
Efficiency Loss in a
Network Resource Allocation Game

Ashish Khisti

October 26, 2004

1 Introduction

In this report, we summarize the paper by Ramesh Johari and John Tsitsiklis [1]. This paper consid-
ers the problem of distributed resource allocation mechanisms for the Internet. The current Internet
is used widely by a heterogenous population of users. Different usersplace different values on the
perceived network performance. Moreover there are some fundamental constraints on the maximum
rate each link can support. How can the bandwidth be efficiently allocated to different users in such
a setting? To make the problem more concrete, consider the example shown in figure 1 taken from
[2].

Dest. 3

User 1, Path 1Src. 1 Dest. 1

User 2,  Path 2Src. 2
Dest 2. 

User 3, Path 3Src. 3

Link A, CA = 2 Link B, CB = 1

Figure 1: Two link Network

In the figure above, there are three users1 labelled 1, 2 and 3 and two links A and B. The path
belonging to user 1 uses both links A and B. Similarly user 2 uses link A while user 3 uses link B
only. Also suppose the capacities of the two links areCA = 2 andCB = 1. How should the rates
be allocated to the three users? One possible solution is to do a max-min fair allocation. This
particular allocation has a desirable property that it gives the most poorly treated user (i.e. the user
with the lowest rate) the maximum possible share without wasting network resources. The max min
allocation in this example is :d1 = d3 = 0.5 andd2 = 1.5.2 However max-min fair allocation may
not always be desirable. Suppose user 1 only requires 0.25 units of bandwidth and does not care
about the rest. Then it is preferable to assignd1 = 0.25, d2 = 1.75 andd3 = 0.75. In general one
should consider the utility function of users before doing bandwidth allocation. Suppose each user
r ∈ {1,2, . . . ,R} has a utility functionUr(·). The network optimization problem is to allocate each
user a data ratedr to solve the following problem

max
{d1,d2,...,dR}

R

∑
r=1

Ur(dr)

1Each source-destination pair refers to one “user”.
2We divide link B equally between user 1 and 3. On link A, since user 1 uses only 0.5 units, user 2 gets 1.5 units.
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The set of feasible rate vectors{d1,d2, . . . ,dR} must satisfy capacity constraints on each link.3

We will impose the following constraint on the utility functions:

ASSUMPTION1 For eachr,Ur(dr) is a continuously differentiable, non-decreasing strictly concave
function.

The above assumption has been used throughout the paper. An importantimplication of this
assumption is that the demand of each user is elastic. The utility keeps increasing as the user gets
higher rate. In particular utility functions shown in 2(b) are not permissible.

(b) Not Permissible Utility Function(a) Permissible Utility Function

Figure 2: Permissible Utility Functions

To solve this optimization problem the network manager needs to know the utility function
of each user. In practice it may not be possible. The idea behinddistributed resource allocation
is to introduce a pricing mechanism that solves the above optimization problem in adistributed
manner. Each user performs a local computation based on its own utility function and submits a
bid to the network. The network manager collects these bids and determines theprice to charge
the users. In the remainder of this report we will explain this distributed pricing mechanism in
more detail. In Section 2 we will consider the case of a single link (All users wish to use a single
link with total capacity ofC). We will first describe the pricing mechanism that solves the global
optimization problem. This particular mechanism assumes that the users are price taking (i.e. they
do not anticipate the effect of their bids on the price). Then we will consider the case when the
users are price anticipating. In this case there is a unique Nash equilibrium. Moreover at the Nash
equilibrium, the aggregate utility is within 3/4 of the optimal value. Section 3 generalizes these
single link results to the case of an arbitrary network.

2 Single Link Case

SupposeR users wish to communicate over a single link with capacityC. Each user is assigned a
portion of this capacity saydr . We wish to solve the following problem:

SYSTEM:

maximize ∑
r

Ur(dr) (1)

subject to ∑
r

dr ≤C (2)

dr ≥ 0, r = 1,2, . . .R (3)

3For the single link case, this constraint is∑r dr ≤ C. For the network case, this constraint will be formalized in
section 3.
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Under assumption 1, the above problem has a unique optimal solution. We will now describe a
specific pricing mechanism that solves this problem in a distributed manner. Suppose userr gives a
payment ofwr to the link manager; we assume thatwr ≥ 0. Given the vectorw = (w1,w2, . . .wr) of
bids, the link manager chooses a rate allocationd = (d1, . . . ,dr) such thatdr = wr/µ, where

µ=
∑r wr

C
(4)

In the subsequent sections we will consider two different ways in which the users will interact
with this pricing mechanism. First we will consider the case when the users areprice taking and
establish the existence of acompetitive equilibrium. Then we will consider the case when the users
are price anticipating and establish the existence of aNash equilibriumand study its properties.

