑

i=1

piyi
j

}

,

xj(p + et) ∈ arg max
yj≥0







uj

(

Γj(p + et)
)

−
I

∑

i=1

li
(

γi(p + et)
)

yi
j −

∑

i 6=t

piyi
j − (pt + ε)yt

j







.

These imply by the first order necessary optimality conditions that for all j and i,

u′
j

(

Γj(p)
)

− li
(

γi(p)
)

− pi ≤ 0, if xi
j(p) ≥ 0,

= 0, if xi
j(p) > 0,

(2.11)

13



and for all j and i 6= t,

u′
j

(

Γj(p + et)
)

− li
(

γi(p + et)
)

− pi ≤ 0, if xi
j(p + et) ≥ 0,

= 0, if xi
j(p + et) > 0.

(2.12)

By definition, for any j ∈ Jε, we have xr
j(p + et) > 0 for some r ∈ R. This implies by Eqs. (2.11)

and (2.12) that1

u′
j

(

Γj(p)
)

− lr
(

γr(p)
)

− pr ≤ u′
j

(

Γj(p + et)
)

− lr
(

γr(p + et)
)

− pr. (2.13)

Since r ∈ R and the latency function lr is strictly increasing, the preceding relation implies

u′
j

(

Γj(p)
)

< u′
j

(

Γj(p + et)
)

,

from which, using the concavity of the utility function uj , we obtain

Γj(p) > Γj(p + et),

thus proving claim (2.9). To show claim (2.10), suppose, to arrive at a contradiction, that for any

j ∈ Jε, we have xs
j(p) > 0 for some s ∈ S. Since t /∈ S by assumption, this implies that s 6= t and

we obtain from Eqs. (2.11) and (2.12) that

u′
j

(

Γj(p + et)
)

− ls
(

γs(p + et)
)

− ps ≤ u′
j

(

Γj(p)
)

− ls
(

γs(p)
)

− ps.

Using the preceding relation and the facts that the latency functions ls are stricly increasing, and

the utility functions uj are concave, we obtain

Γj(p) ≤ Γj(p + et),

contradicting Eq. (2.9), and showing that for any j ∈ Jε, we have xs
j(p) = 0 for all s ∈ S.

We next show that Eqs. (2.9) and (2.10) yield a contradiction. Note that we have

∑

j∈Jε

Γj(p) =
∑

j∈Jε

I
∑

r=1

xr
j(p) =

∑

j∈Jε

∑

r∈R

xr
j(p) =

∑

r∈R

∑

j∈Jε

xr
j(p)

≤
∑

r∈R

J
∑

j=1

xr
j(p) =

∑

r∈R

γr(p),

1 Note that r could be equal to t, in which case this equation becomes

u′
j

(

Γj(p)
)

− lt
(

γt(p)
)

− pt ≤ u′
j

(

Γj(p + et)
)

− lt
(

γt(p + et)
)

− pt − ε

≤ u′
j

(

Γj(p + et)
)

− lt
(

γt(p + et)
)

− pt,

and thus the same subsequent analysis applies.
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where the second equality follows from Eq. (2.10). We also have

∑

j∈Jε

Γj(p + et) =
∑

j∈Jε

I
∑

r=1

xr
j(p + et) =

I
∑

r=1

∑

j∈Jε

xr
j(p + et)

=
∑

r∈R

∑

j∈Jε

xr
j(p + et) +

∑

r/∈R

∑

j∈Jε

xr
j(p + et)

≥
∑

r∈R

∑

j∈Jε

xr
j(p + et)

=
∑

r∈R

J
∑

j=1

xr
j(p + et)

=
∑

r∈R

γr(p + et),

where the second equality from the end follows from the definition of set Jε The two preceding

sets of equations together with the definition of set R imply that

∑

j∈Jε

Γj(p + et) >
∑

j∈Jε

Γj(p).

Summing Eq. (2.9) over all j ∈ Jε yields a contradiction, thus showing that t /∈ R, proving Eq.

(2.7).

Next we show Eq. (2.8). Let s 6= t. If γs(p) = 0, then we are done. Assume that γs(p) > 0.

This implies that there exists some k such that xs
k(p) > 0, from which, using the first order

conditions, we get

u′
k

(

Γk(p)
)

− ls
(

γs(p)
)

− ps ≥ u′
k

(

Γk(p + et)
)

− ls
(

γs(p + et)
)

− ps.

Combining the preceding with the fact that Γk(p) ≥ Γk(p + et) [cf. Proposition 2.3], we obtain

γs(p + et) ≥ γs(p),

thus proving the desired claim. Q.E.D.

The above propositions provided some general results about the continuity and monotonicity

of GWE’s. We now establish two lemmas which enable a sharper characterization of the GWE.

This characterization will be useful in the analysis of subsequent sections.

Lemma 2.1: Let Assumption 2.1 hold. For a given p ≥ 0, let γi be the load of link i at a GWE.

Then, for all i with γi > 0, we have

pi + li(γi) = min
m∈I

{

pm + lm(γm)
}

.
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Proof: Since γi > 0, there exists some j such that xi
j > 0 and satisfies

u′
j(Γj) − li(γi) − pi = 0.

We also have

u′
j(Γj) − lm(γm) − pm ≤ 0, ∀ m,

[cf. Eq. (2.11)]. Combining the preceding two relations, we obtain

pi + li(γi) ≤ pm + lm(γm), ∀ m,

showing the result. Q.E.D.

Let us define the effective cost to users of link i as pi + li(γi), which is the monetary cost plus

delay cost of using the link. The lemma states that the effective cost of all links with positive flow

must be equal. This is very intuitive; since the links are perfect substitutes from the viewpoint of

users, they must all have the same effective cost.

Lemma 2.2: Let Assumption 2.1 hold. For a given p ≥ 0, let x be a GWE. Define the sets

I = {i | γi > 0} and J = {j | Γj > 0}.

(a) Then for all i ∈ I and j ∈ J , we have

u′
j(Γj) − li(γi) − pi = 0.

(b) There exists a GWE x̃ at this price vector that satisfies x̃i
j > 0 for all i ∈ I and j ∈ J .

Proof:

(a) Let i ∈ I and j ∈ J . Since Γj > 0 by assumption, it follows that there exists some link s

such that xs
j > 0, which implies by the first order conditions that

u′
j(Γj) − ls(γs) − ps = 0.

Since γs > 0 and γi > 0, we have by Lemma 2.1 that

li(γi) + pi = ls(γs) + ps.

