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Achieving 1
2 log(1 + SNR) on the AWGN Channel

With Lattice Encoding and Decoding
Uri Erez, Member, IEEE, and Ram Zamir, Senior Member, IEEE

Abstract—We address an open question, regarding whether a
lattice code with lattice decoding (as opposed to maximum-like-
lihood (ML) decoding) can achieve the additive white Gaussian
noise (AWGN) channel capacity. We first demonstrate how min-
imum mean-square error (MMSE) scaling along with dithering
(lattice randomization) techniques can transform the power-con-
strained AWGN channel into a modulo-lattice additive noise
channel, whose effective noise is reduced by a factor of 1+SNR

SNR
.

For the resulting channel, a uniform input maximizes mutual
information, which in the limit of large lattice dimension becomes
1

2
log(1 + SNR), i.e., the full capacity of the original power

constrained AWGN channel. We then show that capacity may
also be achieved using nested lattice codes, the coarse lattice
serving for shaping via the modulo-lattice transformation, the
fine lattice for channel coding. We show that such pairs exist for
any desired nesting ratio, i.e., for any signal-to-noise ratio (SNR).
Furthermore, for the modulo-lattice additive noise channel lattice
decoding is optimal. Finally, we show that the error exponent of
the proposed scheme is lower bounded by the Poltyrev exponent.

Index Terms—Additive white Gaussian noise (AWGN) channel,
dirty paper channel, dither, Euclidean distance, lattice decoding,
minimum mean-square error (MMSE) estimation, nested codes,
Poltyrev exponent, random lattice ensemble, shaping.

I. INTRODUCTION

THE search for low-complexity, structured encoding and
decoding for the additive white Gaussian noise (AWGN)

channel

(1)

inspired the minds of researchers and continues to challenge the
communication community today [21], [4]. The goal is to find
codes with rates approaching capacity

SNR (2)

which allow for decoding with low probability of error at af-
fordable complexity. It is desired to accomplish that for any
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signal-to-noise ratio SNR , i.e., under any power
constraint on the transmitted signal

(3)

There are two aspects to signal space codebook design for
the power-constrained AWGN channel. The granular structure
of the codebook corresponds to the inter-codeword Euclidean
distances, hence, it determines the decoding error probability.
The structure of the shaping region of the codebook determines
the power–volume tradeoff; hence, the gap from capacity [17].

Several different approaches for using structured codes for
the AWGN channel correspond to different ways of taking into
account the power constraint. Shannon’s theory suggests that
the codewords of a good code should look like realizations
of a zero-mean independent and identically distributed (i.i.d.)
Gaussian source with power . For large codebook dimension

, this is equivalent to a uniform distribution over a sphere of
radius . Slepian considered the use of group codes for
the AWGN channel in [30], where the codewords lie on the
surface of this sphere of radius .

The central line of development in the application of lattices
for the AWGN channel, and the most directly related to the
problem we study, originated in the work of de Buda. De Buda’s
theorem [9] states that a spherical lattice code, i.e., a code with
second moment , which is the intersection of a lattice with a
sphere, can approach arbitrarily closely (in the limit of high di-
mension) the AWGN channel capacity. To achieve the best error
exponent of the AWGN channel (or at least the lower bounds
to the error exponent [22, Sec. 7.3], which are tight above the
critical rate), a “thin” spherical region is taken instead of a full
sphere. This result has been corrected and refined by several au-
thors [24], [31], [28], [26].

However, when a lattice code is defined in this manner, much
of the structure and symmetry of the underlying lattice is lost. In
addition, the optimality of this scheme relies on maximum-like-
lihood (ML) decoding, i.e., requires finding the lattice point in-
side the sphere which is closest to the received signal. The re-
sulting decision regions are not fundamental regions of the lat-
tice and are unbounded. In contrast, lattice decoding amounts
to finding the closest lattice point, ignoring the boundary of the
code. Such an unconstrained search preserves the lattice sym-
metry in the decoding process and saves complexity, and thus it
attracted special attention [1], [28].

When restricted to lattice decoding, however, existing lat-
tice coding schemes can transmit reliably only at rates up to

SNR [10], [28]. This loss of “one” in the rate formula
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means significant degradation in performance at low SNR and
zero rate for SNR . In fact, it was conjectured [10], [28],
[26] that with lattice decoding the rate SNR cannot be
surpassed. See also the discussion in [20], [31].

We show that with a slightly different definition of lat-
tice transmission and lattice decoding, the full capacity

SNR of the channel may be achieved. Our approach
is based on transforming the power-constrained channel into
an unconstrained modulo-lattice additive noise channel, and
enhancing the SNR by one using linear minimum mean-square
error (MMSE) estimation principles. This improves upon
previous lattice-based representations of the AWGN channel in
that, for a “good” lattice , the transformation is (asymptoti-
cally in the dimension ) information preserving at any SNR.
The modulo- channel allows to incorporate a coding lattice

, in a configuration called “nested lattice codes, ” .
The latter is a slight generalization of the concept of Voronoi
constellations [7], [16].

Conway and Sloane were the first to propose Voronoi constel-
lations, where the Voronoi region of a “self-similar” sublattice
replaces the sphere as the shaping region of the lattice code [7],
[16]. As will be shown later, there indeed exist lattices with a
quasi-spherical Voronoi region having good shaping properties
[32], [11]. More general lattice constructions based on multi-
level coset codes were proposed in [20]. In our framework, the
shaping sublattice is not necessarily self-similar to the coding
lattice . See also [35], [18], and the references therein for fur-
ther discussion, links, and applications of this configuration.

A key ingredient in our lattice transmission scheme is
common randomness in the form of a dither variable , where

is uniformly distributed over the shaping region , i.e., over
the basic Voronoi region of . We subtract the dither from
the channel input and add it to the MMSE-estimated channel
output , where addition and subtraction are modulo- ,
and is the “Wiener coefficient” which achieves

MMSE

Dithering is a common randomization technique in lattice quan-
tization for source coding, used to assure that the mean-squared
quantization error exactly meets the distortion constraint for
any source input, and to decorrelate the quantization error from
the source [33]. Similarly, in our scheme, the dither assures
that the input power exactly meets the power constraint for
every codeword, and decorrelates the estimation error from the
channel input.1 Due to that, the effective noise in the dithered
modulo- channel is statistically independent of the input (al-
though it is slightly non-Gaussian). As a result, ML decoding of
the nested lattice code is equivalent to lattice decoding. This fur-
ther implies that for large dimensions, the rate of the scheme
with lattice decoding can approach the mutual information rate
of the modulo- channel, which for good shaping lattices ap-
proaches

MMSE
SNR

1Note that the orthogonality principle implies ~X�X? ~X but not ~X�X?X .

We derive our results in several steps. Section II establishes
the necessary background on lattice codes. Section III analyzes
the Shannon capacity of the modulo- channel which incorpo-
rates dithering and linear scaling. Theorem 1 shows that for a
good shaping lattice , the capacity of this channel approaches
the capacity of the original power-constrained AWGN channel
(2). Then, Section IV describes the proposed nested lattice en-
coding/decoding scheme. Theorems 2 and 3 state our main re-
sults, that this scheme can approach capacity for two types of lat-
tice decoders: a noise-matched lattice decoder and a Euclidean
lattice decoder, respectively. The difference between the two
follows from the fact that the effective noise in the modulo-
channel is not exactly Gaussian, though it approaches Gaus-
sianity for good shaping lattices.