2.1 Price taking Users and Competitive Equilibrium

In this section we consider a competitive equilibrium between the users and thelink manager, which
was first observed in [3]. A central assumption here is that the users are not price anticipating. More
specifically, given a priceµ > 0, each userr, acts to maximize the following payoff function over
wr ≥ 0:

Pr(wr ;µ) = Ur(
wr

µ
)−wr (5)

The first term represents the utility to userr of receiving a rate allocation equal towr/µ. The
second term is the paymentwr made to the manager. The users are price taking, in a sense that they
take the priceµ as a given quantity and do not anticipate its dependence onwr . We say that a pair
(w,µ) is in competitive equilibrium if each user maximizes his/her payoff in (5) and the network
sets the price according to (4). At the competitive equilibrium, we have the following conditions:

Pr(wr ;µ) ≥ Pr(w̄r ;µ) for w̄r ≥ 0, r = 1, . . . ,R (6)

µ =
∑r wr

C
(7)

We now present the main result for this pricing mechanism.

THEOREM 1 Under assumption 1, there exists a unique competitive equilibrium i.e. a uniquepair
(w,µ) that satisfies (6)-(7). Furthermore the corresponding rate vectord = w/µ satisfies the SYS-
TEM problem (1)-(3).

Proof: (Outline) The system problem can be formulated as a lagrangian optimization problem:

L (d,µ) = ∑
r

Ur(dr)−µ

(

∑
r

dr −C

)

Differentiating with respect todr , we have:

U ′
r (dr) = µ if dr > 0

U ′
r (dr) ≤ µ if dr = 0
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Substitutingdr = wr/µ, we have

U ′
r (

wr

µ
) = µ if wr > 0

U ′
r (

wr

µ
) ≤ µ if wr = 0

The resultingwr however precisely satisfies (6). Furthermore since∑r dr = C, (7) is also satis-
fied. Similarly we can show that the solution to (6)-(7) satisfies the SYSTEM problem. �

Note that in the above proof, we required that the users are not price anticipating. In particular
the users do not attempt to exploit the dependence ofµ onwr . We now mention several remarks:

Remarks

• The above result that competitive equilibrium achieves global optimality is actually a special
case of a more general problem of social welfare. This process of achieving competitive
equilibrium is calledtatonnement[5](section 5.4). Kelly’s main contribution in [3] is to adapt
this general result to the case of network with elastic demand.

• In this pricing mechanism users iteratively adjust their bids (wr ) based on the price (µ) they
receive to maximize their payoff (5). However Theorem 1 does not consider the dynamics of
this mechanism. It simply asserts that the process will converge to a unique equilibrium and
the resulting allocation will maximize the SYSTEM problem.

• The choice of the payoff functions (5) appears unique upto a scaling constant. For example,
with Pr(wr ;µ) = Ur(

wr
µ )−0.5wr the result of Theorem 1 still holds.4 However it is not clear

if there are more general payoff functions which achieve global optimality.

2.2 Price anticipating users and Nash equilibrium.

Before we consider the case of price anticipating users, we will provide asimple example of the
Nash equilibrium.

2.2.1 Nash Equilibrium - Background

Nash equilibrium is a celebrated result in the Game Theory literature. It refers to a set of strategies
for a game with the property that no player can benefit by changing his strategy while the other
players keep their strategies unchanged. It implicitly assumes that each user behaves selfishly to
maximize his/her payoff. It is best understood by a simple example.