Substituting this in the previous equation yields the desired result.
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(b) Consider the vector x̃ = [x̃i
j ] generated in the following way: Set x̃i

j = 0 if i /∈ I or j /∈ J .

Let i ∈ I and j ∈ J . If xi
j > 0, then set x̃i

j = xi
j . Assume xi

j = 0. Then, since i ∈ I and

j ∈ J , there exists some k 6= j and s 6= i such that xi
k > 0 and xs

j > 0. We set

x̃i
j = ε, x̃s

j = xs
j − ε,

x̃i
k = xi

k − ε, x̃s
k = xs

k + ε,

where ε > 0 is small enough such that all of the above terms are positive. It can be seen that

the link loads and the input flow rates of users are kept constant by this transformation (to

see this, add vertically to see the change in link loads and horizontally to see the change in

flow rates). Also, since k ∈ J and s ∈ I, it follows from part (a) that

u′
k(Γk) − ls(γs) − ps = 0.

This implies that x̃ satisfies the first order necessary and sufficient optimality conditions, and

therefore is a GWE at the price vector p. Q.E.D.

The second part of this lemma exploits the fact that the allocation of the unique GWE flow

rates and link loads across individuals is indeterminate, and shows that starting from any GWE,

we can always construct an alternative GWE, with the same individual flow rates and link loads,

in which all individual flows to all links with minimum effective cost are positive.

3. CONVERGENCE OF NASH EQUILIBRIA TO GENERALIZED WARDROP

EQUILIBRIUM

The purpose of this section is to show that the link loads at a GWE are limits of the link loads at

the Nash Equilibria of a sequence of games, where users recognize their impact on congestion.

The key difference between the GWE and the Nash Equilibrium is that in the latter, each user

is no longer a “link-load” taker, but instead anticipates the effect of its actions on the congestion

on the links. Therefore, to define the Nash equilibrium, we use a different notation for the payoff

functions of the users. We let x−j denote the vector of flows of all users except user j. Given

(xj , x−j) and a price vector p, we denote the payoff function of user j by

Vj(xj , x−j ; p) = uj

(

I
∑

i=1

xi
j

)

−
I

∑

i=1

li
(

∑

k 6=j

xi
k + xi

j

)

xi
j −

I
∑

i=1

pixi
j . (3.1)

Nash equilibrium of this game is then defined as follows.
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Definition 3.2: (Nash Equilibrium) For a given price vector p ≥ 0, a flow vector x̃ is a Nash

equilibrium (NE) of the game where the payoff functions are given by (3.1) if

x̃j ∈ arg max
xj≥0

Vj(xj , x̃−j ; p), ∀ j ∈ J .

Let Assumption 2.1 hold. Further assume that the latency function li is convex for all i. It

can be seen, using fixed point arguments, that there exists an NE under these assumptions (cf.

[Ros65]).

In problems where users only make routing decisions, the relation between the NE and the

Wardrop equilibrium has been studied in [HaM85]. The result that we show next illustrates that a

similar relation exists between NE and GWE in our model. Similar to [HaM85], we use a replication

strategy idea, which was pioneered by Debreu and Scarf [DeS63]. For this purpose, let us define

G(n) to be the game where we have J classes of users, denoted by N1, . . . , Nj , of n identical users

each, with the payoff function of user h for some h ∈ Nj given by

V
(n)
h (xj , x−j ; p) = uj

(

I
∑

i=1

xi
h

)

−
I

∑

i=1

l(n)i





∑

k 6=h

xi
k + xi

h



 xi
h −

I
∑

i=1

pixi
h,

where l(n)i is the latency function of link i in game G(n).

It is important to change the latency functions with replication, since, otherwise, the demand

for resources in the network will increase as n increases, but available resources would remain

constant. The most natural way of doing this is to also increase the capacity of each link with n.

To do this, we define

l(n)i(γi) = li
(

γi

n

)

, (3.2)

which ensures that network resources grow at the same rate as the demand for these resources [cf.

Assumption 2.1(c’)].

Given these definitions, we can establish the following result.

Proposition 3.5: (Convergence) Let Assumption 2.1 hold. For a given p ≥ 0, let γi denote

the total load on link i corresponding to the GWE of the J-player game, where the payoff functions

of the users are given by Eq. (2.2). There exists an NE of the game G(n), x̃(n), for which the

corresponding link load γ̃i(n) =
∑J

j=1

∑

h∈Nj
x̃i

h(n) satisfies

lim
n→∞

γ̃i(n)

n
= γi, ∀ i ∈ I.
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Proof: Since all players in class Nj are identical, there exists a Nash equilibrium for which all

players of Nj have the same strategy. We can represent this Nash equilibrium as

x̃h(n) =
x̃j(n)

n
, ∀ h ∈ Nj ,∀ j,

where x̃j(n) is the I-dimensional total flow vector of class j on all links. In view of Assumption

2.1, it can be seen that each component of x̃h(n) lies in the compact set [0, Ci], and therefore the

sequence
{

x̃h(n)
}

is bounded. Assume without loss of generality that x̃h(n) → xh for each h (and

also, by implication, Γ̃h(n) =
∑

i∈I x̃i
h(n) → Γh). Since x̃(n) is a Nash Equilibrium, we have by

the necessary optimality conditions, for all i, all j, and all h ∈ Nj ,

(

u′
j

(

Γ̃h(n)
)

− l(n)i
(

γ̃i(n)
)

− (l(n)i)′
(

γ̃i(n)
)

x̃i
h(n) − pi

)

(

yi
h − x̃i

h(n)
)

≤ 0, ∀ yi
h ≥ 0,

or equivalently,
(

u′
j

(

Γ̃h(n)
)

− li
(

γ̃i(n)

n

)

− (li)′
(

γ̃i(n)

n

)

x̃i
h(n) − pi

)

(

yi
h − x̃i

h(n)
)

≤ 0, ∀ yi
h ≥ 0,

[cf. Eq. (3.2)]. The sequence γ̃i(n)
n = 1

n

∑

j

∑

h∈Nj
x̃i

h(n), is bounded, and satisfies γ̃i(n)
n → γi =

∑

j xi
hj

for some hj ∈ Nj and for all i. Taking the limit in the preceding relation, we obtain

(

u′
j(Γh) − li(γi) − pi

)

(yi
h − xi

h) ≤ 0, ∀ yi
h ≥ 0.

