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1 Introduction

In this report, we summarize the paper by Ramesh Johari and John TsitHikliis paper consid-
ers the problem of distributed resource allocation mechanisms for thedht@ime current Internet
is used widely by a heterogenous population of users. Different ptars different values on the
perceived network performance. Moreover there are some fundaheenstraints on the maximum
rate each link can support. How can the bandwidth be efficiently allocataffdoedt users in such
a setting? To make the problem more concrete, consider the example shogurénifitaken from

2].

sre. 1 User 1, Path 1 Dest. 1
( \ Link A, Ca=2 / \ LinkB, Cg=1 /
/ I %lDest 2. \
Src. 2 User 2, Path 2 Dest. 3
est.
Stc. 3 User 3, Path 3

Figure 1: Two link Network

In the figure above, there are three useiabelled 1, 2 and 3 and two links A and B. The path
belonging to user 1 uses both links A and B. Similarly user 2 uses link A whiledusses link B
only. Also suppose the capacities of the two links @se= 2 andCg = 1. How should the rates
be allocated to the three users? One possible solution is to do a max-min faitialocahis
particular allocation has a desirable property that it gives the most poediett user (i.e. the user
with the lowest rate) the maximum possible share without wasting networkroesod' he max min
allocation in this example isd; = d3 = 0.5 andd, = 1.5.2 However max-min fair allocation may
not always be desirable. Suppose user 1 only requires 0.25 unitadiviztth and does not care
about the rest. Then it is preferable to assignr= 0.25,d, = 1.75 andds = 0.75. In general one
should consider the utility function of users before doing bandwidth allataBoippose each user
r € {1,2,...,R} has a utility functiorlJ;(-). The network optimization problem is to allocate each
user a data raté to solve the following problem

max iur(dr)

{d1.dz,....dr}/

1Each source-destination pair refers to one “user”.
2We divide link B equally between user 1 and 3. On link A, since user 1 usg€d units, user 2 gets 1.5 units.



The set of feasible rate vectofds,dy, ...,dr} must satisfy capacity constraints on each fink.
We will impose the following constraint on the utility functions:

AssumpPTION1 Foreach, U (d,) is a continuously differentiable, non-decreasing strictly concave
function.

The above assumption has been used throughout the paper. An imponpdioation of this
assumption is that the demand of each user is elastic. The utility keeps ingraagime user gets
higher rate. In particular utility functions shown in 2(b) are not permissible.

(a) Permissible Utility Function (b) Not Permissible Utility Function

Figure 2: Permissible Utility Functions

To solve this optimization problem the network manager needs to know the utiligtidan
of each user. In practice it may not be possible. The idea bafigtdbuted resource allocation
is to introduce a pricing mechanism that solves the above optimization problerdigtriduted
manner. Each user performs a local computation based on its own utility foraotich submits a
bid to the network. The network manager collects these bids and determingscihéo charge
the users. In the remainder of this report we will explain this distributed grioiechanism in
more detail. In Section 2 we will consider the case of a single link (All userk wisise a single
link with total capacity ofC). We will first describe the pricing mechanism that solves the global
optimization problem. This particular mechanism assumes that the users aréaging (i.e. they
do not anticipate the effect of their bids on the price). Then we will conglue case when the
users are price anticipating. In this case there is a unique Nash equilibrioneoler at the Nash
equilibrium, the aggregate utility is within 3/4 of the optimal value. Section 3 genesattzese
single link results to the case of an arbitrary network.

2 SingleLink Case

SupposeR users wish to communicate over a single link with capa€ityeach user is assigned a
portion of this capacity sagl,. We wish to solve the following problem:

SYSTEM:
maximize ZUr(dr) (1)
subject to idr <C (2)
drrzo,rzl,z,...R (3)

3For the single link case, this constraintysd, < C. For the network case, this constraint will be formalized in
section 3.



Under assumption 1, the above problem has a unique optimal solution. Weowill@scribe a
specific pricing mechanism that solves this problem in a distributed manngroSel user gives a
payment ofw; to the link manager; we assume tlgt> 0. Given the vectow = (w1, Wo, ... w;) of
bids, the link manager chooses a rate allocatien(ds, .. .,d,) such thad, = w; /p, where

2rWr
=< 4
M==5 (4)

In the subsequent sections we will consider two different ways in whielusiers will interact
with this pricing mechanism. First we will consider the case when the usemriaeetaking and
establish the existence otampetitive equilibriumThen we will consider the case when the users
are price anticipating and establish the existenceNésh equilibriumand study its properties.