Prisoner’s Dilemma Two suspects are arrested by police. The police have insufficient evidence
for a conviction and having separated them, visit each of them and offer the same deal: If you con-
fess and your accomplice remains silent, he gets 10 year sentence and yougo free. If he confesses
and you remain silent you get 10 year sentence. If both of you remain silent, each gets six months
imprisonment but if both confess against each other, each gets a 6 year sentence. These rules can be
summarized as:

4However now the bid and price at the equilibrium will scale accordingly. If(wr ,µ) satisfies (6) then(2wr ,2µ) will
maximize this modified payoff.
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Strategy You deny You Confess
He denies Both serve 6 months He serves 10 yrs.; you are free

He Confesses He goes free; you serve 10 yrs. both serve 6 yrs

The question is that knowing the above rules but not knowing what your accomplice is going to
do what should be your strategy?

Clearly if both could communicate, then both would agree to deny and serve sixmonths. Since
we do not know what the other suspect is going to do, we decide to act selfishly to reduce our
sentence. Suppose the other suspect confesses. Then clearly it is in our best interest to confess as
well, since that will reduce the sentence. On the other hand suppose he denies. It is still in our
interest to confess. Thus no matter what the other suspect does, we will always confess. The second
suspect, by a symmetric argument will also confess. Hence the Nash equilibrium occurs when both
confess against each other and get a six year sentence.

The above example illustrates an important property of the Nash equilibrium that it need not be
globally optimum. We will investigate this property further in the resource allocation problem. We
will show that there exists a unique Nash equilibrium for the pricing mechanismconsidered in the
previous section and it achieves within 3/4 of the global optimum. For a more elaborate treatment
of Nash Equilibrium refer to a standard book on game theory such as [6].

2.2.2 Nash Equilibrium for the Pricing Scheme

Suppose now that the users consider the effect of their bids on the priceµ. In particular given
w−r = (w1, . . . ,wr−1,wr+1, . . .wR), each user will choosewr to maximize:

Qr(wr ;w−r) =

{

Ur

(

wr
∑sws

C
)

−wr if wr > 0

Ur(0) if wr = 0
(8)

A Nash equilibrium exists for the above game if there exists a vector of bidsw that satisfies the
following:

Qr(wr ;w−r) ≥ Qr(w̄r ;w−r) for all w̄r ≥ 0 (9)

We now state the main result for Nash Equilibrium:

THEOREM 2 Under assumption 1, there exists a uniquew that achieves the Nash equilibrium (9).
Furthermore the corresponding rate assignmentsdr = wr

∑sws
maximize the SYSTEM problem (1)-(3)

with the following modified utility function

Ûr(dr) =

(

1−
dr

C

)

Ur(dr)+

(

dr

C

)(

1
dr

∫ dr

0
Ur(z)dz

)

(10)

Proof: (Outline) The existence of the Nash equilibrium follows from the fact thatQr(·) is a concave
function inwr . The proof of its uniqueness follows by showing that it is equivalent to optimizing a
SYSTEM function with modified utility functions. Since the SYSTEM has a unique solution, the
uniqueness of Nash equilibrium follows.

Note that the optimalwr that satisfies (9) also satisfies the following equation (obtained by
differentiatingQr(·).

U ′

(

wr

∑sws
C

)(

1−
wr

∑sws

)

=
∑sws

C
if wr > 0 (11)

U ′(0) ≤
∑sws

C
(12)

5



Also note that thedr satisfying the SYSTEM with utility functionŝU(·) solves the following (ob-
tained by differentiatinĝUr(·) with ρ being the Lagrange multiplier):

U ′(dr)

(

1−
dr

C

)

= ρ if dr > 0 (13)

U ′(0) ≤ ρ (14)

It follows that (11)-(12) is equivalent to (13)-(14) by choosingdr = wr
∑sws

andρ = ∑sws
C and this

establishes the equivalence.
�

2.2.3 Price of Anarchy

It is well known that the Nash equilibrium does not achieve global optimum. Inthis section, we
explicitly quantify the efficiency loss.

