
Charging and rate ontrol for elasti traÆ �Frank KellyUniversity of CambridgeAbstratThis paper addresses the issues of harging, rate ontrol and rout-ing for a ommuniation network arrying elasti traÆ, suh as anATM network o�ering an available bit rate servie. A model is de-sribed from whih max{min fairness of rates emerges as a limitingspeial ase; more generally, the harges users are prepared to pay in-uene their alloated rates. In the preferred version of the model, auser hooses the harge per unit time that the user will pay; thereafterthe user's rate is determined by the network aording to a propor-tional fairness riterion applied to the rate per unit harge. A systemoptimum is ahieved when users' hoies of harges and the network'shoie of alloated rates are in equilibrium.1 IntrodutionThis paper desribes a model designed to shed light on the issues of harg-ing, rate ontrol and routing. Its main purpose is to support ongoing workon harging shemes for broadband multiservie networks, desribed in [3℄and [6℄. A subsidiary aim is to investigate the relationship between variousfairness riteria and `smart market' approahes to dynami priing [7℄,[9℄,[10℄.The organization of the paper is as follows. Setion 2 presents a systemmodel of harging, routing and ow ontrol, where the system omprisesboth users with utility funtions and a network with apaity onstraints.Standard results from the theory of onvex optimization show that the op-timization of the system may be deomposed into subsidiary optimizationproblems, one for eah user and one for the network, by using prie per unitow as a Lagrange multiplier that mediates between the subsidiary problems.�This is a (orreted) version of a paper that appeared in European Transations onTeleommuniations , volume 8 (1997) pages 33-37.1



Low and Varaiya [7℄ and Murphy et al. [9℄ desribe how suh results may beused as the basis for distributed priing algorithms, and MaKie-Mason andVarian [10℄ desribe a `smart market' based on a per-paket harge when thenetwork is ongested.In Setion 3 we use a simple example to explore how various fairness ri-teria are assoiated with partiular hoies of utility funtion. We note thatmax{min fairness [1℄ emerges as a limiting speial ase, and desribe a pro-portional fairness riterion assoiated with the logarithmi utility funtion.In the system deomposition of Setion 2, prie per unit ow is the me-diating variable. This may ause a partiular diÆulty for elasti traÆ. Inan implementation of an ATM available bit rate servie, for example, userswould be subjet to two soures of unertainty about the servie o�ered: boththe alloated rate and the prie harged per unit ow would be allowed toutuate at the network's disretion. In Setion 4 we desribe an alternativesystem deomposition where prie per unit share is the mediating variable.Under this deomposition the user hooses the harge per unit time that itpays, and the network determines alloated rates by a proportional fairnessriterion, but applied to the rate per unit harge, rather than just the rate.It is shown that a system optimum is ahieved when users' hoies of hargesand the network's hoie of alloated rates are in equilibrium.2 The modelConsider a network with a set J of resoures, and let Cj be the �nite apaityof resoure j, for j 2 J . Let a route r be a non-empty subset of J , and writeR for the set of possible routes. Set Ajr = 1 if j 2 r, so that resoure jlies on route r, and set Ajr = 0 otherwise. This de�nes a 0 � 1 matrixA = (Ajr; j 2 J; r 2 R). Suppose that several routes through the