In view of the concavity assumptions (cf. Assumption 2.1), this implies, by the necessary and

sufficient optimality conditions for a GWE, that the vector x = [x1, . . . , xJ ], where xj = xh for

some h ∈ Nj , is a GWE at the price vector p. By Proposition 2.1, the corresponding link loads γi

are uniquely defined, showing that γi = γi. Q.E.D.

4. PRICE DETERMINATION BY PROFIT MAXIMIZATION

In Section 2, we characterized the flow rates and the link loads at a GWE for a given price vector. In

this section, we show the existence of profit-maximizing prices for the monopolist service provider

and provide a characterization of these prices. The monopolist sets the prices as the optimal

solution of the problem, 1

maximize
∑

i∈I

piγi(p)

subject to p ≥ 0,

(4.1)

1 This formulation ignores the costs incurred by the monopolist in data transmission. It is

straightforward to add a constant marginal cost of transmission, without affecting the results. We

do not do so here to reduce notation.
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where γi(p) is the load of link i at a GWE given price vector p; i.e., if x(p) is a GWE, as given in

Definition 2.1, then

γi(p) =
∑

j∈J

xi
j(p).

We start by establishing the existence of profit-maximizing prices.

Proposition (Existence): Let Assumption 2.1 hold. Then problem (4.1) has an optimal

solution, denoted by p∗.

Proof: By Proposition 2.2, we have that γi(p) is a continuous function of p. Moreover, using

Assumption 2.1(b), we can see that the upper level sets of Problem (4.1) are compact. Then it

follows that problem (4.1) has an optimal solution. Q.E.D.

We will refer to p∗ as the monopoly equilibrium price of the two-stage game, where the

monopolist service provider (Stackelberg leader) sets prices and each price defines a subgame

among the users. Let x(p∗) be a GWE given price vector p∗. We will refer to
(

p∗, x(p∗)
)

, or more

simply
(

p∗, x∗
)

, as the monopoly equilibrium (ME) of the overall game.

In the following, we show various characteristics of the equilibrium prices.

Proposition 4.6: Let Assumption 2.1 hold. Let p be the vector of monopoly equilibrium prices.

Then

pi > 0, ∀ i ∈ I.

Proof: Assume, to arrive at a contradiction, that ps = 0 for some s. We first show that this

implies that γs > 0. Assume the contrary, i.e., γs = 0. This implies by the first order optimality

conditions and Assumption 2.1 (uj is nondecreasing and li(0) = 0), that

u′
j(Γj) = 0, ∀ j. (4.2)

But this implies that γi = 0 for all i. [If γi > 0 for some i, we would have −li(γi) − pi < 0 for

all j, implying that xi
j = 0 for all j , and we get a contradiction.] But, since

∑

i γi =
∑

j Γj , this

implies that Γj = 0 for all j, which is a contradiction by Eq. (4.2) [cf. Assumption 2.1(b)], and

shows that we must have γs > 0.

We next consider the price vector p̃ = p + es, where es is a vector whose components are all

equal to 0, except the sth component, which is equal to some ε > 0. By Proposition 2.4, we have

γs(p̃) ≤ γs(p),
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γi(p̃) ≥ γi(p), ∀ i 6= s.

We choose ε small enough such that γs(p̃) > 0. [This can be done given the continuity of γi in p,

cf. Proposition 2.2]. This shows that

∑

i∈I

piγi(p) <
∑

i∈I

p̃iγi(p̃),

thus contradicting the fact that (p, x) is an ME, and showing that pi > 0 for all i. Q.E.D.

This proposition shows that the monopolist will charge positive prices for all links. This

result is intuitive. A zero price for link i would hurt the monopolist in two ways; first, directly by

not generating any revenues from link i, and second, indirectly, by reducing traffic and profits on

other links, in view of our result in Proposition 2.4.

Proposition 4.7: Let Assumption 2.1 hold. Let (p, x) be an ME. Then, the corresponding link

loads satisfy

γi > 0, ∀ i ∈ I.

Proof: Define I = {i | γi > 0}. Assume, to arrive at a contradiction, that γs = 0 for some s.

Using Lemma 2.1 and Assumption 2.1(b’), this implies that

K = pi + li(γi) ≤ ps + ls(0) = ps, ∀ i ∈ I,

for some K > 0. Since li(γi) > 0 for all i ∈ I, we can choose some ε > 0 such that

pi < ps − ε < pi + li(γi), ∀ i ∈ I. (4.3)

We next consider the price vector p̃ = p − es, where es is a vector whose components are all

equal to 0, except the sth component, which is equal to ε. By Proposition 2.4, we have

γs(p̃) ≥ γs(p),

γi(p̃) ≤ γi(p), ∀ i 6= s. (4.4)

This shows that if γi(p) = 0 for some i 6= s, then γi(p̃) = 0. By Proposition 2.3, we also have

Γj(p̃) ≥ Γj(p), ∀ j, (4.5)

which, after summing over all j, yields

∑

m∈I

γm(p̃) ≥
∑

m∈I

γm(p). (4.6)
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There are two cases to consider:

Case 1: γi(p̃) = γi(p), for all i ∈ I. In this case, we have that γs(p̃) > 0. To see this, note that, if

γs(p̃) = 0, we would have by Lemma 2.1 that

ps − ε ≥ pi + li
(

γi(p̃)
)

, ∀ i ∈ I,

which contradicts Eq. (4.3). But this implies that

∑

m∈I

pmγm(p) <
∑

m∈I

p̃mγm(p̃)

thus contradicting the fact that (p, x) is an ME.

Case 2: If γi(p̃) < γi(p) for some i ∈ I, then it follows from Eq. (4.6) that γs(p̃) > 0. Then the

change in the profit can be written as

∑

m∈I

p̃mγm(p̃) −
∑

m∈I

pmγm(p) = (ps − ε)γs(p̃) +
∑

m6=s

pm
(

γm(p̃) − γm(p)
)

> (ps − ε)γs(p̃) + (ps − ε)
∑

m6=s

(

γm(p̃) − γm(p)
)

= (ps − ε)
∑

j

(

Γj(p̃) − Γj(p)
)

≥ 0,

where the strict inequality follows from Eqs. (4.3) and (4.4), and the last inequality follows from

Eq. (4.5). But this again contradicts the fact that (p, x) is an ME.

This shows that for all i, we must have γi > 0, and completes the proof. Q.E.D.