THEOREM 3 Suppose that the utility functionUr satisfy assumption 1 and thatUr(0)≥ 0 for all r. If
dG anddS are the rate allocations for the Nash equilibrium and Competitive equilibrium respectively
then

∑
r

Ur(d
G
r ) ≥

3
4 ∑

r
Ur(d

S
r )

Moreover, for everyε > 0 there exists anR> 1 and a choice of utility functionsUr(·) such that

R

∑
r=1

Ur(d
G
r ) ≤

(

3
4

+ ε
) R

∑
r=1

Ur(d
S
r )

Before we prove this result, we prove the following lemma:

LEMMA 1 Letd = (d1, . . . ,dR) satisfy,∑r dr ≤C. LetdS be the optimal solution to SYSTEM. Then
the following inequality holds:

∑r Ur(dr)

∑r Ur(dS
r )

≥
∑r U ′

r (dr)dr

(maxr U ′
r (dr))C

The equality occurs ifUr(·) are linear functions (i.e. linear utility functions are the worst case
scenario).

Proof: (Outline) From concavity ofUr(·), we have thatUr(dS
r )≤Ur(dr)+U ′

r (dr)(dS
r −dr). Now

the left hand side can be bounded as:

LHS =
∑r Ur(dr)

∑r Ur(dS
r )

≥
∑r(Ur(dr)−U ′

r (dr)dr)+∑r U ′
r (dr)dr

∑r(Ur(dr)−U ′
r (dr)dr)+∑r U ′

r (dr)dS
r

≥
∑r(Ur(dr)−U ′

r (dr)dr)+∑r U ′
r (dr)dr

∑r(Ur(dr)−U ′
r (dr)dr)+maxr U ′

r (dr)C
(∑

r
arxr ≤ max

r
arC if ∑xr ≤C)

≥
∑r U ′

r (dr)dr

(maxr U ′
r (dr))C

= RHS (∑
r

Ur(dr)−U ′
r (dr)dr ≥ 0)

Furthermore the equality occurs if∑r U ′
r (dr)dS

r = maxr U ′
r (dr)C andUr(dS

r )=Ur(dr)+U ′
r (dr)(dS

r −
dr). This requires thatUr(·) be linear. �
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Proof: (Theorem 3) The proof is constructive in that it gives the utility functions for which
the loss is close to 1/4 of the optimal value. From the above lemma we can only consider utility
functions that are linear. LetUr(dr) = αrdr . Also without loss in generality letα1 = 1 andαr ≤ 1
for r > 1. Now from Lemma 1 it follows that to get the worst case efficiency, we mustminimize
∑r αrdr = d1 +∑r>1 αrdr by treating{αr} and{dr} as variables. The optimization problem can be
stated as follows:

minimize dG
1 +

R

∑
r=2

αrd
G
r (15)

subject to αr(1−dG
r ) = 1−dG

1 , if dG
r > 0 (16)

αr(1−dG
r ) ≤ 1−dG

1 , if dG
r = 0 (17)

∑
r

dG
r = 1, 0≤ αr ≤ 1 dG

r ≥ 0 (18)

In the above optimization problem, we are minimizing the ratio of the aggregate utility atthe Nash
equilibrium to that of the global optimum. The second and third conditions above, ensure thatdG is
indeed a Nash equilibrium. Note that since the Nash equilibrium is unique, the above optimization
should have a unique minimizingdG. Without loss in generality we make the following simplifica-
tions:

• dG
r > 0 for every user. (If not we can simply remove that user and the value ofRdecreases by

1). This leads to havingαr = (1−dG
1 )/(1−dG

r ).

• dG
2 = dG

3 = · · · = dG
R . This follows from the symmetry of the problem.

Hence the optimization problem reduces to

minimize dG
1 +(1−dG

1 )2
(

1−
1−dG

1

R−1

)−1

(19)

subject to 1/R≤ dG
1 ≤ 1 (20)

For the worst case scenario, we letR→ ∞, then we have to minimize the quadratic expression
dG

1 +(1−dG
1 )2, for 0≤ dG

1 ≤ 1, which gives an efficiency loss of 3/4.
Finally, the worst case utility functions are of the formU1(d1) = d1 andUr(dr)≈ dr/2 for r > 1.

