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Computing graph separators is an important step in many 
graph algorithms. A popular technique for computing graph 
separators involves spectral methods. However, there is not 
much theoretical analysis of the quality of the separators 
produced by spectral methods; instead it is usually claimed 
that such methods ‘$work well in practice.” We present an 
initial attempt at such analysis. In particular, we consider 
two popular spectral separator algorithms, and provide 
counterexamples that show these algorithms perform poorly 
on certain graphs. We also consider a generalized version 
of the spectral method that allows the use of some specified 
number of the eigenvectors corresponding to the smallest 
eigenvalues of the Laplacian matrix of a graph; for such 
algorithms, we show that if they use a constant number 
of eigenvectors, then there are graphs for which they do 
no better than using only the second smallest eigenvector. 
We also show that in this case the algorithm based on the 
second smallest eigenvector performs poorly with respect 
to theoretical bounds. Even if an algorithm meeting our 
generalized definition uses up to nt for 0 < E < $ 
eigenvectors, there exist graphs for which the algorithm fails 

to find a separator with a cut quotient within na-’ - 1 of the 
isoperimetric number. We also introduce some facts about 
the structure of eigenvectors of certain types of Laplacian 
and symmetric matrices; these facts provide the basis for 
the analysis of the counterexamples. 

1 Introduction 

Spectral methods (i.e., methods using the eigenvalues 
and eigenvectors of a matrix representation of a graph) 
are widely used to compute graph separators. Typically, 
the Laplacian matrix’ representation B of a graph G 
is used. The eigenvector u2 corresponding to X2 (the 
second-smallest eigenvalue of B) is computed, and the 
vertices of the graph are partitioned according to the 

values of their corresponding entries in u2 [PSLSO, 
HK92]. The goal is to compute a small separator; that 
is, as few edges or vertices as possible should be deleted 
from the graph to achieve the partition. 

Although spectral methods are popular, there is lit- 
tle theoretical analysis of how well they do in produc- 
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ing small separators. Instead, it is usually claimed that 
such methods “work well in practice,” and tables of re- 
sults for specific examples are often included in papers 
[PSLSO]. Thus there is little guidance for someone wish- 
ing to compute separators as to whether or not this 
technique is appropriate. Ideally, practitioners should 
have a characterization of classes of graphs for which 
spectral separator techniques work well; this character- 
ization might be in terms of how far the computed sep- 
arators could be from optimal. As a first step in this di- 
rection, we consider two spectral separation algorithms 
that partition the vertices on the basis of the values 
of their corresponding entries in ~2, and provide coun- 
terexamples for which each of the algorithms provide 
poor separators. We further consider a generalized def- 
inition of spectral methods that allows the use of more 
than one of the eigenvectors corresponding to the small- 
est non-zero eigenvalues, and show that there are graphs 
for which any such algorithm does poorly. 

The first algorithm is a popular technique that 
consists of bisecting a graph by partitioning the vertices 
in to two equal-sized sets based on each vertex’s entry 
in the eigenvector corresponding to the second-smallest 
eigenvalue. A graph in our first counterexample class 
looks like a ladder with the top 2/3 of its rungs kicked 
out (see Figure 1); a straightforward spectral bisection 
algorithm cuts the remaining rungs, where the optimal 
bisection is made by cutting across the ladder above the 
remaining rungs. (We refer to this graph as the “roach 
graph” because its outline looks roughly like the body 
of a cockroach and two long antennae.) 

It is possible to modify the simple spectral algo- 
rithm in ways that allow it to generate a better sepa- 
rator for the roach graph. Some examples of possible 
modifications are presented in [HK92]; these examples 
still use a partition based on ~2. We consider a modi- 
fied simple spectral algorithm based on the most general 
of these suggested modifications, and present a second 
counterexample class of graphs that defeats this algo- 
rithm. This class of graphs consists of crossproducts of 
path graphs and graphs consisting of a pair of complete 
binary trees connected by an edge between their roots. 