This proposition establishes that the monopolist would not choose to have zero link load

on any link. Intuitively, allowing some positive traffic on a link would provide positive profits on

that link. The proof is somewhat more complicated than this observation, however, because it

also creates the indirect effect of reducing the loads on other links, thus reducing the rest of the

monopolist’s profits. The proof amounts to showing that this indirect effect is always dominated

by the direct effect.

Note also that Assumption 2.1(b’), which imposes that li(0) = 0 for all i is important for

this result. If some link i had li(0) > 0, our previous results remain unchanged, but it would be

possible for the monopolist to have zero link load on some link.

We are now ready to provide the characterization of equilibrium prices. Before doing so,

however, it is convenient to establish a lemma which will be useful in deriving this characterization.
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Lemma 4.3: Let Assumption 2.1 hold. Let (p, x) be an ME, and J =
{

j ∈ J | Γj > 0
}

.

Assume without loss of generality that 1 ∈ J . Then
(

p, γ, [Γj ]j∈J

)

is an optimal solution of the

following problem,

maximize
∑

i∈I

piγi

subject to u′
1(Γ1) − li(γi) − pi = 0, ∀ i ∈ I,

u′
j(Γj) − l1(γ1) − p1 = 0, ∀ j ∈ J − {1},

∑

i∈I

γi =
∑

j∈J

Γj ,

γi ≥ 0, Γj ≥ 0, ∀ i ∈ I, j ∈ J .

(4.7)

Proof: Assume to arrive at a contradiction that there exists some vector
(

p, γ, [Γj ]j∈J

)

feasible

for problem (4.7) such that
∑

i∈I

piγi >
∑

i∈I

piγi. (4.8)

We claim that this implies

γi ≤ γi(p), ∀ i ∈ I, (4.9)

where γi(p) is the load of link i at a GWE given p. Suppose the preceding relation does not hold

for some s, i.e., γs > γs(p). Since
(

p, γ, [Γj ]j∈J

)

is a feasible solution for problem (4.7), it can be

seen that we have

u′
k(Γk) − ls(γs) − ps = 0, ∀ k ∈ J .

We also have using the first order optimality conditions for a GWE that

u′
k

(

Γk(p)
)

− ls
(

γs(p)
)

− ps ≤ 0, ∀ k ∈ J ,

where Γk(p) is the flow rate of user k at a GWE given p. Since γs > γs(p), we obtain

Γk(p) > Γk, ∀ k ∈ J . (4.10)

Moreover, we have from the feasibility of
(

p, γ, [Γj ]j∈J

)

that

li(γi) + pi = ls(γs) + ps, ∀ i ∈ I.

It also follows from Lemma 2.1 that for all i with γi(p) > 0, we have

li
(

γi(p)
)

+ pi ≤ ls
(

γs(p)
)

+ ps.
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Since γs > γs(p), the preceding relations imply that

γi(p) < γi, ∀ i with γi(p) > 0,

and therefore that

γi(p) ≤ γi, ∀ i ∈ I.

Summing both sides of this relation over all i ∈ I, we obtain

∑

k∈J

Γk =
∑

i∈I

γi ≥
∑

i∈I

γi(p) =
∑

k∈J

Γk(p) ≥
∑

k∈J

Γk(p) >
∑

k∈J

Γk,

which is a contradiction [the last strict inequality uses Eq. (4.10)]. This implies that Eq. (4.9)

holds for all i ∈ I. Combining Eqs. (4.8) and (4.9), we obtain

∑

i∈I

piγi(p) >
∑

i∈I

piγi.

But this contradicts the fact that (p, x) is an ME, hence proves the desired result. Q.E.D.

Using this lemma, we can prove the following proposition.

Proposition 4.8 (Equilibrium Price Characterization): Let Assumption 2.1 hold. Assume

further that uj is twice continuously differentiable for each j, and li is continuously differentiable

for each i. Let (p, x) be an ME, and J = {j | Γj > 0}. Then, for all i ∈ I, we have

pi = (li)′(γi)γi +

∑

m∈I γm

−
∑

j∈J
1

u′′
j
(Γj)

.

Proof: By Lemma 4.3, it follows that
(

p, γ, [Γj ]j∈J

)

is an optimal solution of problem (4.7). To

simplify the notation, let us denote Γ = [Γj ]j∈J . One can check that, in view of the assumptions

that uj is strictly concave for all j and li is strictly increasing for all i, the constraint gradients of

this problem are linearly independent at (p, γ,Γ), i.e., (p, γ,Γ) is a regular point (for the proof, see

the Appendix). Hence, problem (4.7) admits Lagrange multipliers (see [BNO03], Chapter 5). The

Lagrangian function L(p, γ,Γ) for this problem is obtained by assigning the multipliers λi, i ∈ I,

to the first set of equality constraints in problem (4.7), the multipliers µj , j ∈ J − {1}, to the

second set of equality constraints, and µ1 to the last equality constraint; i.e.,

L(p, x, λ) =
∑

i∈I

piγi +
∑

i∈I

λi
[

u′
1(Γ1) − li(γi) − pi

]

+
∑

j∈J−{1}

µj

[

u′
j(Γj) − l1(γ1) − p1

]

+ µ1

[

∑

i∈I

γi −
∑

j∈J

Γj

]

.
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Using the first order necessary optimality conditions at the optimal solution (p, γ,Γ) for problem

(4.7), together with Proposition 4.6 (pi > 0 for all i), Proposition 4.7 (γi > 0 for all i), and the

fact that Γj > 0 for all j ∈ J , we obtain

γ1 = λ1 +
∑

j∈J−{1}

µj , (4.11)

γi = λi, ∀ i 6= 1, (4.12)

and

p1 − λ1(l1)′(γ1) −
(

∑

j∈J−{1}

µj

)

(l1)′(γ1) + µ1 = 0,

pi − λi(li)′(γi) + µ1 = 0, ∀ i 6= 1.

Using Eqs. (4.11) and (4.12), the preceding two relations can be rewritten as

pi − (li)′(γi)γi + µ1 = 0, ∀ i ∈ I. (4.13)

Taking the partial derivatives of L(p, γ,Γ) with respect to Γj also yields

u′′
1(Γ1)

∑

i∈I

λi − µ1 = 0,

µju′′
j (Γj) − µ1 = 0, ∀ j ∈ J − {1}.

Adding Eqs. (4.11) and (4.12) over all i, and using the preceding, we obtain

∑

m∈I

γm = µ1

∑

j∈J

1

u′′
j (Γj)

.