Before turning to the more technical sections which establish
this result, we illustrate in Section V the role of linear (biased)
estimation in decoding, by a simple example of scalar (uncoded)
transmission.

Section VI extends the discussion to random coding error
exponents. Theorem 4 shows that the error exponent of the
modulo- channel at rate is at least as good as the Poltyrev
exponent for un-constrained channels, [28], calculated at a
volume-to-noise ratio of . Note that the latter is inferior
to the optimal exponent of the power-constrained AWGN
channel for rates below capacity. Section VII provides a con-
struction for a “good” random ensemble of nested lattice pairs

. Finally, Theorem 5 in Section VIII makes the last
step and proves that the Poltyrev exponent can be achieved by
Euclidean lattice decoding of a good nested lattice code, from
which Theorems 2 and 3 follow as corollaries. Most of the
technical detail is relegated to the appendixes.

Throughout the paper, we use the notation to specify
any function of such that as . In a sim-
ilar manner, we denote , , etc. All logarithms in this
paper are natural logarithms and rates are in nats.

II. PRELIMINARIES: LATTICES, QUANTIZATION,
LATTICE DECODING

A lattice is a discrete subgroup of the Euclidean space
with the ordinary vector addition operation. Thus, if are
in , it follows that their sum and difference are also in . A
lattice may be specified in terms of a generating matrix. Thus,
an real-valued matrix defines a lattice by

(4)

That is, the lattice is generated by taking all integer linear com-
binations of the basis vectors.

A coset of in is any translated version of it, i.e., the set
is a coset of for any . The fundamental Voronoi

region of , denoted by , is a set of minimum Euclidean
norm coset representatives of the cosets of . Every can
be uniquely written as

(5)
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with , , where is a nearest neighbor of
in , and is the apparent error . We

may thus write

(6)

and . For a comprehensive introduction to lat-
tices we refer the reader to [19].

It will prove useful in the sequel to consider more general
fundamental regions and quantizers. Let be any fundamental
region of , i.e., every can be uniquely written as

where and . We correspondingly
define the quantizer associated with by

if (7)

This is a nearest neighbor quantizer (as above) if we choose
to be a fundamental Voronoi region . But in general there are
many other choices for (e.g., the basic parallelepiped [6]), all
have the same volume, denoted , which is given by the in-
verse density of the lattice points in space. Define the modulo-
operation corresponding to as follows:

(8)

Note that this implies that for all .
For a nearest neighbor quantizer, we omit the subscript , i.e.,

.
The second moment per dimension associated with is de-

fined as

(9)

where is a random vector uniformly distributed over and
. For a fixed lattice, is minimized if we

choose as the fundamental Voronoi region . The normalized
second moment of is defined as (see, e.g., [6])

(10)

The normalized second moment is always greater than
, the normalized second moment of an infinite-dimensional

sphere. It is known that for sufficiently large dimension there
exist lattices whose Voronoi region approaches a sphere in
the sense that is as close to as desired [32]. This is
equivalent to saying that a random vector uniform over
is closer to white Gaussian noise in the sense of normalized
entropy, that is is close to . We say that
such lattices are “good for quantization” [35].

A lattice decoder is simply a Euclidean quantizer, or more
generally, a quantizer with respect to a fundamental region .
That is, the decoder quantizes the received vector to obtain the
hypothesized codeword. Since most practical decoding algo-
rithms for lattice codes indeed attempt lattice decoding rather
than ML decoding, it would be desirable if such lattice decoding
were near optimal.

When considering the performance of lattice decoding, it is
insightful to consider the similarity to linear coding for the bi-
nary symmetric channel (BSC). The problems of coding for the

BSC and coding for the AWGN channel are widely regarded as
analogous to some extent. Both are additive noise channels

(11)

with addition understood to be modulo-two for the BSC channel
and ordinary addition over the reals for the AWGN channel. The
BSC coding problem leads to a code in Hamming space, the
AWGN coding problem to a code in Euclidean space.

Linear codes are the counterpart of lattices for the case of a
BSC, and a minimum Hamming distance decoder is the coun-
terpart of lattice decoding. It is well known that linear codes can
achieve not only the capacity of the BSC channel but also the
best known exponential bounds on error probability, see, e.g.,
[2]. Furthermore, for the BSC channel, ML decoding amounts to
minimum Hamming distance decoding. Thus, minimum Ham-
ming distance decoding is optimal in the case of a BSC channel.

When trying to take the analogy farther, one is however con-
fronted with a basic problem. In a typical communication sce-
nario over the AWGN channel, the transmitter is usually subject
to some constraint, the most common being an average power
constraint as in (3). This feature is not present in the BSC/linear
case. In the next section, we describe a method for transforming
the AWGN into a modulo additive noise channel. This maintains
the parallelism between the two channel models and eventually
shows that the capacity of the AWGN channel may be achieved
using lattice codes and Euclidean lattice decoding.

III. MODULO-LATTICE ADDITIVE NOISE CHANNEL

We describe a technique derived in [12] to transform the
power-constrained AWGN channel into a modulo-lattice addi-
tive noise (MLAN) channel. The transformation is not strictly
information lossless in the sense that it does not preserve
the mutual information. However, for a “good” lattice, the
(information) loss goes to zero as the dimension of the lattice,

, goes to infinity. This suffices for achieving the channel’s
capacity, albeit may result in a suboptimal error exponent, as
shown in Section VI. For related background, see the treatment
of MLAN channels in [20].

Let be a random variable uniformly distributed over as
defined above. We employ as a dither signal. It is assumed that

is known to both transmitter and receiver (common random-
ness) and is independent of the channel. The following property
is extensively used in the sequel.

Lemma 1: For any random variable , statistically in-
dependent of , we have that the sum
is uniformly distributed over , and is statistically independent
of .

A proof in the context of dithered quantization can be found
in [33]. The following is a simpler proof by group-theoretic con-
siderations, that was pointed out to the authors by G. D. Forney,
Jr.

Proof: Since runs through as runs
through , and the density is constant over , the
density is constant over
for any .
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A. The MLAN Channel Transformation

We transform a block of uses of the AWGN channel
into an -dimensional MLAN channel. The input al-

phabet of this channel is a fundamental region of the lattice
which we call the shaping lattice. We later restrict our attention
to the fundamental Voronoi region .

Given and the dither , the output of the transmitter is
given by a modulo lattice operation

(12)

Upon reception, is multiplied by some “attenu-
ating factor” to be specified later, and the dither
is then added. The result is reduced modulo- , giving

(13)

(14)

The resulting channel from to is a modulo- additive noise
channel described by the following lemma:

Lemma 2 (“Inflated Lattice Lemma” [12]): The channel
from to , defined by (1), (12), and (13), is equivalent in
distribution to the channel

(15)

where is independent of and is distributed as

(16)

where is a random variable uniformly distributed over and
is statistically independent of .