networkmay substitute for one another: formally, suppose that a soure-sink s is asubset of R and write S for the set of possible soure-sinks. Set Hsr = 1 ifr 2 s, so that route r serves the soure-sink s, and set Hsr = 0 otherwise.This de�nes a 0� 1 matrix H = (Hsr; s 2 S; r 2 R). For eah r 2 R let s(r)identify a value s 2 S suh that Hsr = 1, and suppose this value is unique;we view s(r) as the soure-sink served by route r.We assoiate a soure-sink s with a user, and suppose that if a rate xsis alloated to the soure-sink s then this has utility Us(xs) to the user. Weassume that the utility Us(xs) is an inreasing, stritly onave and ontin-uously di�erentiable funtion of xs over the range xs � 0 (following Shenker[12℄, we all traÆ that leads to suh a utility funtion elasti traÆ). As-sume further that utilities are additive, so that the aggregate utility of rates2



x = (xs; s 2 S) is Ps2S Us(xs).A ow pattern y = (yr; r 2 R) supports the rates x = (xs; s 2 S) ifHy = x, so that the ows yr over routes r serving the soure-sink s sum tothe rate xs. A ow pattern y = (yr; r 2 R) is feasible if y � 0 and Ay � C,where C = (Cj; j 2 J), so that the ows over routes through resoure j sumto not more than the apaity Cj of resoure j. Let U = (Us(�); s 2 S) andlet U 0(x) = (U 0s(xs); s 2 S).To �nd the system optimal rates and ows we need to onsider the fol-lowing optimization problem.SYSTEM(U;H;A; C): maximize Xs2S Us(xs) (1)subjet to Hy = x;Ay � C (2)over x; y � 0: (3)The objetive funtion (1) is di�erentiable and stritly onave and thefeasible region (2),(3) is ompat; hene a maximizing value of (x; y) existsand an be found by Lagrangian methods. There is a unique optimum for therate vetor x, sine the objetive funtion (1) is a stritly onave funtion ofx, but there may be many orresponding values of the ow rate y satisfyingthe relations (2) and (3). Say that x solves SYSTEM(U;H;A; C) if thereexists y suh that (x; y) solves the optimization problem (1){(3).Consider the Lagrangian formL(x; y; z;�; �) = Xs2S Us(xs)� �T (x�Hy) + �T (C � Ay � z);= Xs2S�Us(xs)� �sxs�+Xr2R yr��s(r) �Xj2r �j��Xj2J �jzj +Xj2J �jCjwhere � = (�s; s 2 S); � = (�j; j 2 J) are vetors of Lagrange multipliersand (zj; j 2 J) is a vetor of slak variables. Then�L�xs = U 0s(xs)� �s�L�yr = �s(r) �Xj2r �j�L�zj = ��j:3



Hene, at a maximum of L over the orthant x; y; z � 0, the following ondi-tions hold: �s = U 0s(xs) if xs > 0� U 0s(xs) if xs = 0 (4)�s(r) = Xj2r �j if yr > 0� Xj2r �j if yr = 0 (5)�j = 0 if zj > 0� 0 if zj = 0 (6)From the general theory of onstrained onvex optimization ([8℄, hapter 5;[13℄, hapter 3) it follows that there exists a quadruple (�; �; x; y) whihsatis�es � � U 0(x); Hy = x; ��� U 0(x)�Tx = 0 (7)� � 0; Ax � C; �T (C � Ax) = 0 (8)�TH � �TA; y � 0; (�TA� �TH)y = 0 (9)and that, further, the vetor x then solves SYSTEM(U;H;A; C).The Lagrange multipliers �; � have several simple interpretations. Forexample, if route r has positive ow on it, yr > 0, then neessarilyPj2r �j �Pj2r� �j for any other route r� whih serves the same soure-sink. We mayview �j as the implied ost of unit ow through link j. Alternatively �j isthe shadow prie of additional apaity at link j.If user s is harged a prie �s per unit ow, and is allowed to freely varythe ow xs, then the utility maximization problem for user s is as follows.USERs(Us;�s) maximize Us(xs)� �sxs (10)over xs � 0:If the network reeives a revenue �s per unit ow from user s, and isallowed to freely vary the ows x, then the revenue optimization problem forthe network is as follows.