Substituting the previous relation for µ1 in (4.13) yields the desired result. Q.E.D.

This proposition is the central result of this section. An important implication is that the

profit-maximizing price for the monopolist service provider consists of two markups (above the

marginal cost of the monopolist, which is equal to zero here):1 the first is (li)′(γi)γi. We will see

in the next section that this term essentially internalizes the congestion externality ignored by the

users, while the second is a further monopoly markup over this. It is important to emphasize the

intuition for the term (li)′(γi)γi: the monopolist realizes that individual users’ willingness to pay

is reduced by congestion, and charges a greater price to each user in order to reduce congestion.

This term is the reason why monopoly pricing may improve the allocation of resources.

The second effect is a further markup, similar to the monopoly markup in the standard

economic models. We will see below that this term causes further reduction in the flow rates, and

typically creates a distortion relative to the social optimum.

1 The markup is defined as the difference between price and marginal cost.
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5. PERFORMANCE COMPARISON WITH SOCIAL OPTIMUM

A network planner with full information and centralized control of the system allocates the resources

as the optimal solution of the following problem:

maximize
∑

j∈J

uj(Γj) −
∑

i∈I

li(γi)γi

subject to Γj =
∑

i∈I

xi
j , ∀ j ∈ J

γi =
∑

j∈J

xi
j , ∀ i ∈ I

xi
j ≥ 0, ∀ i ∈ I, j ∈ J .

(5.1)

We call this problem the social problem and the optimal solution of this problem (which exists

under Assumption 2.1) the social optimum. Note that the social problem is defined in terms of

link load and flow allocations, and the prices do not appear in the problem. This is consistent with

both studies in general equilibrium analysis (see [Deb59], [ArH71]) and also our objective in this

framework; i.e, the goal of the network manager is to maximize the social surplus of the system.

The payments are merely transfers between different agents in the system.

Assuming that the objective function of the social problem is concave, an equivalent charac-

terization of the social optimum, denoted by x̃ is given by the first order conditions,

u′
j(Γ̃j) − li(γ̃i) − (li)′(γ̃i)γ̃i

{

≤ 0 if x̃i
j ≥ 0,

= 0 if x̃i
j = 0.

It can be seen from these conditions that if each user is charged (li)′(γ̃i)γ̃i, the allocation resulting

from the corresponding GWE will be the same as the allocation of the social optimum. This amount

is called the marginal congestion cost or the Pigovian tax. In a decentralized implementation, this

price is charged to the users to internalize the congestion externalities that they ignore.

From the ME price characterization given in Proposition 4.8, we see that the ME price is the

sum of the marginal congestion cost and a markup. Hence, even if the monopolist is a selfish agent

maximizing profits, he internalizes the congestion externalities. The reason is that the monopolist

wants to charge higher prices when the demand is more inelastic, i.e., the change in demand as a

function of the changes in price is low. The demand inelasticity in this problem is related to the

marginal congestion cost. The monopolist realizes that if it charges a high price for a particular

route, thus reducing traffic on that route, this may actually not reduce the attraction of this route

to users by much, because there will be a corresponding decrease in congestion.
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In this section, we explore the relationship between the flow rates resulting from the ME,

the social optimum, and the GWE at zero prices, with the goal of illustrating the effect of con-

gestion externalities. We also illustrate with an example why monopoly pricing may improve the

performance relative to the zero price case.

Proposition 5.9: Let Assumption 2.1 hold. Assume further that uj is twice continuously

differentiable for each j, li is continuously differentiable for each i, and the function l̃i, defined by

l̃i(x) = li(x)x for all x ≥ 0, is convex for each i. Let x denote the GWE at 0 prices, x̃ denote the

social optimum, and x denote the ME. For all j ∈ J , we have,

Γj ≤ Γ̃j ≤ Γj .

Proof: See the Appendix.

This result shows that when the prices are equal to 0, the users generate too much flow

relative to the social optimum since they ignore the congestion externalities. Monopoly pricing

improves this behavior; however it may introduce distortion relative to the social optimum due to

flow control decisions of the users.

The next example compares the performance of monopoly pricing to the performance of GWE

at 0 prices, and illustrates the effects of different utility and latency functions on the performance.

Example 5.1

Consider and network with J identical users and a single link. Assume that the utility function of

the users u(x) and the latency function of the link l(x) are given by

u(x) = x
a
, for some 0 < a ≤ 1,

l(x) =
1

Jb
x

b
, for some b ≥ 0.

By symmetry, it can be seen that at any GWE with any price, the flow rate of each user is the same.

Let xG denote the flow rate of a single user at the GWE with prices set equal to 0. Similarly let xM

denote the flow rate of a single user at the ME. Using the optimality conditions, we compute xG and

xM as

xG = a
1

1+b−a ,

xM =

(

a2

1 + b

) 1
1+b−a

.

Let UG and UM denote the total utility that the system gets at the GWE and ME, respectively, i.e.,

UG = Ju(xG) − l(JxG)JxG

= Ja
a

1+b−a (1 − a),
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UM = Ju(xM ) − l(JxM )JxM

= J

(

a2

1 + b

) a
1+b−a

(

1 −
a2

1 + b

)

.

We denote the ratio of UM to UG by E,

E =
UM

UG

=
(

a

1 + b

) a
1+b−a 1 −

a2

1+b

1 − a
,

i.e., E is a measure of performance of the ME to the performance of the GWE at 0 prices. Figure

5.1 illustrates the values of E as a function of a for different values of b. As can be seen from the

figure, at fixed values of a, increasing b improves the performance of the ME, i.e., the more convex

the latency function of the link, the better performance we have under monopoly pricing. Moreover,

at a fixed value of b, ME performs better at higher values of a as expected, i.e., the less concave the

utility function is, the better performance we have in the ME.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

1

1.5

2

2.5

3

a

E

b=1

b=2

b=3

Figure 5.1: Performance of the ME relative to the performance of the GWE with 0 prices.

This example illustrates an important point in the performance of ME. As our discussion of

pricing illustrated, the monopolist internalizes the congestion externality in its pricing decision.

This congestion externality is the reason why decentralized routing is inefficient. The more pro-

nounced this externality, the more useful is monopoly pricing. The example illustrates this by

showing that the performance of monopoly pricing improves relative to GWE with 0 prices as
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b increases, thus the latency function becomes more convex and the externalities become more

important.