We refer to the resulting channel as a -MLAN channel.
The component will be termed “self-noise” in
the sequel. We see that the equivalent noise is the weighted
sum of a Gaussian vector and a uniform random vector, folded
(aliased) into the fundamental region . When , the
MLAN transformation amounts to effectively “inflating” the
lattice and scaling the noise by different factors as explained in
Section V.

Proof:

(17)

(18)

(19)

(20)

where (20) follows since the modulo operation is distributive so
the dither cancels out. The lemma follows, since the distribution
of is independent of by Lemma 1, and it has the same
distribution as , i.e., it is uniform over .

For an input power constraint, the best choice for a shaping
region is a fundamental Voronoi region of the lattice relative to
the Euclidean norm. We denote this choice by . Note that

(up to a boundary set of measure zero) and therefore
in this case

(21)

where means .

The lattice is scaled so that the second moment of is ,
i.e.,

(22)

By Lemma 1, due to the dither, for any , the average transmitted
power is

(23)

B. Capacity of the MLAN Channel

Since the equivalent channel (15) is additive modulo- ,
taking the input to be uniform over the Voronoi region of ,
i.e., , achieves its capacity. With this choice, the
output is also uniformly distributed over . The resulting
information rate is

(24)

(25)

(26)

where (26) follows from the definition of the normalized second
moment (10) and from (22).

We are still left with the freedom of choosing . Choosing
results in an effective noise in (21),

i.e., does not have a self-noise component. When is large
and , and if is a “good” lattice for quantization,
i.e., , it can be shown that the effect of the modulo
operation on the noise entropy becomes negligible. We would
therefore have and a resulting information
rate2 of . As mentioned in the Introduction, this rate
was previously conjectured to be the greatest achievable with
lattice decoding.

Nevertheless, we can do better by taking the MMSE coeffi-
cient

SNR
SNR

With this choice, we have

(27)

(28)

(29)

where the inequality follows since for a Voronoi region
for any . Therefore, the effective noise

power is reduced by a factor of (as if the noise were

attenuated by a factor of ), so the effective SNR of the
MLAN channel is at least

SNR

so that it is increased by one.

2It is interesting to note that the information rate of log(2�eP )� h(N)
is achievable with � = 1 even when N = Y �X is not independent of X .
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Consider now a sequence of lattices which are good for
quantization as defined above, that is, .

Theorem 1 (Capacity of MLAN Channel): For the MLAN
channel, if we choose , , and if the
sequence of lattices satisfies , then

SNR

Proof: Since the capacity of the original AWGN channel
is SNR , it follows from the data processing
inequality that

SNR (30)

Since the entropy of is upper-bounded by the the entropy of
a white Gaussian vector with the same second moment [22], we
have from (27) that

(31)

which implies from (26)

SNR (32)

By assumption . Thus combining (30)
and (32), the theorem follows.

Therefore, with and a proper choice of shaping
lattice , the capacity of the MLAN channel indeed approaches
the capacity of the original power constrained AWGN channel3.
This entails drawing a random code according to the distribu-
tion , and applying ML decoding relative to the
effective modulo-noise [22]. In the next section, we show
how to replace the uniform random code by a lattice code.

IV. NESTED LATTICES FOR SHAPING AND CODING

As in the case of a BSC channel, we shall see that it is possible
to achieve capacity using linear codes instead of a code drawn at
random. For the MLAN channel, this means using a nested lat-
tice code, where the coarse lattice is used for shaping so it is a
good quantizer, and the fine lattice defines the codewords so
it is a good channel code. Furthermore, for the MLAN channel
lattice decoding is optimal, so that we will obtain a lattice en-
coding/decoding scheme to replace the random-code/ML-de-
coding scheme of Section III, having the same capacity. The
scheme is described in Section IV-A below, and its optimality
is stated in Theorem 2 in Section IV-B.

A delicate point is, however, that the effective noise in
the MLAN channel is not precisely Gaussian for any finite
dimension; hence, lattice decoding no longer means Euclidean
decoding but rather decoding with a noise-matched “metric”4.

3Inspired by a preprint of our work, Forney suggested to view this as a canon-
ical model which connects between Wiener theory and Shannon theory [18].

4We use here the (popular) term “decoding metric” although the distance mea-
sure induced by ML decoding is not necessarily a metric.

Nevertheless, for a more restricted class of nested lattices (see
Sections VII and VIII), Euclidean lattice decoding becomes
asymptotically optimal as the dimension goes to infinity, hence
it achieves capacity as well. This result is formally stated in
Theorem 3 in Section IV.C.

A nested lattice code is a lattice code whose boundary region
is the Voronoi region of a sublattice. This may be visualized as
in Fig. 1. The use of nested lattices goes back to the works of
Conway and Sloane [7] and Forney [16] (where they were called
“Voronoi codes” or “Voronoi constellations”).5 More recently,
such codes found application in Wyner–Ziv and dirty paper en-
coding [35].

The shaping sublattice (i.e., the coarse lattice) is , the lat-
tice defining the MLAN channel. We will choose so that its
average power per dimension is and its normalized second
moment approaches that of a sphere, namely, . The fine lat-
tice should be good for channel coding, i.e., it should achieve
the Poltyrev exponent, as explained in Section VII.

Formally, we say that a lattice (the coarse lattice) is nested
in (the fine lattice) if , i.e., if is a sublattice of

.6 The fundamental Voronoi regions of and are denoted
by and , respectively; their corresponding volumes by

and , where divides by construction. We call the
nesting ratio. The points of the set

(33)

are called the coset leaders of relative to ; for each ,
the shifted lattice is called a coset of relative to

. The set of all cosets, i.e., the quotient group of by , is
denoted by . It follows that there are different cosets,
whose union gives the fine lattice

(34)

The coding rate of the nested lattice code is defined as

It follows that

nesting ratio (35)

A. Encoding/Decoding Scheme

We now incorporate a lattice code into the modulo transfor-
mation scheme of Section III, with nested lattice codes replacing
the random codebook, as shown in Fig. 2. Let be a
rate- nested lattice code as defined in (35), with .
Let denote modulo-lattice operation with respect to the
Voronoi region of the coarse lattice. Let denote some fun-
damental region of the fine lattice to be specified later, and
let denote the corresponding lattice quantizer.

5Conway and Sloane’s original definition [7] was limited to self-similar lat-
tices. Forney’s Voronoi codes, allow, by construction, any nesting relation. Here
we prefer to use the name “nested codes,” which links to the more general con-
text of algebraic binning [35].

6In some publications, the coarse lattice is denoted � (for shaping) or �
(for quantization), while the fine lattice is denoted � (for coding).
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Fig. 1. Nested lattices of ratio three.

Fig. 2. Encoding/decoding scheme.

Fig. 3. Equivalent modulo-additive noise channel. Addition is modulo-�.

• Message selection: Associate a message with each
member of the set of coset leaders as defined in
(33).7

• Encoding: Let the dither be defined by .
Given the message , the encoder sends

(36)

Consequently, by Lemma 1 and (23), is uniform over
(independent of ) and the average transmitted power is
.