The rate allocation at the Nash equilibrium isdG
1 = 1

2 anddG
r = 1

(2(R−1)) . By makingR arbitrarily
large we can achieve an efficiency loss arbitrarily close to 3/4.�

2.2.4 Discussion

• While the proof above is constructive, it seems to lack intuition. We are searching over the
entire space of utility functions and getting the worst case loss. Is there an intuition behind
the solution? Note that the system problem with linear utility functions is trivial. We simply
allocate all the bandwidth to the user with the greatest utility (user 1 in the proof above) and
allocate nothing to everyone else. This solution cannot be a Nash equilibrium,since Nash
equilibrium solution requires atleast two users to make positive bids. Now by making the
utility function of all other users to be equal we are forcing all of them to be active at the
Nash equilibrium. Thus we are trying to depart from the global optimum as muchas possible
with this choice.5

5The exact choice ofUr (dr) = dr/2 seems more difficult to explain.
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• Theorem 3 holds for the specific pricing mechanism used by Kelly. Is it possible to do better
by choosing a different pricing mechanism? In his thesis Johari [8] presents a set of conditions
under which the efficiency loss cannot be better than 3/4. In particular, one cannot do better
than 3/4 if the network manager does not price discriminate between users. More recently
Sanghvi and Hajek [9] have proposed a pricing mechanism for a two user system that achieves
within 7/8 of the optimum.

• While the result for single link may not be very practical for the wireline case, it serves as a
basis for the network case discussed next.

• A wireless network such as the Multiple Access Channel can be reduced tothe single link
case and it follows that even for these channels there is atmost 1/4 loss in efficiency.

• The problem is solved for the constraint∑r dr < C. It can be readily generalized to the case
when there are weights associated with each rate:∑r βrdr < C. However the solution does
not generalize when the constraint represents a convex set instead ofa straight line.

3 General Network Case

We now consider the case where there areJ links in the network with capacities(C1,C2 . . .CJ) with
Cj > 0. Suppose there areP paths in this network and each path is associated with a unique user.
We define two matricesA andH such that

A jp =

{

1 if link j is included in path p

0 otherwise

Hrp =

{

1 if path p belongs to user r

0 otherwise

Dest. 3

User 1, Path 1Src. 1 Dest. 1

User 2,  Path 2Src. 2
Dest 2. 

User 3, Path 3Src. 3

Link A, CA = 2 Link B, CB = 1

Figure 3: Two link Network

For the example in figure 3, we haveA=

(

1 1 0
1 0 1

)

and H =I3. The system problem is now

given by
SYSTEM

maximize ∑
r

Ur(dr)

subject to Ay≤C,Hy = d,yp ≥ 0, p∈ P

The set of feasible region is compact and hence if we have the utility functions satisfy assump-
tion 1, then the optimald vector is unique. The pricing mechanism for this network is an extension
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of the single link case: Letw jr denote the bid of userr on link j. We denotewr = (w jr , j ∈ J ) to be
the set of bids that userr makes on the links. Letw = (wr , r ∈ R ). Then the rate allocation on link
j is determined by the priceµj = ∑r w jr

C . Thus portion of bandwidth userr gets on linkj is given by:

x jr =

{

w jr

µj
if w jr > 0

0 otherwise
(21)

Given the set of rates(x jr , r ∈ R ) on the links, how does userr calculate the data ratedr that he/she
receives? If there is only one path assigned to a given user, the ratedr = min j x jr . However in
general there may be multiple paths assigned to each user. Given the set ofratesx jr , each user
solves the followingmax flowoptimization problem:

maximize ∑
p∈r

yp (22)

subject to ∑
p∈r: j∈p

yp ≤ x jr (23)

yp ≥ 0, p∈ r (24)

The first equation above is the total data rate userr gets from his/her paths. The second constraint
says that the aggregate of all paths of userr that pass through a linkj cannot exceedx jr . We denote
the solution to the above optimization problem bydr(xr(w))

3.1 Nash Equilibrium

As in the single link case, we begin by defining

Qr(wr ;w−r) = Ur(dr(x(w)))−∑
j

w jr (25)

We say thatw is a Nash equilibrium if

Qr(wr ;w−r) ≥ Qr(w̄r ;w−r) for all w̄r ≥ 0 (26)