2.1 Pricetaking Usersand Competitive Equilibrium

In this section we consider a competitive equilibrium between the users alktheganager, which
was first observed in [3]. A central assumption here is that the usersaprice anticipating. More
specifically, given a pricgt > 0, each user, acts to maximize the following payoff function over
w, > 0:

W
u

The first term represents the utility to ugeof receiving a rate allocation equal ¥g /). The
second term is the payment made to the manager. The users are price taking, in a sense that they
take the prical as a given quantity and do not anticipate its dependencg okiVe say that a pair
(w, ) is in competitive equilibrium if each user maximizes his/her payoff in (5) and éteark
sets the price according to (4). At the competitive equilibrium, we have thenioigpconditions:

P (We; W) = Ur(—) — Wy %)

P(we;) > Pr(we;p) forw, >0,r=1,....R (6)
oW

We now present the main result for this pricing mechanism.
THEOREM1 Under assumption 1, there exists a unique competitive equilibrium i.e. a upégue

(w, ) that satisfies (6)-(7). Furthermore the corresponding rate vdctow/p satisfies the SYS-
TEM problem (1)-(3).

Proof: (Outline) The system problem can be formulated as a lagrangian optimizatiblepr.

£(d,p) = Zur(dr)—u<2dr—c>

Differentiating with respect td,, we have:

u/(dr) b ifd >0
Uldr) < u  ifd=0



Substitutingd, = w; /|, we have

Ur’(%) = pu  ifw>0
Uy < p ifw=0

u

The resultingw, however precisely satisfies (6). Furthermore sifigd, = C, (7) is also satis-
fied. Similarly we can show that the solution to (6)-(7) satisfies the SYSTHidlem. O

Note that in the above proof, we required that the users are not pticgating. In particular
the users do not attempt to exploit the dependengeoofw,. We now mention several remarks:

Remarks

e The above result that competitive equilibrium achieves global optimality is lctuapecial
case of a more general problem of social welfare. This processhid\eicg competitive
equilibrium is calledatonnemenis](section 5.4). Kelly’s main contribution in [3] is to adapt
this general result to the case of network with elastic demand.

¢ In this pricing mechanism users iteratively adjust their bigl§ pased on the pricqy they
receive to maximize their payoff (5). However Theorem 1 does notidenthe dynamics of
this mechanism. It simply asserts that the process will converge to a unigili&rgm and
the resulting allocation will maximize the SYSTEM problem.

e The choice of the payoff functions (5) appears unigue upto a scalingfaxat. For example,
with P (we; 1) = U,(%') — 0.5w; the result of Theorem 1 still holdé.However it is not clear
if there are more general payoff functions which achieve global optimality.

2.2 Priceanticipating users and Nash equilibrium.

Before we consider the case of price anticipating users, we will provelmple example of the
Nash equilibrium.

2.2.1 Nash Equilibrium - Background

Nash equilibrium is a celebrated result in the Game Theory literature. isriefa set of strategies
for a game with the property that no player can benefit by changing hieggravhile the other
players keep their strategies unchanged. It implicitly assumes that eachealsees selfishly to
maximize his/her payoff. It is best understood by a simple example.

Prisoner’s Dilemma Two suspects are arrested by police. The police have insufficientedde
for a conviction and having separated them, visit each of them and offesatine deal: If you con-
fess and your accomplice remains silent, he gets 10 year sentence aga fyea. If he confesses
and you remain silent you get 10 year sentence. If both of you remair, ®fech gets six months
imprisonment but if both confess against each other, each gets a Gyptance. These rules can be
summarized as:

“However now the bid and price at the equilibrium will scale accordinglywif ) satisfies (6) theri2w;, 2u) will
maximize this modified payoff.



Strategy You deny You Confess
He denies Both serve 6 months He serves 10 yrs.; you are free
He Confesses He goes free; you serve 10 yrs. both serve 6 yrs

The question is that knowing the above rules but not knowing what yaxamaplice is going to
do what should be your strategy?

Clearly if both could communicate, then both would agree to deny and seragosiths. Since
we do not know what the other suspect is going to do, we decide to acthbelfo reduce our
sentence. Suppose the other suspect confesses. Then clearly itiishiesb interest to confess as
well, since that will reduce the sentence. On the other hand supposenies.dé is still in our
interest to confess. Thus no matter what the other suspect does, whvaitsaconfess. The second
suspect, by a symmetric argument will also confess. Hence the Nash dquilisccurs when both
confess against each other and get a six year sentence.

The above example illustrates an important property of the Nash equilibriurit tieeed not be
globally optimum. We will investigate this property further in the resource allocgtioblem. We
will show that there exists a unique Nash equilibrium for the pricing mechaosrsidered in the
previous section and it achieves within 3/4 of the global optimum. For a moreraketireatment
of Nash Equilibrium refer to a standard book on game theory such as [6].