• Decoding: Let as in Section III. The decoder
computes

(37)

7In fact, ccc may be replaced by any member of the coset � .

This transmission scheme is depicted in Fig. 2, where
is denoted by . By the “distributive” property of the modulo
operation, we can rewrite (37) as

(38)

(39)

(40)

where (39) follows since from (13) (with
), and (40) follows by the inflated lattice lemma (Lemma

2) where . The equivalent channel
from to is illustrated in Fig. 3.

Since the channel is modulo additive and is nested in ,
the decoding error probability for any codeword is given by

(41)
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B. Noise-Matched Lattice Decoding

Since we use (or more precisely ) as a channel code
for the MLAN channel with noise which is not Gaussian
(or spherically symmetric), the optimal decoding region is
not the Voronoi region of with respect to Euclidean metric.
Rather, we define , a fundamental region of , to be a ML
decoding region with respect to of the zero codeword. Thus,

is a fundamental region satisfying8

(42)

A decoder using the quantizer will be called an ML
lattice decoder or a noise-matched lattice decoder. Note that the
decoder is a lattice decoder in the sense that the decoding re-
gions are congruent but is not a (Euclidean) nearest neighbor
decoder since is not quite spherically symmetric.

Theorem 2 (Capacity-Achieving Nested Lattices With ML
Lattice Decoding): For any , there exists a sequence of

-dimensional nested lattice pairs whose rate
as defined in (35) is greater than for sufficiently large ,
and whose decoding error probability (41) vanishes as

(43)

Theorem 2 can be deduced by a suitable modification (to
nested lattices) of the analysis in [26]. Here we obtain it as
a corollary to Theorem 5, which deals with the error proba-
bility of a Euclidean decoder. The latter is strictly inferior to
the noise-matched decoder assumed here and thus Theorem 2
indeed follows from Theorem 5.

C. Euclidean Lattice Decoding

As we observed, a somewhat disagreeable aspect of the noise-
matched lattice decoder is that the decoding “metric” is now
coupled to the choice of shaping lattice (via the probability
density of the self-noise ). Moreover, the decoding metric
has memory. This is in contrast to the single-letter form of the
Euclidean decoding metric, corresponding to white Gaussian
noise.

Looking at the definition of (21), we see that there are
two elements to this non-Euclidean nature of the decoder
which we may separate. Define so
that . The first element is that the self-noise
is distributed uniformly over rather than being Gaussian.
The second is that the sum
is then reduced modulo- . We may correspondingly depict
the operation of a noise-matched decoder as follows. Upon
receiving a vector , for every codeword first
compute the densities for all , then sum
them. That is, the metric associated with codeword is the sum
over all metrics of its coset , so that

(44)

8Note that 
 is not uniquely defined by (42) as ties may be broken in dif-
ferent ways. One possibility is to take 
 to be the union of all points either
satisfying (42) with strict inequality, or in case of a tie, belonging to the Voronoi
region V .

where

(45)

Accordingly, there are two natural simplified (suboptimal)
decoders to be considered. First, we may approximate with
a white Gaussian vector having the same second moment

, and thus use the “folded Euclidean metric”

(46)

The decoder may further be simplified by dropping the sum,
keeping only the largest term, resulting in the metric

(47)

The metric gives rise to a Euclidean quantization cell
, so the decoding operation in (37) becomes

, and the decoding error probability (41)
becomes

(48)

Since decoding according to is suboptimal (i.e., mismatched
decoding), in (48) is in general larger than the decoding error
probability in (43). Nevertheless, the following theorem shows
that capacity can still be approached using appropriate nested
lattice pairs.

Theorem 3 (Capacity-Achieving Nested Lattices With Eu-
clidean Decoding): For any , there exists a sequence of

-dimensional nested lattice pairs whose rate
as defined in (35) is greater than for sufficiently large ,
and whose decoding error probability (48) satisfies as

(49)

Theorem 3 follows as a corollary to Theorem 5 in Sec-
tion VIII, which goes further and bounds the error exponent of
a nested lattice code with Euclidean lattice decoding. As a final
remark, we note that, in practice, the folded Euclidean metric
(46) may allow to approach capacity with a less demanding
nested lattice construction and may be advantageous in practice,
see [13], [14].

V. LINEAR ESTIMATION, BIAS AND INFLATED

LATTICE DECODING

In this section, we illustrate the effect of using an inflated
lattice decoder9 by considering a one-dimensional example,
without the use of a dither. We consider uncoded pulse ampli-
tude modulation (PAM) transmission and compare the average
error probability of an inflated (or scaled) lattice decoder with
that of a noninflated lattice decoder. The inflated lattice de-
coding approach relates to the issue of biased versus unbiased
estimation in the context of detection. We attempt to shed some
light on the merits of these two approaches.

9The term “inflated” will be explained later in this section.
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Fig. 4. Regular slicer (black circles and solid lines), lattice quantizer decoder (black circles, solid and dashed lines), and inflated lattice quantizer decoder (empty
circles and dotted lines).

Assume an element of a 4-PAM constellation is sent over
an additive noise channel with AWG noise as illustrated in
Fig. 4. That is, let and assume that the
four symbols are equiprobable, i.e., for

. The receiver observes where
. A minimum-distance (ML) decoder would

decode as follows:

These decision regions correspond to a standard slicer. The re-
sulting average probability of error is

(50)

(51)

where

(52)

denotes the standard function to avoid confusion with the
quantizer function to be used next.

Suppose now that we replace the slicer with a one-dimen-
sional midrise lattice quantizer of step size , so
that where

iff for

Hence, the two outer decision boundaries in Fig. 4 come into
play. The average probability of error of this system is

. We obviously lose with respect to the ML decoder
by bounding the decision regions of the two outer symbols
and .

Consider now a third decoder that uses a one-dimensional
lattice quantizer but this time with step size where

, so that , as illustrated in Fig. 4. We call
such a decoder an inflated lattice decoder or simply an inflated
quantizer. We may optimize the scaling coefficient so as to
minimize the averaged error probability

(53)

We may alternatively view the inflated lattice decoder as using
linear estimation prior to quantization. That is, we may keep the
step size and decode as

where is a linear estimator of given . Note that
the estimator is biased and the estimation error
is statistically dependent on the transmitted symbol (as no
dither is used). The optimizing scaling factor SNR may
be found numerically.

A suboptimal choice, at least for this one dimensional ex-
ample, is to use MMSE scaling. The MMSE criterion chooses
so as to minimize the expected estimation error . The re-
sulting (Wiener) coefficient is SNR . Fig. 5
compares the average error probability as a function of the SNR
of the a regular slicer, a lattice quantizer, and a scaled (inflated)
lattice quantizer. The performance of the inflated lattice quan-
tizer is depicted for various values of as well as for the MMSE
value SNR . The lower envelope of the dashed lines
corresponds to SNR . It is seen that the inflated lattice
quantizer has a substantial gain over the standard (unscaled) lat-
tice quantizer at low SNR.

We conclude that when using a lattice quantizer at the de-
coder, we may gain by using a biased linear estimator prior to
quantization. In contrast, when a regular slicer (with half open
boundary decision regions) is used, the unbiased estimator is
clearly superior as it performs ML detection.