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NETWORK(H;A;C;�)maximize Xs �sxs (11)subjet to Hy = x;Ay � C (12)over x; y � 0: (13)Say that x solves NETWORK(H;A;C;�) if there exist y suh that (x; y)solves the optimization problem (11) { (13).Theorem 1 There exists a prie vetor � = (�s; s 2 S) suh that the vetorx = (xs; s 2 S), formed from the unique solution xs to USERs(Us;�s) foreah s 2 S, solves NETWORK(H;A;C;�). The vetor x then also solvesSYSTEM(U;H;A; C).Proof . First note that USERs(Us;�s) has a unique solution xs, by the stritonavity of Us, and that xs is determined by U 0s(xs) � �s; xs � 0 and (�s �U 0s(xs))xs = 0. Next observe that the Lagrangian form for the optimizationproblem (11){(13) isL(x; y; z; p; q) = Xs �sxs � pT (x�Hy) + qT (C � Ay � z)= Xs xs(�s � ps) +Xr yr(ps(r) �Xj2r qj)�Xj2J qjzj +Xj2J qjCj:Hene any quadruple (�; �; x; y), whih sati�es onditions (7), (8) and (9),identi�es Lagrange multipliers p = �; q = �, whih establish that (x; y) solvesNETWORK(H;A;C;�), as well as SYSTEM(U;H;A; C).Conversely, for any solution x to NETWORK(H;A;C;�) there exist La-grange multipliers p; q, where if xs > 0 then ps = �s and if xs = 0 thenps � �s. Thus if xs solves USERs(Us;�s) then it will also solve USERs(Us; ps),and so we may onstrut a quadruple satisfying onditions (7), (8) and (9)by replaing � and � by p and q respetively. This establishes that x solvesSYSTEM(U;H;A; C), and hene the �nal part of the theorem.3 An example: fairness riteriaSuppose that eah soure-sink s is served by a single route r, and abbreviatenotation by writing s = r, rather than s = frg; thus H = I, the identity5



matrix. Suppose also that Us(xs) = ms logxs. (Formally, we de�ne Us(�) overthe range [0;1), with Us(0) = �1 and U 0s(0) =1.) Then at the optimumxs is neessarily positive, and onditions (7) and (9) beome simply�s = msxs ; �s =Xj2s �j:Thus the optimal rate xs is xs = msPj2s �j (14)where (xs; s 2 S); (�j; j 2 S) solve� � 0; Ax � C; �T (C � Ax) = 0 (15)and relation (14).Next we investigate the relationship between the solution to relations(14), (15) and onepts of fairness. The most ommon fairness riterion isthat of max{min fairness: a vetor of rates x = (xs; s 2 S) is max{min fair ifit is feasible (that is x � 0 and Ax � C), and if for eah s 2 S, xs annot beinreased (while maintaining feasibility) without dereasing xs� for some s�for whih xs� � xs [1℄. (The ompatness and onvexity of the feasible regionfor x imply that suh a vetor exists, and is unique.) The max{min fairnessriterion gives an absolute priority to the smaller ows, in the sense that ifxs� < xs then no inrease in xs, no matter how large, an ompensate forany derease in xs�, no matter how small. An alternative fairness riterion,whih favours smaller ows less emphatially, is proportional fairness, de�nedas follows. A vetor of rates x = (xs; s 2 S) is proportionally fair if it isfeasible (that is x � 0 and Ax � C) and if for any other feasible vetor x�,the aggregate of proportional hanges is zero or negative1:Xs2S x�s � xsxs � 0:Say that resoure j is a bottlenek if the solution x to relations (14),(15) has (Ax)j = Cj. If ms = 1 for s 2 S, and if eah ow xs passesthrough a single bottlenek, then the solution x is neessarily max{min fair.This onlusion does not, however, apply when ows pass through multiple1The printed version of the paper erroneously had strit inequality in this rela-tion. I'm grateful to Martin Biddisombe, Nortel, Harlow, for the orretion - seehttp://www.ul.a.uk/�ueemdb/phd.html6