2.2.2 Nash Equilibrium for the Pricing Scheme

Suppose now that the users consider the effect of their bids on theprite particular given

W_r = (W1,...,Wr—1,Wrt1,...WR), €ach user will choose; to maximize:
U(Wf C)—W if wy >0
Qr(Wriw_r)={ ' \Zs% o (8)

A Nash equilibrium exists for the above game if there exists a vector ofvbitiat satisfies the
following:

Qr(Wr;w_r) > Qr(Wr;w—)  forallwe >0 9)
We now state the main result for Nash Equilibrium:

THEOREM 2 Under assumption 1, there exists a unigquthat achieves the Nash equilibrium (9).
Furthermore the corresponding rate assignmmsz‘;”\;vs maximize the SYSTEM problem (1)-(3)
with the following modified utility function

Ur (ch) = <1— %) Ur(ch) + <%> (d—lr Odr Ur(z)dz) (10)

Proof: (Outline) The existence of the Nash equilibrium follows from the fact @) is a concave
function inw;. The proof of its uniqueness follows by showing that it is equivalent toxoping a
SYSTEM function with modified utility functions. Since the SYSTEM has a uniquiat®n, the
uniqueness of Nash equilibrium follows.

Note that the optimaly, that satisfies (9) also satisfies the following equation (obtained by
differentiatingQ(+).

" Wy L TeWs
U (ZsWsC> (1— ZsWs> = “c if wy >0 (11)
U < 2% (12)



Also note that thel; satisfying the SYSTEM with utility functionsl (-) solves the following (ob-
tained by differentiatindJ, (-) with p being the Lagrange multiplier):

U’(dr)<1—%) = pifd >0 (13)
u’'(0) < p (14)

It follows that (11)-(12) is equivalent to (13)-(14) by choosihg= ﬁ andp = ZSC—WS and this
establishes the equivalence.
O

2.2.3 Priceof Anarchy

It is well known that the Nash equilibrium does not achieve global optimunthigsection, we
explicitly quantify the efficiency loss.

THEOREM 3 Suppose that the utility functidy satisfy assumption 1 and tHat(0) > O for allr. If
d® anddS are the rate allocations for the Nash equilibrium and Competitive equilibriupectisely
then

3 Ui(d9) > 5 Y Ur ()

Moreover, for everg > 0 there exists aR > 1 and a choice of utility functionts, () such that

iuwﬂ§(§m>iuwﬂ

Before we prove this result, we prove the following lemma:

LEMMA 1 Letd = (dy,...,dr) satisfy,y, dr <C. Letd® be the optimal solution to SYSTEM. Then
the following inequality holds:

>rUr(dr) > > Ui (dr)dr
> Ur(d®) — (max U/(dr))C

The equality occurs itJ;(-) are linear functions (i.e. linear utility functions are the worst case
scenario).

Proof: (Outline) From concavity of); (-), we have that; (dS) < U, (d) +U/(d;)(dS—d;). Now
the left hand side can be bounded as:

LHS:err(dr) N > (Ur(dr) — U/ (dr)dr) + 3, U/ (dr)dr
SeUr(d®) T 3r(Ur(dr) —U{(dr)dr) + 3, Uf(dr)d?

> (Ur(dr) —U/(dr)dr) + 5, U/ (dr)dr

~ r(Ur(dr) = U/(dr)dr) +max U/ (dr)C

> YU/ (dr)dr

(max U/(d;))C

(Z ax < mraxarC if Zxr <C)
=RHS (zur(dr)*ur/(dr)dr >0)

Furthermore the equality occurssif U/ (d; )dS = max U/ (dr)C andU; (d°) = U, (d ) +U; (dr ) (dS—
d;). This requires thdt, (-) be linear. O



Proof: (Theorem 3) The proof is constructive in that it gives the utility functiomsvihich
the loss is close to /4 of the optimal value. From the above lemma we can only consider utility
functions that are linear. L&t (d;) = a,d;. Also without loss in generality let; = 1 anda, <1
for r > 1. Now from Lemma 1 it follows that to get the worst case efficiency, we musimize
S 00y =di + 5,100 by treating{a, } and{d, } as variables. The optimization problem can be
stated as follows:

minimize  dS+ iard? (15)
E=
subjectto 0, (1—d®) =1—dS, if d®>0 (16)
ar(1—-df) <1-df, ifd®=0 (17)
YdP=1, 0<ar<1l d®>0 (18)
4

In the above optimization problem, we are minimizing the ratio of the aggregate utititg dash
equilibrium to that of the global optimum. The second and third conditions alemgeire thatl® is
indeed a Nash equilibrium. Note that since the Nash equilibrium is unique, tive ajptimization

should have a unique minimizirdf®. Without loss in generality we make the following simplifica-
tions:

e d® > 0 for every user. (If not we can simply remove that user and the valRaletreases by
1). This leads to having, = (1—df)/(1—d®).

e d$=d$ =---=dS. This follows from the symmetry of the problem.