In this one-dimensional example, the distinction between a
minimum-distance decoder and a strict lattice quantizer decoder
may seem of minor significance, affecting only the boundary
points. However, in high dimensions, the boundary codewords
are typical and the distinction becomes of central importance.
This may be visualized by the multidimensional lattice trans-
mission scheme with inflated lattice decoder depicted in Fig. 6.
The noise is Gaussian and is depicted as a sphere. In high di-
mensions, almost all transmitted lattice points lie near the sur-
face of a sphere of radius . One such point is consid-
ered in the figure. With a nonscaled lattice decoder, correct de-
coding occurs when the noise falls within the Voronoi region.
When the noise is large, this original Voronoi region is com-
pletely contained in and is strictly smaller than the noise sphere.
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Fig. 5. Comparison of performance of regular slicer, regular (unscaled) lattice quantizer, and inflated lattice quantizer with MMSE scaling. The dashed lines
correspond to inflated lattice quantizers with fixed values of � = 0:1; 0:2; . . . ; 1.

Fig. 6. Inflated lattice decoder. Bold lines = Voronoi regions of original lattice code; thin lines = decoding regions of the inflated lattice; small circles = actual
transmitted codewords; bold circles = inflated (imaginary) codebook.

Thus, the probability of correct decoding is proportional to the
relative portion of the noise sphere contained inside the orig-

inal Voronoi region, which is strictly smaller than one. With
an inflated lattice decoder, the probability of correct decoding
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is proportional to the relative portion of the noise sphere (cen-
tered at the transmitted codeword) contained inside the inflated
Voronoi region. The latter region is centered around the associ-
ated point of the inflated lattice, which we call “the imaginary
transmitted point.” We can see in the figure that the intersec-
tion of the noise sphere with the inflated Voronoi region has a
larger volume than the volume of the original Voronoi region.
Thus, the inflated lattice decoder has a smaller probability of
error. Note also that if we were to increase the scaling ratio, at
some point the noise sphere would cease to intersect the inflated
Voronoi region. Thus, the optimal scaling ratio is finite. Further-
more, SNR SNR as the dimension goes to
infinity.

VI. RANDOM CODING ERROR EXPONENTS OF THE MLAN
CHANNEL AND THE POLTYREV EXPONENT

We now show that the random coding error exponents of the
MLAN channel are related to the Poltyrev exponent [28], [20].
We first give a heuristic explanation of the relation, arriving at an
expression for the MLAN error exponent. A rigorous derivation
is then given in Section VI-A.

Poltyrev studied the problem of coding for the unconstrained
AWGN channel with the input alphabet being the whole space

. In this setting, the notion of capacity becomes meaningless
as infinite rates of transmission are possible. Instead, the error
probability (of an ML decoder) is measured against the normal-
ized density of the codewords. We now formalize these notions.

Let be an infinite constellation of points (codewords)
and let be an -dimensional cube of
side length centered at the origin. Denote by

the density of the constellation. Note that is the
average volume of a Voronoi region of a codeword. Given
an AWGN of variance the (normalized per dimension)
volume-to-noise ratio (VNR)10 is defined as

(54)

Note that is the asymptotic (in dimension ) squared
radius of a sphere of volume . Thus, has the significance of
the ratio of the squared “radius of a spherical Voronoi region”
to the variance of the noise. When , a “spherical” Voronoi
region has the same radius as the standard deviation of the noise;
for smaller , an error is highly likely and reliable communica-
tion is not to be expected. Thus, has the significance of
capacity. See the discussion in [20, Sec. II-C] where this is re-
ferred to as the “sphere bound.”

10The term VNR was coined in [20] where it is denoted by � . In [28] 2�e�
is called the generalized signal to noise ratio and is denoted by �, i.e, Poltyrev’s
� differs from ours by a factor of 2�e.

Define to be the limit supremum (over ) of the av-
erage probability of error of the codewords within ,
the size of the cube going to infinity. Denote the best possible
average probability of error for a given by

where the infimum is over all codebooks with VNR . Poltyrev
showed in [28] that

(55)

where , the “Poltyrev exponent,” is given by

(56)
and corresponds, as for finite capacity channels, to the random
coding and expurgated bounds on the error exponent [22].

The problem of coding for the MLAN channel is rather
similar to Poltyrev’s problem of coding for the unconstrained
AWGN channel. Whereas in the first problem the alphabet is
compact, i.e., it is the Voronoi region of a lattice, in the latter
it is unbounded, i.e., the entire Euclidean space . Thus, we
might suspect that the decoding error probability in the two
problems may be related if we measure it in both cases against
codeword density. A minor difference is that the noise in the
MLAN channel is not strictly Gaussian but rather approaches a
Gaussian distribution asymptotically as the dimension
(with a proper choice of a sequence of shaping lattices).

Consider a code of rate for the MLAN channel with a fun-
damental Voronoi region of volume and with

The number of codewords is and thus the volume per code-
word is giving a codeword density

(57)

As the effective noise has variance

we may associate with the code and channel a corresponding
effective VNR

SNR
(58)

using the fact that for a (high-dimensional) almost-spherical
Voronoi region , we have . Note that

when . We now show that for a lattice with close
to (i.e., with an approximately spherical shaping region in
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a second moment sense) the error probability in ML decoding
of an optimal code is indeed bounded by (55) with replaced
by .

A. Detailed Analysis

Denote by and the random coding and ex-
purgated error exponents, respectively, of the -MLAN channel

, as characterized in Lemma 2, rel-
ative to an input distribution uniform over the alphabet .
Note that for a modulo additive-noise channel, a uniform input
indeed maximizes the random coding and expurgated bounds
[22]. Let

(59)

so that is a lower bound to the true error exponent of the
-MLAN channel.
As we have seen, choosing a shaping lattice with nor-

malized second moment close enough to and
, ensures a vanishing loss in capacity in the MLAN

transformation. We now analyze the resulting error exponent.
The random coding error exponent of a modulo additive noise

channel can be expressed conveniently in terms of Rényi en-
tropies, see, e.g., [15]. For the -MLAN channel, this gives

(60)

where and is the density of the codewords as defined
in (57), and where the Rényi entropy of order is defined by

(61)

where denotes the probability density of . Taking into
account that , we have

(62)

(63)

Let . In Lemma 5 in Appendix A, we show
that for

(64)

with and . Thus, Lemma 5
expresses Poltyrev’s random coding exponent in terms of Gal-
lager’s random coding exponent of a - channel. Recall
from (27) that for , the variance per dimension of

is . Thus, comparing (63) with (64) we see that if
were white and Gaussian, then the random coding exponent of
the MLAN channel would approach the Poltyrev random coding
exponent as . Theorem 4 specifies under what con-
ditions this holds, and also extends this to the expurgated expo-
nent.11

We first introduce the following definitions. Let denote
the covering radius of , i.e., is the radius of the smallest
ball containing the Voronoi region . Also, let denote the ef-
fective radius of the Voronoi region, i.e., the radius of a sphere
having the same volume as . Finally, substituting the effective
VNR from (58) in the Poltyrev exponent
given in (56), we get (65) at the bottom of the page. The fol-
lowing theorem is proved in Appendix A.