bottleneks. To investigate this situation further, onsider a small feasibleperturbation (xs; s 2 S) ! (xs + Æxs; s 2 S). This inreases the objetivefuntion (1) provided Xs2S U 0s(xs): Æxs > 0;whih ondition beomes, with Us(xs) = log xs, the onditionXs2S Æxsxs > 0:From the onvexity of the feasible region for x and the strit onavity of thelogarithm funtion, it follows that, when ms = 1 for s 2 S, the solution x torelations (14), (15) is the unique vetor of rates that is proportionally fair.We note that the de�nition of proportional fairness diretly extends tothe ase where eah soure-sink s may be served by multiple routes: thede�nition of feasibility simply beomes that there exists y � 0 suh that x =Hy and Ay � C. One again the solution x to SYSTEM(U;H;A; C) withUs(xs) = log xs, s 2 S, is the unique vetor of rates that is proportionallyfair.The logarithmi utility funtion is thus intimately assoiated with theonept of proportional fairness. Is there a utility funtion that plays a similarrole for the onept of max{min fairness? To explore this question further, letus suppose that any feasible ow satis�es xs < 1. (This assumption loses nogenerality, sine we an learly resale apaity units so that Pj2J Cj < 1.)Next, let Us(xs) = U(�)(xs) for s 2 S, whereU(�)(x) = �(� log x)� 0 < x < 1; � � 1:The ase � = 1 is just the logarithmi utility funtion assoiated with aproportionally fair alloation of rates. If 0 < xs� < xs < 1,U 0(�)(xs�)U 0(�)(xs) = xsxs� � logxs�logxs ���1 !1 as �!1:Thus the olletion of utility funtions U = U(�) provides a priority tosmaller ows whih inreases as � inreases and beomes absolute as � !1. The max{min fair alloation of rates is the limit of the solution toSYSTEM(U(�); H;A; C) as �!1.
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4 An alternative deompositionThe deomposition desribed by Theorem 1 uses a vetor � giving pries perunit ow. In this Setion we desribe an alternative deomposition expressedin terms of pries per unit share.If user s is harged an amount ms per unit time, and reeives in return aow xs proportional to ms, then the utility maximization problem for user sis as follows.USERs[Us;�s℄ maximize Us�ms�s ��ms (16)over ms � 0: (17)Let m = (ms; s 2 S), and de�ne the following optimization problem.NETWORK[H;A;C;m℄maximize Xs ms logxs (18)subjet to Hy = x Ay � C (19)over x; y � 0: (20)Say that x solves NETWORK[H;A;C;m℄ if there exists y suh that (x; y)solve the optimization problem (18){(20).Theorem 2 There exist vetors � = (�s; s 2 S), m = (ms; s 2 S) andx = (xs; s 2 S) suh that(i) ms solves USERs[Us;�s℄, for s 2 S;(ii) x solves NETWORK[H;A;C;m℄;(iii) ms = �sxs for s 2 S.The vetor x then also solves SYSTEM(U;H;A; C).Proof . The derivative of the objetive funtion (16) is��ms �Us�ms�s ��ms� = 1�s U 0s�ms�s �� 1:8



Thus the onditions U 0s�ms�s � = �s if ms > 0� �s if ms = 0 (21)identify a solution ms to USERs[Us;�s℄.The Lagrangian for the optimization problem (18){(20) isL(x; y; z; p; q) = Xs ms logxs � pT (x�Hy) + qT (C � Ay � z)= Xs (ms log xs � psxs) +Xr yr(ps(r) �Xj2r qj)�Xj2J qjzj +Xj2J qjCj:Then �L�xs = msxs � ps�L�yr = ps(r) �Xj2r qj�L�zj = �qj:Hene, at a maximum of L over the orthant x; y; z � 0, the following ondi-tions hold: msxs = ps (22)ps(r) = Xj2r qj if yr > 0� Xj2r qj if yr = 0 (23)qj = 0 if zj > 0� 0 if zj = 0: (24)But the quadruple (�; �; x; y) whih satis�es onditions (7), (8) and (9) identi-�es a solution to (22), (23) and (24), with p = �, q = �, andms = �sxs; s 2 S.Moreover, this solution satis�es the feasibility onstraints (12) and (13), and9