Hence the optimization problem reduces to

1-d8\ "
minimize  d¥+ (1—df)? (l— R—i) (19)

subjectto  JR<d®<1 (20)

For the worst case scenario, we et oo, then we have to minimize the quadratic expression
dS + (1-df)?, for 0< df < 1, which gives an efficiency loss of 3/4.

Finally, the worst case utility functions are of the fotm(d;) = d; andU,(d;) ~ d; /2 forr > 1.
The rate allocation at the Nash equilibriumd% = % andd® = m. By makingR arbitrarily
large we can achieve an efficiency loss arbitrarily close to 8.

2.2.4 Discussion

e While the proof above is constructive, it seems to lack intuition. We are lsiegrover the
entire space of utility functions and getting the worst case loss. Is therduatioim behind
the solution? Note that the system problem with linear utility functions is trivial. Miply
allocate all the bandwidth to the user with the greatest utility (user 1 in the ppovEa and
allocate nothing to everyone else. This solution cannot be a Nash equilitsinog Nash
equilibrium solution requires atleast two users to make positive bids. Now lkynm#he
utility function of all other users to be equal we are forcing all of them to diver at the
Nash equilibrium. Thus we are trying to depart from the global optimum as msiplessible
with this choice>

5The exact choice ady (dr) = dr /2 seems more difficult to explain.



e Theorem 3 holds for the specific pricing mechanism used by Kelly. Is giplesto do better
by choosing a different pricing mechanism? In his thesis Johari [8fptes set of conditions
under which the efficiency loss cannot be better than 3/4. In particularcannot do better
than 3/4 if the network manager does not price discriminate between users. rtently
Sanghvi and Hajek [9] have proposed a pricing mechanism for a tweystem that achieves
within 7/8 of the optimum.

e While the result for single link may not be very practical for the wireline céaserves as a
basis for the network case discussed next.

e A wireless network such as the Multiple Access Channel can be redudbd tingle link
case and it follows that even for these channels there is atmost 1/4 lofisienef;.

e The problem is solved for the constraiptd, < C. It can be readily generalized to the case
when there are weights associated with each g8, d. < C. However the solution does
not generalize when the constraint represents a convex set instaatraight line.

3 General Network Case

We now consider the case where theredliaks in the network with capacitieq€;,C; . ..Cy) with
C; > 0. Suppose there arepaths in this network and each path is associated with a unique user.
We define two matriced andH such that

A — 1 iflinkjisincluded in path p
710  otherwise

oo 1 if path p belongs to userr
710 otherwise

sre. 1 User 1, Path 1 Dest. 1
( \ Link A, Ca=2 / \ LinkB, Cg=1 /
/ I %lDest 2. \
Src. 2 User 2, Path 2 Dest. 3
est.
Stc. 3 User 3, Path 3

Figure 3: Two link Network

For the example in figure 3, we hae= < 1 é Cl) ) and H =l3. The system problem is now
given by
SYSTEM

maximize U, (dr)
Z r r
subjectto Ay<C,Hy=d,yp>0,pecP

The set of feasible region is compact and hence if we have the utility fuiscs@mtisfy assump-
tion 1, then the optimad vector is unique. The pricing mechanism for this network is an extension

8



of the single link case: Leawj; denote the bid of useron link j. We denotav, = (wj, j € 7) to be
the set of bids that usemrmakes on the links. Let = (w,,r € 8 ). Then the rate allocation on link

j is determined by the prigg; = % Thus portion of bandwidth usemets on linkj is given by:

Y ifwy >0
Xjp = 4 ¥ e (21)
0 otherwise

Given the set of rate&;,,r € ® ) on the links, how does usercalculate the data ratk that he/she
receives? If there is only one path assigned to a given user, thératenin;x;. However in
general there may be multiple paths assigned to each user. Given theratdssf,, each user
solves the followingnax flowoptimization problem:

maximize Z Yp (22)
per

subject to Z Yp < Xjr (23)
perjep
Yp=0,per (24)

The first equation above is the total data rate usgets from his/her paths. The second constraint
says that the aggregate of all paths of usé¥at pass through a linkcannot exceesj.. We denote
the solution to the above optimization problemdyyx, (w))