We illustrated in this section that monopoly pricing introduces a natural market mechanism

to price congestion externalities. However, as can be seen from Proposition 4.8, monopoly pricing

also introduces a distortion related to the markup term. It can be inferred from this price charac-

terization that as the utility functions converge to linear functions, the markup term vanishes and

the ME achieves the full information social optimum. In the next section, we analyze other utility

functions for which the ME results in the socially optimal allocation.

6. ROUTING WITH PARTICIPATION CONTROL

In this section, we analyze traffic in a parallel-link network accessed by users that have a fixed

amount of traffic to send, i.e., user j has tj units of traffic. This problem is the standard routing

problem. However, in a system with the service provider setting the prices, the users should have

the option of not sending any data if the prices are set too high. Otherwise, the service provider

would charge infinite prices on the links. We refer to this problem as the routing problem with

participation control. It can be modelled by using the following utility function uj for user j,

uj(x) =

{

0 if 0 ≤ x < tj ,

tj if x ≥ tj ,
(6.1)

together with binary participation decision variables zj ; i.e., zj = 1 if user j chooses to send his tj

units of traffic and zj = 0 if user j chooses not to send any traffic.

An equilibrium of this problem can be defined as follows.

Definition 6.3: For a given price vector p ≥ 0, a vector (x∗, z∗) = (x∗
j , z

∗
j )j∈J , where x∗

j =
[

(x1
j )

∗, . . . , (xI
j )

∗
]

is a nonnegative vector and z∗j ∈ {0, 1}, is a GWE of the routing problem with

participation control, if for all j ∈ J ,

(x∗
j , z

∗
j ) ∈ arg max

xj≥0, zj∈{0,1}

{

uj(Γjzj) −
∑

i∈I

(

li(γi) + pi
)

xi
j

}

, (6.2)

where uj is given by Eq. (6.1), and

γi =
∑

j∈J

x∗i
j , ∀ i ∈ I.

Using Eq. (6.1), we can rewrite condition (6.2) equivalently as

(x∗
j , z

∗
j ) ∈ arg max

xj≥0, zj∈{0,1}
∑

i∈I
xi

j
=tj , if zj=1

{

zjtj −
∑

i∈I

(

li(γi) + pi
)

xi
j

}

. (6.3)
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Note that, due to non-concavity of the utility function [see Eq. (6.1)], best response correspondences

are not convex-valued, therefore one cannot use fixed point arguments to show the existence of a

GWE for a given p. In the following, we show that at the price set by the monopolist, there exists

a GWE, which also achieves the social optimum.

Using the linear structure of problem (6.3), we obtain the following characterization of a

GWE (proof ommitted).

Lemma 6.4: For a given price vector p ≥ 0, a vector (xj , zj)j∈J is a GWE if and only if it

satisfies the following conditions:

(1)
∑

j∈J xi
j = γi for all i ∈ I.

(2) If zj = 1,
∑

i∈I xi
j = tj .

(3) If zj = 0, xi
j = 0 for all i ∈ I.

Define the set I =
{

i | li(γi) + pi ≤ min
{

1,minm∈I{lm(γm) + pm
}

}

.

(4) If i /∈ I, then γi = 0.

(5) If minm∈I{lm(γm) + pm} < 1, then zj = 1 for all j ∈ J .

We next show the following lemma related to the uniqueness of link loads at a GWE of the

routing problem.

Lemma 6.5 Assume that li is a continuous strictly increasing function. For a given p ≥ 0, the

resulting link loads, γ = [γ1, . . . , γI ], at any GWE are unique.

Proof: Let γ and γ̃ be two distinct link load vectors at the GWE (x, z) and (x̃, z̃), respectively.

By Lemma 6.4 and condition (4), we have

pi + li(γi)

{

= K if i ∈ I,

> K if i /∈ I.
(6.4)

for some constant K, where I is the set of links as defined in Lemma 6.4. We also have

pi + li(γ̃i)

{

= K̃ if i ∈ Ĩ,

> K̃ if i /∈ Ĩ.
(6.5)

for some constant K̃, where Ĩ is the set of links as defined in Lemma 6.4, with γi replaced by γ̃i.

Assume without loss of generality that there exists some s such that γ̃s > γs. This implies

that

K̃ = ps + ls(γ̃s) > ps + ls(γs) ≥ K,
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from which we get K̃ > K. This implies that γ̃i ≥ γi for all i ∈ I. To see this, assume that γ̃i < γi

for some i. We see from (6.4) that

pi = K − li(γi),

and from (6.5) and K̃ > K that

pi ≥ K̃ − li(γ̃i) > K − li(γi),

yielding a contradiction. Hence, we have

∑

i∈I

γ̃i >
∑

i∈I

γi. (6.6)

Since K̃ > K, we also have z̃j ≤ zj for all j ∈ J , from which we get

∑

i∈I

γ̃i =
∑

j∈J

z̃jtj ≤
∑

j∈J

zjtj =
∑

i∈I

γi,

contradicting Eq. (6.6), and showing that the link loads at a GWE for a given p are unique.

Q.E.D.

Consider next the monopoly problem for the routing problem with participation constraint,

maximize
∑

i∈I

piγi

subject to γi =
∑

j∈J

xi
j , ∀ i ∈ I,

(x, z) ∈ G(p), p ≥ 0,

(6.7)

where G(p) denotes the set of (x, z) that satisfies conditions (1)-(5) stated in Lemma 6.4. We call

the optimal solution of problem (6.7)
(

p, (x, z)
)

as the monopoly equilibrium (ME) and p as the

monopoly equilibrium price.

We next show the following ME price characterization.

Lemma 6.6: Let
(

p, (x, z)
)

be an ME. Let γi =
∑

j∈J xi
j . Then for all i with γi > 0, we have

pi = 1 − li(γi).

Proof: Since γi > 0, it follows by condition (4) in Lemma 6.4 that i ∈ I, which implies that

pi + li(γi) ≤ 1.
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We next show that pi + li(γi) = 1. Assume, to arrive at a contradiction, that pi + li(γi) < 1. This

implies that

pk + lk(γk) < min
{

1, min
m/∈I

pm
}

, ∀ k ∈ I.

Hence, there exists some ε > 0 such that

pk + ε + lk(γk) < min
{

1, min
m/∈I

pm
}

, ∀ k ∈ I.