Unlike the single link case, it turns out that in the network case, a Nash equilibrium may not
exist. This could happen because our pricing mechanism assumes that the allocation (21) is market
clearing (i.e. the entire bandwidth is allocated). However there could some links that cannot be
fully utilized because some other links are bottleneck in the network. In such case, there will be
some surplus bandwidth remaining on the link. If a user is getting a surplus thenhe/she can reduce
the bid to get less bandwidth. On the other hand one cannot bid 0, as from (21) this would give 0
bandwidth in return. This problem is fixed by defining an extended pricing mechanism that allow
each user to receive non-zero bandwidth if no user has a positive bid on a given link. However, we
will not go into the details of this particular extension as it is merely a technical detail. To follow
the rest of this exposition assume that there are atleast two positive bids on each link.6

6There cannot be a Nash equilibrium with only one positive bid, since this user can reduce his/her bid but cannot make
it 0.
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3.2 Price of Anarchy

We now show that the Nash equilibrium loses atmost 1/4 of the global optimum in thenetwork case
as well. To simplify exposition and provide the main ideas in concise manner, we will consider the
case whenUr(dr(xr)) is differentiable for everyx jr . It is possible to establish similar result under
milder constraint7, however it requires significantly more mathematical machinery but not much
more intuition. We will find it convenient to work in terms of the vectorxr instead ofwr . We define

fr(xr ;w−r) = Ur(dr(xr))−∑
j

Wjr x jr

Cj −x jr
(27)

HereWjr = ∑s6=r w js.

CLAIM 1 A vectorw is Nash equilibrium to the original system (25)-(26) iffxr(w) satisfies the
following for eachr:

xr(w) = argmax
xr

fr(xr ;w−r)

Proof: (Outline) The proof follows immediately from the rate allocation rulex jr =
w jr

w jr +Wjr
which

is equivalent tow jr =
Wjr x jr

Cj−x jr
. MaximizingQr(·) in (26) is equivalent to maximizingfr(·). �

CLAIM 2 If xr is a Nash equilibrium for the original problem then it also satisfies

xr = argmax
xr

[

αT
r xr −∑

j

Wjr x jr

Cj −x jr

]

whereα = ∇Ur(dr(xr)).

Proof: (Outline) The proof follows immediately from the previous claim and noting that the optimal
x jr satisfies the same differential equations in the two claims.�

The above claim implies that the solution to a Nash equilibrium to the original problem is also
a Nash equilibrium to a new system with linear utility functionsÛ(xr) = ∑ j α jr x jr . It follows from
this result that if the original system has a Nash equilibrium then each link in thenetwork has a
Nash equilibrium under modified utility functionsα jr x jr .

THEOREM 4 The efficiency loss for the network case is atmost 1/4.

SupposexG
r be a Nash equilibrium andxS

r be the global optimum point. We derive the following set
of inequalities as in the single link case.

∑r Ur(dr(xG
r ))

∑r Ur(dr(xS
r ))

≥
∑r(Ur(dr(xG

r ))−αT
r xG

r )+∑r αT
r xG

r

∑r(Ur(dr(xS
r ))−αT

r xG
r )+∑r αT

r xS
r

(28)

≥
∑ j ∑r α jr x jr

∑ j(maxr α jr )Cj
(29)

If the overall system is at the Nash equilibrium each single link has a Nash equilibrium and we
can invoke the single link result that∑r α jr x jr ≥

3
4(maxr α jr )C. Substituting this in 29, we get the

desired result.
7Ur (·) need only be superdifferentiable inxr
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4 Related Work

A substantial amount of work on application of Game theorey for network resource allocation prob-
lems has emerged in recent years. In particular subsequent work by Johari et. al. [7] have considered
the case when the network links have elastic supply rather than hard capacity constraints. They show
that under this assumption the loss in efficiency is 4

√

(2)−5. Johari has also shown that there is a
class of pricing mechanisms for which the efficiency loss of 3/4 is optimum. A necessary condition
for these mechanism is that the network does not discriminate between users. A subsequent result
by Sanghvi and Hajek [9] has shown that if we allow the network to discriminate between users
than the worst case efficiency is 7/8.

Another related work by Tim Roughgarden and Eva Tardos [10] considers a game for network
routing to minimize the total latency. They show that if the intermediate nodes choose locally
optimal routes than the total latency is no more than 4/3 of the optimal. It is not clearif there is any
connection between this result and the present paper.

Finally there has been a growing interest in using ideas of game theory for resource allocation in
wireless networks. For example efficient mechanisms for power control exist and have been shown
to converge to a Nash equilibria [11].
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