the relation (21). This establishes the existene of the laimed vetors �, mand x.Conversely, for any solution x to NETWORK[H;A;C;m℄ there exist La-grange multipliers p; q, where if xs > 0 then ms = xsps, and if xs = 0then ms = 0. Thus if ms = �sxs and ms solves USERs[Us;�s℄ then mswill also solve USERs[Us; ps℄ 2, and so we may onstrut a quadruple satis-fying onditions (7), (8) and (9) by replaing � and � by p and q respe-tively. Hene onditions (i), (ii) and (iii) of the Theorem imply that x solvesSYSTEM(U;H;A; C).Note that ifms = 1 for s 2 S then the solution to NETWORK[H;A;C;m℄is the proportionally fair alloation of rates. If ms, s 2 S, are all integralthen the solution to NETWORK[H;A;C;m℄ may be onstruted as follows.For eah s 2 S replae the single user s by ms idential sub-users, alulatethe proportionally fair alloation over the resultingPs2Sms rates, and thenprovide to user s the aggregate rate alloated to its ms assoiated sub-users.Then the rates per unit harge are proportionally fair.5 Conluding remarksWe have shown that if eah user is able to hoose a harge per unit time thatit is prepared to pay, and if the network determines alloated rates so thatthe rates per unit harge are proportionally fair, then a system optimum isahieved when users' hoies of harges and the network's hoie of alloatedrates are in equilibrium. We have not disussed onvergene to equilibriumand an interesting and hallenging question onerns whether rate ontrolalgorithms suh as those desribed in [2℄, [3℄, and [4℄ may be adapted toimplement the proportional fairness riterion desribed in this paper.A further hallenging question onerns how the hoie of parameter msmight be implemented in an ATM network. One possibility would be touse the Minimum Cell Rate of ATM standards [5℄ to buy a share of spareapaity, as well as to provide a lower bound on the rate. In [6℄ some of theonsequential inuenes on user behaviour are disussed.2This dedution is inorret: it may fail when ms = xs = 0. A ounterexample to theTheorem is provided by the example ms = xs = 0, �s > U 0s(0), for all s: then statements(i), (ii) and (iii) of the Theorem hold, but x does not solve SYSTEM(U;H;A;C). One wayto sidestep the diÆulty is to assume that U 0s(xs)!1 as xs # 0, a tehnial assumptionthat turns out to have some other advantages in the dynami ontext. But within theurrent ontext a muh more satisfatory resolution is appended as a revised Setion 4.I'm grateful to Ramesh Johari for pointing out the diÆulty and developing its resolution.10
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the proportionally fair alloation over the resultingPs2Sms rates, and thenprovide to user s the aggregate rate alloated to its ms assoiated sub-users.Then the rates per unit harge are proportionally fair.Say that x solves NETWORK [H;A;C;m℄ if there exists y suh that (x; y)solve the optimization problem (18)-(20). The orresponding Lagrangianform isLNET (x; y; z;�; �) = Xs2B(m)ms log xs � �T (x�Hy) + �T (C � Ay � z)= Xs2B(m)ms log xs �Xs2S �sxs +Xr2R yr �s(r) �Xj2r �j!