Theorem 4 (Random-Coding Error Exponent for a Fixed
Shaping Lattice): For any -dimensional lattice , the error
exponent of the -MLAN channel satisfies

(66)

where is the Poltyrev exponent

(67)

and

(68)

with , , and denoting the covering radius, effective
radius, and normalized second moment of , respectively, and

denoting the normalized second moment of an -sphere.

To achieve the Poltyrev exponent at ,
we would thus like and to be small. To that end, we
confine ourselves to a more stringent class of shaping lattices .
Following a result of Rogers [29], [6], there exist lattices whose

covering density, i.e., , satisfies

(69)

for some positive constants and . We shall refer to such a
sequence of lattices as “Rogers-good.” By the proof of Lemma
1 of [32], this implies in particular that for such a sequence of

11Unfortunately, unlike for the case of capacity (corresponding to regular en-
tropy, i.e., Rényi entropy of order �� = 1), there seems to be no direct way to
bound the difference between h (NNN ) andh (Z) in terms of log(2�eG(�)).

(65)
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lattices as . Also, from (69) it follows
that

as .

Corollary 1: For a sequence of Rogers-good lattices

(70)

where is given in (65).

Remarks:

• Note that vanishes at , i.e., at

which is the well-known capacity of the original AWGN
channel.

• As noted, the exponent in (56) was derived by Poltyrev
[28] in the context of coding for the unconstrained AWGN
channel. In fact, the proof of Theorem 4 may be considered
as an alternative simplified approach to proving Poltyrev’s
result. A similar simplification has been done previously
in [20, Sec. VIII].

• In a preliminary version of this work, it was conjectured
that (70) is in fact an equality, i.e., that the error exponent
of the MLAN channel asymptotically equalts the Poltyrev
exponent. A recent result [25], however, shows that a
better error exponent can be achieved with an which is
different than and that, in fact, the random coding
error exponent is (asymptotically) equal to that of the
original power-constrained channel as given in (71). This
surprising result implies that at least at high transmission
rates, the MLAN transformation does not lose in error
exponent.

B. Comparison With the Error Exponents of the
Power-Constrained AWGN Channel

Denote the random coding error exponent of the original
power-constrained channel (1), (3) by SNR (where

and are related via ). This exponent is given
by [22, p. 340] (71) and (72) (at the bottom of the page) for

SNR SNR
SNR

(73)

The expurgated exponent is given by [22, p. 342]

SNR
SNR

SNR
(74)

for

SNR
(75)

Fig. 7 compares the exponents and for several
SNR values. We note that at high SNR, the random coding and
straight-line sections of tend to the Poltyrev expo-
nent. This can be seen more clearly in Fig. 8, where the random
coding exponents are plotted as a function of the SNR and .
Note that does not depend on the SNR. We also note
that at high SNR is twice as large as .

VII. AN ENSEMBLE OF GOOD NESTED LATTICE CODES

The scheme presented in Section IV-A assumes a nested pair
of lattices such that the coarse lattice is good for quantization
while the fine one is good for AWGN coding under ML de-
coding. In Section IV-C, we further assumed the existence of
nested lattice pairs which allow Euclidean lattice decoding to
be (asymptotically) optimal.

We now define, for any coding rate (35), a random ensemble
of nested lattice pairs . We show that most members of
the ensemble satisfy that the coarse lattice is simultaneously
Rogers-good (a good quantizer) and Poltyrev-good (a good
channel code), while the fine lattice is Poltyrev-good.
This will allow us to prove Theorem 5 which shows that the
probability of error in the transmission scheme of Section IV-A
satisfies .

Clearly, by integer scaling a lattice we may obtain “self-sim-
ilar” nested lattices for any integer nesting ratio. For example,
Fig. 1 depicts a self-similar nested lattice pair of dimension
two. The nine codewords are depicted as full circles. Note that
the open circles are identical to full circles. Here, the
nesting ratio is three. A lattice may also have a sublattice that
is a scaled and rotated version of it; see [5]. In general, the pair
of nested lattices discussed in this paper need not be similar and
the nesting ratio does not have to be an integer. We note that in
[27] a related construction of nested trellis codes is given that is
better suited for applications.

We begin with a description of Loeliger’s type A construction
of a random - lattice ensemble [26]. See [6] for a general
definition of Construction A. The construction of a good -di-
mensional lattice consists of the following steps [11]:

SNR (71)

SNR SNR
SNR

SNR SNR

SNR SNR
SNR

SNR
SNR SNR

(72)
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Fig. 7. Comparison of the random coding and expurgated error exponents of the power-constrained AWGN channel (dashed line) and the Poltyrev exponent
(solid line). The circles in the figure separate the expurgated, straight-line, and random coding parts of the curves, respectively.

Fig. 8. Comparison of random coding exponent of the power-constrained AWGN channel (solid line) and the Poltyrev random coding exponent (dashed line).The
curves depicted are all above the critical rates of the respective channels.

1) Draw a generating vector according to
i.i.d., .

2) Define the discrete codebook,

(76)

3) Apply Construction A to lift to and form the lattice:

(77)

The goodness of this lattice ensemble for AWGN channel
coding and for quantization is shown in [11]. We extend the
discussion to the generation of a pair of nested lattices which
is good for the MLAN channel. We use a transformed version
of above as the fine lattice. As for a coarse (shaping) lat-
tice, we use a lattice that is simultaneously Rogers-good and
Poltyrev-good. This is necessary for Euclidean decoding to be
adequate, since a Euclidean decoder “ignores” the folding of
the noise and hence we would like the probability of folding
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to be (exponentially) small. In [11], it is shown that a lattice
may indeed simultaneously be Rogers-good for covering and
Poltyrev-good for channel coding. That is, we may take (more
precisely, the sequence of such lattices) such that the following
two properties hold:

1) for some constants and , where
and are the covering radius and the effective radius,

respectively, associated with .

2) For any

(78)

where is the VNR of the coarse lattice (viewed
as a channel code) relative to a noise .

Note that the first property implies that as
. Let denote the generating matrix of this lattice.
From the construction of the fine lattice above, we have

that the -dimensional cubic lattice may be viewed as nested
in the resulting lattice, i.e., . The nesting ratio is given
by

(79)

so the coding rate (35) is . We now
apply the linear transformation to to obtain the modified
lattice such that is the desired nested lattice pair.
Note that the transformation does not affect the nesting ratio.
Since the unit cubic lattice is a sublattice of , it follows
that is a sublattice of .

We may view the construction as starting with a self-similar
pair of nested lattices as depicted in Fig. 1. The
nesting ratio at this point is . We then dilute the lattice

by picking one of its points, along with all its multiples
modulo- , and throwing away all the remaining points. This
results in a new lattice and a nesting ratio of . Since the
total number of codewords is , for a given rate we must
choose , where denotes rounding to the nearest
prime, and apply the above construction.