3.1 Nash Equilibrium

As in the single link case, we begin by defining

Qr (Wr;w_r) = Ur (dr (X(W))) — Zer (25)
]

We say thatv is a Nash equilibrium if
Qr(Wr;w_r) > Qr(wr;w) forallw, >0 (26)

Unlike the single link case, it turns out that in the network case, a Nash equiibnay not
exist. This could happen because our pricing mechanism assumes th&i¢hgan (21) is market
clearing (i.e. the entire bandwidth is allocated). However there could sonethiak cannot be
fully utilized because some other links are bottleneck in the network. In sasd there will be
some surplus bandwidth remaining on the link. If a user is getting a surpluséisime can reduce
the bid to get less bandwidth. On the other hand one cannot bid 0, as2dgrth{s would give 0
bandwidth in return. This problem is fixed by defining an extended pricinghar@sm that allow
each user to receive non-zero bandwidth if no user has a positivenlzidjiven link. However, we
will not go into the details of this particular extension as it is merely a technidalld&o follow
the rest of this exposition assume that there are atleast two positive bidslofire®

6There cannot be a Nash equilibrium with only one positive bid, since thizasaeduce his/her bid but cannot make
it 0.



3.2 Priceof Anarchy

We now show that the Nash equilibrium loses atmost 1/4 of the global optimum iretiherk case

as well. To simplify exposition and provide the main ideas in concise mannerjlixewnsider the
case whetJ; (d;(x,)) is differentiable for every;. It is possible to establish similar result under
milder constraint, however it requires significantly more mathematical machinery but not much
more intuition. We will find it convenient to work in terms of the veckpiinstead ofw,. We define

WJrXJr

fr (Xr;W_r) = U (dr (X)) Z .
ir

(27)

CLAaM 1 A vectorw is Nash equilibrium to the original system (25)-(26)xff(w) satisfies the
following for eachr:
Xr (W) = arg rr)zraxfr (Xr;W_r)
Wir
Wir +Wijr
—. Maximizing Q(-) in (26) is equivalent to maximizing (-). O

Proof: (Outline) The proof follows immediately from the rate allocation xjle= which

WJr l

is equivalent towj, =

CLAImM 2 If X, is a Nash equilibrium for the original problem then it also satisfies

Wi, Xi

T JrAr
Xy = arfgmax|{d, Xy — P em——
r 9 e [ rer ch_xjr

wherea = OU; (dr (Xr)).

Proof: (Outline) The proof follows immediately from the previous claim and noting theofttimal
Xjr satisfies the same differential equations in the two claifs.

The above claim implies that the solution to a Nash equilibrium to the original proisl@lso
a Nash equilibrium to a new system with linear utility functidﬁh@q) =Y 0jrXjr. It follows from
this result that if the original system has a Nash equilibrium then each link ingtveork has a
Nash equilibrium under modified utility functioms; x;; .

THEOREM4 The efficiency loss for the network case is atmost 1/4.

Suppose’ be a Nash equilibrium and be the global optimum point. We derive the following set
of inequalities as in the single link case.

3 U (dh (XP)) > 5 (Ur (0 (XF)) =0/ XP) 4+ 5, oy X7 (28)
SeUr(di(xP) T Sr(Ur(de(XP) —af xP) + 3 af xp
2 2r %jrXjr
5 (mas ;)G @9

If the overall system is at the Nash equilibrium each single link has a Nashbeigm and we
can invoke the single link result that o xj, > %(max ajr)C. Substituting this in 29, we get the
desired result.

U; (-) need only be superdifferentiablein

10



4 Related Work

A substantial amount of work on application of Game theorey for netwadwnee allocation prob-
lems has emerged in recent years. In particular subsequent workéy do al. [7] have considered
the case when the network links have elastic supply rather than hardtgajeastraints. They show
that under this assumption the loss in efficiency{$(2) — 5. Johari has also shown that there is a
class of pricing mechanisms for which the efficiency loss/@f 3 optimum. A necessary condition
for these mechanism is that the network does not discriminate between Asgresequent result
by Sanghvi and Hajek [9] has shown that if we allow the network to discrimribatween users
than the worst case efficiency ig&.

Another related work by Tim Roughgarden and Eva Tardos [10] cersial game for network
routing to minimize the total latency. They show that if the intermediate nodes e€Hooally
optimal routes than the total latency is no more than 4/3 of the optimal. It is notitteare is any
connection between this result and the present paper.

Finally there has been a growing interest in using ideas of game theomsfaunce allocation in
wireless networks. For example efficient mechanisms for power condiigiland have been shown
to converge to a Nash equilibria [11].
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