�Xj2J �jzj +Xj2J �jCj:Applying the stationarity onditions, we onlude that at an optimum ofLNET over x; y; z � 0:�LNET�xs = msxs � �s = 0; if s 2 B(m)= ��s = 0; if xs > 0; s 62 B(m)� 0; if xs = 0; s 62 B(m)�LNET�yr = �s(r) �Xj2r �j = 0; if yr > 0� 0; if yr = 0�LNET�zj = ��j = 0; if zj > 0� 0; if zj = 0:Wemay express these onditions more ompatly: (x; y) solve NETWORK [H;A;C;m℄if and only if there exist multipliers (�; �) suh that:Hy = x; Ay � C; x; y � 0 (21)�TH � �TA; �; � � 0 (22)�T (C � Ay) = 0; (�TA� �TH)y = 0; ms = �sxs; s 2 S: (23)The �rst row of onditions is primal feasibility; the seond row is dual feasi-bility; and the third row omprises omplementary slakness.We may use these onditions to onstrut the dual ofNETWORK [H;A;C;m℄.Given vetors � and �, the global maximum of LNET ours when xs = ms=�s14



for s 2 B(m). After elision of terms independent of � and �, the dual opti-mization problem is as follows.DUAL[H;A;C;m℄maximize Xs2B(m)ms log�s �Xj2J �jCj (24)subjet to �TH � �TA (25)over �; � � 0: (26)Say that � solves DUAL[H;A;C;m℄ if there exists � suh that (�; �) solvethe optimization problem (24)-(26).Theorem 2 There exist vetors m = (ms; s 2 S), � = (�s; s 2 S), andx = (xs; s 2 S) suh that1. ms solves USERs[Us;�s℄, for s 2 S;2. � solves DUAL[H;A;C;m℄, and �s > 0 for s 2 S;3. x solves NETWORK [H;A;C;m℄;4. ms = �sxs for s 2 S.Further, given any suh triple (m; �; x), the vetors m and x are uniquelydetermined, and x solves SYSTEM (U;H;A; C).Proof. As �s > 0 for all s 2 S, USERs[Us;�s℄ is well de�ned for all s 2 S.The derivative of the objetive funtion (16) is��ms �Us�ms�s ��ms� = 1�sU 0s�ms�s �� 1:Thus the onditions U 0s�ms�s � = �s;if ms > 0� �s;if ms = 0identify a solutionms to USERs[Us;�s℄. We may write these onditions moreompatly asms � 0; �s � U 0s�ms�s � ; ��s � U 0s�ms�s ��ms = 0: (27)15



By Lagrangian duality, (�; �) solve DUAL[H;A;C;m℄ if and only if thereexists a pair (x; y) suh that (x; y; �; �) satisfy (21)-(23). But the quadruple(x; y; �; �) whih satis�es onditions (7)-(9) identi�es a solution to (21)-(23),by de�ning ms = �sxs, s 2 S. Thus, x solves NETWORK [H;A;C;m℄, and� solves DUAL[H;A;C;m℄. Finally, the onditions (7) together with thede�nition of ms imply the onditions (27) are satis�ed. This establishes theexistene of the laimed vetors, m, �, and x.Conversely, suppose we are givenm, �, and x satisfying onditions (i)-(iv)of the theorem. Then, again by Lagrangian duality, we know there exists apair (x̂; ŷ) suh that (x̂; ŷ; �; �) satisfy (21)-(23). We now laim that in fat,x = x̂, by the following reasoning. Given s 2 S, ms = �sxs by (iv); andms = �sx̂s by (23). But sine �s > 0, it must be true that x̂s = xs for alls 2 S. Thus, the quadruple (x; ŷ; �; �) satis�es (21)-(23). But, by (i), msand �s satisfy (27) for all s 2 S, so (x; ŷ; �; �) satis�es (7)-(9). We onlude xsolves SYSTEM (U;H;A; C), and therefore x is uniquely determined. Sine�s > 0 for all s 2 S, m is uniquely determined as well. 2We have shown that if eah user is able to hoose a harge per unit timethat it is prepared to pay, and if the network determines alloated rates sothat the rates per unit harge are proportionally fair, then a system optimumis ahieved when users' hoies of harges and the network's hoie of allo-ated rates and pries per unit share are in equilibrium. In eonomi terms,equilibrium is ahieved when demand (ms) equals supply, or prie timesquantity (�sxs); and further, in this ase, aggregate utility is maximized.
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