For large , the resulting ensemble is “matched” to the
-MLAN channel, in the sense that the codewords of the fine

lattice become uniform over the Voronoi region of . Hence,
a typical member of the ensemble approaches the optimum
random-coding error exponent of this channel. These facts are
proved in the next section.

VIII. ERROR ANALYSIS IN EUCLIDEAN LATTICE DECODING

In this section, we prove that capacity as well as the Poltyrev
exponent may be approached arbitrarily closely using nested
lattices from the ensemble described in Section VII and a Eu-
clidean decoding metric as defined in Section IV-C. Specifi-
cally, we prove the following theorem.

Theorem 5 (Error Exponent in Euclidean Lattice De-
coding): For any rate SNR , there exists
a sequence of -dimensional nested lattice pairs
whose coding rate as defined in (35) approaches , and whose

decoding error probability (48) under Euclidean lattice de-
coding satisfies

(80)

where as , and is the Poltyrev expo-
nent given in (56).

Since for all , Theorem 5 implies that for
every rate smaller than capacity, goes to zero as ,
which is Theorem 3. Furthermore, since Euclidean decoding is
suboptimal relative to ML decoding, Theorem 2 follows as well.

Proof: Assume the ensemble of nested lattices defined in
the previous section with , covering radius , ef-
fective radius , and coding rate . Note that the coarse lattice

is fixed and not drawn at random. We wish to evaluate the
error probability in lattice decoding of a random member of
this ensemble using the standard random-coding error exponent
method [22] (as done, e.g., by Poltyrev [28] and Loeliger [26]).
But this method assumes ML decoding, while as explained in
Section IV-C, Euclidean decoding may not be ML. To overcome
this difficulty, we first bound by the probability of error in
the presence of “truncated Gaussian” noise, , for which Eu-
clidean decoding is optimal. To establish this bound, we need to
define a few auxiliary random vectors.

Recall that so that .
That is, is the effective noise prior to the modulo operation.
In Lemmas 6 and 11 in Appendix A we show that there exists a
Gaussian vector with

(81)

such that

(82)

where is defined in (67), and is defined in (69).
That is, the density of is not “much” greater than that of
the density of a Gaussian distribution with a “slightly” greater
variance. Note that the bound is uniform in , i.e., does
not depend on . Thus, we may bound the probability of error
by

(83)
Unfortunately, we cannot apply the random-coding error
exponent of Theorem 4 to bound , since
is not a modulo- noise. Also, we cannot apply it to bound

, because for this noise is not an ML
region. Instead, we shall bound this probability in terms of

, where is a truncated version of limited
to the Voronoi region of . That is, has the following
distribution:

otherwise
(84)
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where

(85)

is the probability of truncation. Since , we have

Thus,

(86)

(87)

(88)

Note that from (81), the equivalent VNR of the coarse lattice
(viewed as a channel code) relative to is

so from (78) the second term in (88) is upper-bounded by

(89)

We now turn to evaluate the first term in (88), .
Consider a -MLAN channel

(90)

The next lemma shows that when is simultaneously good in
the above meaning, the exponent of this channel is arbitrarily
close to the Poltyrev exponent for large enough dimension .

Lemma 3: If is Rogers-good and Poltyrev-good, then the
random coding exponents of the -MLAN channel sat-
isfy

(91)

The lemma is proved in Appendix B.
We next show that we may replace the random code with a

lattice from the ensemble defined in the previous section without
affecting the error exponent. Consider first the random code
(nonlattice) ensemble obtained by applying a uniform distribu-
tion over the fine grid . Denote the union of the
random coding and expurgated error exponent corresponding to
this ensemble by

(92)

where, as above, . The next lemma is proved in Ap-
pendix C.

Lemma 4: If is Rogers-good, then

(93)

The claim for the expurgated exponent may be proved simi-
larly.

Consider now the ensemble of nested codes defined in Sec-
tion VII. It can be seen that each codeword in the ensemble is

uniformly distributed over the basic grid . Further-
more, the distribution of the difference between any two code-
words is also uniform. The pairwise distribution is thus iden-
tical to that obtained by drawing each codeword independently
and uniformly over the basic grid as done in the
random code ensemble. Therefore (see [22]), these two ensem-
bles have the same random coding error exponent. It may also be
shown that with probability going to one (as ) a lattice
drawn from the proposed nested lattice ensemble will satisfy the
expurgated error exponent bound in (92). Thus, the probability
of error for this ensemble of nested lattices when used over a

-MLAN channel with ML decoding is governed by the
error exponent . Furthermore, since and
the density of is proportional to inside and
zero elsewhere, it follows that Euclidean decoding is ML for this
channel. Thus,

(94)

We can now combine (83), (88), (89), Lemma 3, Lemma 4,
and (94), to obtain

(95)

(96)

where the second inequality follows because the first exponent
dominates. This establishes Theorem 5.

IX. CONCLUSION

We have demonstrated that using nested lattice codes in con-
junction with an MMSE-scaled transformation of the AWGN
channel into a modulo additive noise channel, lattice codes can
achieve capacity using lattice decoding. It should be noted, how-
ever, that the precise definition of lattice encoding and decoding
used throughout this work differs somewhat from that in pre-
vious works.

This transformation of the original power-constrained
channel into a modulo additive-noise channel, though sufficient
for achieving capacity, is not strictly information lossless. The
error exponent is lower-bounded by the Poltyrev exponent,
which was derived in [28] in the context of coding for the
unconstrained AWGN channel.

As illuminated by Forney [18], the combination of MMSE
estimation with a dithered lattice code presented here offers a
useful connection between Wiener and Shannon theories. Re-
cent work indeed indicates that the underlying principle may
find application in diverse areas of digital communications, see,
e.g., [23]. The random dither can be replaced in practice by
a suitable deterministic translation of the fine lattice [18]. As
discussed in Section V, for finite-dimensional (e.g., uncoded)
modulation, the best linear estimator slightly deviates from the
MMSE solution. Section V also presents equivalent forms of the
estimation–lattice–decoding scheme.

Similar observations were made in the source coding context,
by incorporating filters with dithered lattice quantizers [34].
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Here the role of shaping is accomplished by entropy coding.
As in the scaled MLAN transformation, with “good” lattices
and optimum filters, entropy coded dithered lattice quantiza-
tion achieves Shannon’s rate-distortion function for Gaussian
sources.

The proposed encoding scheme may easily be generalized to
nonwhite Gaussian noise/linear Gaussian intersymbol interfer-
ence (ISI) channels. The scheme also is related to “dirty paper”
coding techniques. In particular, the coarse lattice component
of the nested code plays a role similar to that of the “lattice
strategy” for canceling interference known to the transmitter
[12], stemming from the work of Costa on the “dirty paper”
channel [8]. Indeed, the present work was directly motivated
by [12]. In this respect, it confirms that various lattice-theoretic
schemes such as trellis shaping and precoding for ISI channels
may be extended so as to achieve capacity at any SNR and there
is no “inherent” precoding loss. See [35], [27], [13] for a de-
tailed account.