Hence, (x, z) satisfies conditions (1)-(5) at the price vector p̃ = p+ ei, where ei is an I-dimensional

vector, whose ith component is ε if i ∈ I, and 0 otherwise. But this shows that (x, z) ∈ G(p̃),

i.e.,
(

p̃, (x, z)
)

is feasible for problem (6.7), and has strictly higher objective function value. This

contradicts the fact the
(

p, (x, z)
)

is an ME, showing that pi + li(γi) = 1. Q.E.D.

Using the preceding proposition, we can rewrite problem (6.7) as

maximize xi
j
≥0, zj∈{0,1}

∑

i∈I

(

1 − li(γi)
)

γi

subject to γi =
∑

j∈J

xi
j , ∀ i ∈ I,

∑

i∈I

xi
j = tj , if zj = 1,

xi
j = 0, ∀ i ∈ I, if zj = 0,

or,

maximize xi
j
≥0, zj∈{0,1}

∑

j∈J

{

∑

i∈I

xi
j −

∑

i∈I

li(γi)xi
j

}

subject to γi =
∑

j∈J

xi
j , ∀ i ∈ I,

∑

i∈I

xi
j = tj , if zj = 1,

xi
j = 0, ∀ i ∈ I, if zj = 0,

which can equivalently be written as

maximize xi
j
≥0, zj∈{0,1}

∑

j∈J

{

zjtj −
∑

i∈I

li(γi)xi
j

}

subject to γi =
∑

j∈J

xi
j , ∀ i ∈ I,

∑

i∈I

xi
j = tj , if zj = 1.

(6.8)
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This problem has an optimal solution; i.e., at each z ∈ {0, 1}I , there exists an optimal solution

x (since the objective function is continuous and the constraint set is compact.) This shows that

there exists an ME of the routing problem with participation control.

Moreover, note that the social problem for the routing problem with participation control is

the following optimization problem that maximizes the aggregate social surplus,

maximize xi
j
≥0, zj∈{0,1}

∑

j∈J

{

zjtj −
∑

i∈I

li(γi)xi
j

}

subject to γi =
∑

j∈J

xi
j , ∀ i ∈ I,

∑

i∈I

xi
j = tj , if zj = 1,

[cf. Eq. (6.3)]. This problem is identical to problem (6.8). Hence, we establish the following result.

Proposition 6.10: A vector (x̂, ẑ) is a social optimum if and only if there exists a price vector

p̃ such that
(

p, (x, z)
)

is an ME.

7. CONCLUSIONS AND EXTENSIONS

A central objective of data network analysis is to characterize and implement relatively ef-

ficient flows of data in large networks. Although much of the literature approaches this problem

as a network optimization problem, the practice is often different. First, most networks are decen-

tralized: individual users often have control over their flow and routing decisions, while network

planners typically lack detailed knowledge about the needs and preferences of users. Second, most

networks are controlled by for-profit entities, whose objectives are not efficiency or user welfare, but

profit maximization. While a recent literature has investigated implications of the decentralized

nature of modern data networks, particularly emphasizing the potential inefficiencies that result

from this feature, there has been no systematic attempt to incorporate the second feature into

models of data networks.

This paper is a first attempt towards a systematic analysis of decentralized data networks

with many users that control their own flow and routing decisions, and service provider(s) charging

prices for bandwidth and data transmission to maximize their own profits. Such an analysis

first necessitates a unified approach to flow control and routing in the presence of prices, and a

characterization of the response of link loads to changes in prices. After developing such a unified

approach, this paper provides a characterization of prices, flow rates and link loads in the presence

of a profit-maximizing monopolist service provider.
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The most important feature of the monopoly equilibrium is that, despite its profit-maximizing

objective, the monopolist may induce an allocation that is socially optimal. In particular, in the

absence of the monopoly pricing, flow and routing decisions are inefficient, because users ignore

the congestion externality that they create on others by their data transmission. The monopolist

recognizes that, in the presence of the congestion externality, higher prices do not diminish the

attractiveness of its product by as much, because the reduction in data transmission reduces

congestion. Consequently, monopoly price for each link consists of two terms; the first exactly

internalizing the congestion externality, and the second a further markup to increase profits. We

show that in some important special cases, such as a model with only routing decisions, the

monopoly equilibrium achieves the social optimum that the network planner with full information

and complete control over flow and routing decisions would have implemented.

This research opens the way for a number of further analyses. In ongoing research, we are

considering the following problems:

(1) The results are presented for parallel-link networks. With a different formulation, they can

be generalized to other network topologies.

(2) Although the monopolist service provider may achieve the social optimum in some cases,

it does so by capturing the entire consumer surplus. A potentially more realistic situation

is with oligopolistic service providers competing for users. In this case, a similar efficiency

result can be obtained under more general circumstances, and importantly, with the entire

consumer surplus potentially accruing to users.

(3) When the monopolist creates distortions relative to the social optimum, these are partly

caused by the fact that the monopolist is forced to charge the same price to all users. In

practice, monopolists can charge different prices to different users, for example in the form of

two-part tariffs, which combine an entry fee and bandwidth prices. However, not knowing the

exact preferences of each user, the monopolist has to make two-part tariffs or other non-linear

pricing schemes incentive compatible. This leads to a different type of optimization problem,

which can be approached with the tools of mechanism design analysis.

(4) The service-provider viewpoints developed in this paper also applies to other aspects of re-

source allocation in communication networks, for example power control in wireless systems.

In this case, the monopolist will choose between different allocation methods, recognizing the

effect that these will have on the willingness of users to pay and to participate in its network.
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All of these problems are useful for applied network analysis and the design of appropriate

network regulation. They also require the development of new techniques and approaches, which

we are currently undertaking.

8. APPENDIX

Proof of Proposition 4.8: We prove that the constraint gradients of problem (4.7) are linearly

independent at (p, γ,Γ), where (p, x) is the ME, γi =
∑

j∈J xi
j , for each i ∈ I, and Γj =

∑

i∈I xi
j ,

for each j ∈ J . Let J = |J | and assume without loss of generality that J = {1, . . . , J}. Denote

the set of I + J equality constraints of problem (4.7) by

f(p, γ,Γ) = 0.

We show that ∇(γ,Γ)f(p, γ,Γ) is nonsingular under Assumption 2.1. If it were not, there would

be some nonzero I +J-dimensional vector (y′, t′)′ that belongs to the nullspace of ∇(γ,Γ)f(p, γ,Γ),

i.e.,

∇γ,Γf(p, γ,Γ)(y′, t′)′ = 0.