The notion of “good” nested lattices is central to our ap-
proach. Such codes are useful for “structured binning” [3], [35].
As mentioned in Section VII, one approach to the construction
of such codes is by using self-similar lattices [5]. However, this
approach is limited and it is not clear that any nesting ratio may
be approached with self-similar lattices. The construction given
in Section VII is more general and allows for any nesting ratio.
Furthermore, it may readily be interpreted in terms of conven-
tional coding techniques in the spirit of trellis shaping [17].

APPENDIX A
RANDOM CODING ERROR EXPONENTS OF MLAN CHANNEL

In this appendix, we prove the following two propositions
which together constitute Theorem 4.

Proposition 1:

(97)

for where and are
defined in (67) and (68), respectively.

Proposition 2:

(98)

for .

Before proving the first proposition, we introduce two
lemmas. We use the following identity that relates the Poltyrev
random coding exponent to that of an “infinite-dimensional”
MLAN channel.

Lemma 5 (Poltyrev Exponent as a “Spherical” MLAN Expo-
nent I):

(99)

with and .

Proof: Let . Using the the fact that for Rényi
entropy (as for Shannon entropy), ,
we can rewrite (99) as

(100)

Define . The Rényi entropy of order of a (generic)
Gaussian random variable with variance is

(101)

(102)

(103)

substituting . We therefore have

(104)

Taking the derivative of with respect to , we get

(105)

Thus, an extremum occurs when

(106)

or, equivalently, when

(107)

It is easy to verify that this extremum is indeed a maximum.
Substituting (106) and (107) in (104), we get

(108)

(109)

From the definition of (57), we get

SNR
(110)

Substituting (110) for in (109) we get

(111)

Finally, from (107) and (110) we note that corresponds
to a rate satisfying

(112)

from which we obtain the critical rate

(113)

We next define a number of auxiliary random variables. Let
be the covering radius of . Denote by a ball of radius
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and let be the second moment per dimension of .
We have (see, e.g., [32], for details)

(114)
where denotes the normalized second moment of an

-sphere. Note that is the second moment of a ball con-
taining , which has second moment . Thus, .

Define the following:

• where is the identity matrix of
dimension ;

• ;

• .

The variance of is related to that of by the following
lemma.

Lemma 6:

(115)

Proof: Recall that and that satisfies
. Since a ball has the smallest normalized

second moment, it follows that

(116)

(117)

(118)

Now from (118) and (23), we see that

(119)

(120)

(121)

(122)

On the other hand, we have

(123)

from which follows the left inequality in (115).

We are now ready to prove Proposition 1.

Proof of Proposition 1: We may bound the random coding
error exponent of the -MLAN channel as follows:

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

where (125) follows since the function is convex- for
; (126) follows by Lemma 9 proved below; (129)

follows by Lemma 6 and since ; and
(131) follows by Lemma 5.

Expurgated Exponent: We next bound the expurgated error
exponent [22] of the -MLAN channel. Since for a modulo ad-
ditive noise channel the expurgated exponent is achieved by a
uniform input, we have (132)–(134) at the bottom of the fol-
lowing page. The last expression my be rewritten as follows.
For the -MLAN channel, define the generalized Bhattacharyya
distance of order by

(135)

Recall the definition of , the effective noise prior to folding,
i.e., . For the noise , define

(136)
We similarly define . Thus, we may write

(137)
We have the following lemma.
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Lemma 7:

(138)

Proof: See (139)–(145) at the bottom of the page, where
(141) and (143) follow since for positive

and and .

We also have the following identity (analogous to Lemma 5)
that relates the Poltyrev expurgated exponent to that of an “infi-
nite-dimensional” spherical MLAN channel.

Lemma 8 (Poltyrev Exponent as a “Spherical” MLAN Expo-
nent II):

(146)

for with .

Proof: Let us first compute . We use the fol-
lowing property of Gaussian distributions:

(147)

(148)

where . This follows since

(149)

(150)

(151)

(152)

(132)

(133)

(134)

(139)

(140)

(141)

(142)

(143)

(144)

(145)
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We obtain

(153)

(154)

(155)

(156)

(157)

(158)

(159)

Plugging (159) into the left-hand side of (146) and substituting
, it is left to show that

(160)

for with . Differenti-
ating the left side of (160), we get

(161)

(162)

Equating to zero, we obtain

(163)

or equivalently

(164)

Substituting (164) into (160), we have

(165)

Taking into account that , we get

(166)

Finally, note that from (164), we have that corresponds
to a rate satisfying

(167)

or

(168)

We are now ready to prove Proposition 2.

Proof of Proposition 2: We bound the MLAN expurgated
exponent by (169)–(180) at the top of the following page, where
(171) follows by Lemma 7, (172) follows by Lemma 10, (178)
follows by Lemma 6, and (180) follows from Lemma 8.

The straight-line part of the bound on in The-
orem 4 now follows by combining the results for the random
coding exponent and the expurgated exponent.

Lemma 9: For any

(181)

Proof: Using Lemma 11, which is proved below, for any

(182)

(183)

(184)

Lemma 10: For any

(185)

Proof: Using Lemma 11 which is proved below, for any

(186)

Lemma 11:

(187)

Proof: Let denote a random vector uniformly dis-
tributed over a ball of radius and denotes its density

elsewhere
(188)

where is the volume of a unit sphere of dimension . Since
is uniformly distributed over , for any we have

(189)

Thus,

(190)
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(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

(179)

(180)

We next observe that for any

(191)

where is defined after (114), i.e., is Gaussian having the same
second moment as defined in (188). To see this note that for

we have

(192)

Using (114) we have that

(193)

Combining (192) and (193), we get that for , we have

(194)

We also have for any such that

(195)

(196)

(197)

(198)

Since is monotonically decreasing with , we have
that (194) together with (198) imply that for any

(199)

We thus get

(200)

Recall that

(201)

and

(202)

It follows from (200)–(202) that

(203)

APPENDIX B
PROOF OF LEMMA 3: EXPONENT OF TRUNCATED GAUSSIAN

MLAN CHANNEL

The random coding error exponent of the -MLAN
channel is given by

(204)
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We further have (recall that is truncated version of , see
(84))

(205)

(206)

(207)

Taking we get

(208)

Similarly, we have

(209)

Therefore, following the steps in the proof of Theorem 4 we get

(210)

This completes the proof.

APPENDIX C
PROOF OF LEMMA 4: EXPONENT ROBUST TO FINE

QUANTIZATION OF INPUT

Consider the random coding error exponent corresponding to
a uniform distribution over the basic grid . It is
given by

(211)

where we have (212) at the bottom of the page. Compare this
with the random coding exponent corresponding to a uniform
input, which is given by

(213)

where we have (214) at the bottom of the page. We next show
that for any and

(215)

where is assumed to be any Rogers-good lattice. Consider a
ball of radius and volume . We have

(216)

Since , this gives

(217)

For Rogers-good lattices, we have

and

Combined with (216), this implies that for any

(218)

where here . Recalling that

, we also have for any

(219)

For any

(220)
By the Cauchy–Schwarz inequality

(221)
Therefore,

(222)
Now

(223)

The last two inequalities imply that

(224)

(212)

(214)
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Consequently, we obtain (215). Substituting (215) into (214), it
follows that

(225)

This proves the lemma.
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