Multiplying the preceding out, we obtain the following set of equations,

tJ = (l1)′(γ1)





J−1
∑

k=1

tk + y1



 ,

tJ = (lm)′(γm)ym, ∀ m = 2, . . . , I,

tJ = u′′
1(Γ1)

I
∑

m=1

ym,

tJ = u′′
k(Γk)tk−1, ∀ k = 2 . . . , J.

Combining the previous relations, we obtain

tJ





∑

j∈J

1

u′′
j (Γj)

−
I

∑

i=1

1

(li)′(γi)



 = 0.

Since u′′
j (Γj) < 0 for all j and (li)′(γi) > 0 for all i, the term in the paranthesis is negative,

implying that tJ = 0. From this, we get that (y′, t′)′ = 0, hence proving that ∇(γ,Γ)f(p, γ,Γ) is

nonsingular.

Proof of Proposition 5.9: First we show that Γ̃j ≤ Γj for all j ∈ J . Partition the set of users

into two sets R and S as

R =
{

r ∈ J | Γ̃r > Γr

}

,
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S =
{

s ∈ J | Γ̃s ≤ Γs

}

.

We show that the set R is empty. Assume to arrive at a contradiction that the set R is nonempty.

Define a subset of links as

Iact =
{

i ∈ I | x̃i
j > 0, for some j ∈ R

}

.

We show that, for all i ∈ Iact, we have

γ̃i < γi, (8.1)

and

xi
s = 0, ∀ s ∈ S. (8.2)

Let i ∈ Iact. This implies that x̃i
j > 0 for some j ∈ R. The first order optimality conditions for

the social optimum and for the GWE at 0 prices imply that

u′
j(Γ̃j) − li(γ̃i) − (li)′(γ̃i)γ̃i ≤ 0, if x̃i

j ≥ 0,

= 0, if x̃i
j > 0,

(8.3)

and
u′

j(Γj) − li(γi) ≤ 0, if xi
j ≥ 0,

= 0, if xi
j > 0.

(8.4)

Using the preceding, we obtain

u′
j(Γ̃j) − li(γ̃i) − (li)′(γ̃i)γ̃i ≥ u′

j(Γj) − li(γi).

Since j ∈ R and uj is strictly concave, we have u′
j(Γ̃j) < u′

j(Γj), which implies that

li(γ̃i) + (li)′(γ̃i)γ̃i < li(γi). (8.5)

Since li is strictly increasing, it follows that

γ̃i < γi,

hence proving claim (8.1). To show (8.2), suppose to arrive at a contradiction, that xi
s > 0 for

some s ∈ S. This implies by the first order optimality conditions [cf. Eqs. (8.3) and (8.4)] that

u′
s(Γs) − li(γi) ≥ u′

s(Γ̃s) − li(γ̃i) − (li)′(γ̃i)γ̃i.
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Since s ∈ S and uj is concave, we have u′
s(Γs) ≤ u′

s(Γ̃s). Combining this with the preceding

equation and Eq. (8.5), we obtain

li(γi) ≤ li(γ̃i) + (li)′(γ̃i)γ̃i

< li(γi)
,

thus yielding a contradiction and showing (8.2).

We next use Eqs. (8.1) and (8.2) to obtain

∑

i∈Iact

γi =
∑

i∈Iact

J
∑

j=1

xi
j =

∑

i∈Iact

∑

j∈R

xi
j ≤

∑

j∈R

I
∑

i=1

xi
j =

∑

j∈R

Γj .

We also have
∑

i∈Iact

γ̃i ≥
∑

i∈Iact

∑

j∈R

x̃i
j =

∑

j∈R

I
∑

i=1

x̃i
j =

∑

j∈R

Γ̃j .

The preceding sets of equations together with the definition of set R imply that

∑

i∈Iact

γ̃i ≥
∑

i∈Iact

γi.

Summing Eq. (8.1) over all i ∈ Iact yields a contradiction, thus proving that the set R is empty.

We next show that Γj ≤ Γ̃j for all j ∈ J . Partition the set of users into two sets R and S as

R =
{

r ∈ J | Γr > Γ̃r

}

,

S =
{

s ∈ J | Γs ≤ Γ̃s

}

.

We show that the set R is empty. Assume to arrive at a contradiction that the set R is nonempty.

Define a subset of links as

Iact =
{

i | xi
j > 0, for some j ∈ R

}

.

We show that, for all i ∈ Iact, we have

γi < γ̃i, (8.6)

and

x̃i
s = 0, ∀ s ∈ S. (8.7)

Let i ∈ Iact. This implies that xi
j > 0 for some j ∈ R. The first order optimality conditions for

the ME imply that

u′
j(Γj) − li(γi) − (li)′(γi)γi +

∑I
m=1 γm

∑

{j∈J}
1

u′′
j
(Γj)

≤ 0, if xi
j ≥ 0,

= 0, if xi
j > 0,

(8.8)
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[cf. Proposition 4.8]. Together with Eq. (8.3), we obtain

u′
j(Γj) − l

i
(γi) +

∑I
m=1 γm

∑

{j∈J}
1

u′′
j
(Γj)

≥ u′
j(Γ̃j) − l

i
(γ̃i),

where

l
i
(x) = li(x) + (li)′(x)x,

=
(

li(x)x
)′

.

Since j ∈ R and uj is strictly concave, we have u′
j(Γj) < u′

j(Γ̃j), which implies that

l
i
(γi) −

∑I
m=1 γm

∑

{j∈J}
1

u′′
j
(Γj)

< l
i
(γ̃i). (8.9)

Since l
i

is nondecreasing [in view of the convexity of li(x)x] and uk is strictly concave for all k,

this implies that

γi < γ̃i,

hence proving claim (8.6). To show (8.7), assume to arrive at a contradiction, that x̃i
s > 0 for some

s ∈ S. This implies by the first order optimality conditions [cf. Eqs. (8.3) and (8.8)] that

u′
s(Γ̃s) − l

i
(γ̃i) ≥ u′

s(Γs) − l
i
(γi) +

∑I
m=1 γm

∑

{j∈J}
1

u′′
j
(Γj)

.

Since s ∈ S and uj is concave, we have

u′
s(Γs) ≥ u′

s(Γ̃s),

which together with Eq. (8.9) implies that

l
i
(γ̃i) ≤ l

i
(γi) −

∑I
m=1 γm

∑

{j∈J}
1

u′′
j
(Γj)

< l
i
(γ̃i)

,

thus yielding a contradiction and showing (8.7).

The rest is a similar argument as before and proves that the set R is empty. Q.E.D.
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