Finally, we consider a more general definition of 
purely spectral separator algorithms that subsumes the 

233 



234 GUATTERY AND MILLER 

/ 
v 

k3+1 

v 

\d 
2 k+ 1 

v 
5 k+l 

v 
3k 

v 
6k 

Figure 1: The Roach Graph 

two preceding algorithms. This general definition allows 
the use of some specified number of eigenvectors corre- 
sponding to the smallest eigenvalues of the Laplacian 
matrix a graph. For any such algorithm, we show that 
if it uses a fixed number of eigenvectors, then there are 
graphs for which it does no better than using the mod- 
ified simple spectral algorithm. Further, the separator 
produced by the modified simple spectral algorithm is 
as bad as possible (to within a constant) with respect to 
theoretical bounds on size of the separators produced. 
We also show that if a purely spectral algorithm uses up 
to n’ eigenvectors for 0 < E < a, there exist graphs for 
which the algorithm fails to find a separator with a cut 
quotient within name - 1 of the isoperimetric number. 
We also note that graphs in this class used to construct 
these counterexamples can be extended to graphs that 
could conceivably be used as three-dimensional finite- 
element meshes - that is, graphs that could be encoun- 
tered in practice. 

This paper makes one additional contribution: Our 
counterexamples have simple structures and intuitively 
would be expected to cause problems for spectral sep- 
arator algorithms. The challenge is to provide good 
bounds on X2 for these graphs. For this purpose we 
have developed theorems about the spectra of graphs 
with particular symmetries that exist in our counterex- 
amples. 

Specifics are given in the text that follows. Sec- 
tion 2 gives some history of spectral methods and de- 
tails of the algorithms we discuss in this paper. Section 3 
gives the graph and matrix terminology that we will use, 
and presents some useful facts about Laplacian matri- 
ces. Section 4 gives the counterexample for the simple 
spectral algorithm; Section 5 gives the counterexample 
for the modified simple spectral method. Finally, Sec- 
tion 6 discusses our generalized notion of spectral sep- 
arator algorithms, and show that there are graphs for 

which any such algorithm performs poorly. 

2 Spectral Methods for Computing Separators 

The roots of spectral partitioning go back to Hoff- 
mann and Donath [DH73], who proved a lower bound 
on the size of the minimum bisection of a graph, and 
Fiedler [Fie73] [Fie75], who explored the properties of 
X2 and its associated eigenvector for the Laplacian of 
a graph. There has been much subsequent work, in- 
cluding Barnes’s partitioning algorithm [Bar82], Bop- 
pana’s work that included a stronger lower bound on 
the minimum bisection size [Bop87], and the particular 
bisection and graph partitioning problems that we are 
considering in this paper [HK92] [PSLSO] [SimSl]. (We 
note that spectral methods have not been limited to 
graph partitioning; work has been done using the spec- 
trum of the adjacency matrix in graph coloring [AG84] 
and using the Laplacian spectrum to prove theorems 
about expander graph and superconcentrator proper- 
ties [AM851 [Al0861 [AGM87]. The work on expanders 
has explored the relationship of X2 to the isoperimet- 
ric number; Mohar has given an upper bound on the 
isoperimetric number using a strong discrete version of 
the Cheeger inequality [Moh89]. Reference [CDS791 is a 
book-length treatment of graph spectra, and it predates 
many of the results cited above.) 

A basic way of computing a graph bisection using 
spectral information is presented in [PSLSO]. We will 
refer to this algorithm as the simple spectral method. 
The simple spectral method works as follows: 

l Represent G by its Laplacian B, and compute ~2, 
the eigenvector corresponding to X2 of B. 

l Assign each vertex the value of its corresponding 
entry in us. This is the characteristic valuation 
of G. 

l Compute the median of the elements of ~2. Parti- 
tion the vertices of G as follows: the vertices whose 
values are less than or equal to the median ele- 
ment form one part of the partition; the rest of the 
vertices form the other part. The set of all edges 
between the two parts forms an edge separator. 

l If a vertex separator is desired, it can be computed 
from the edge separator as described in the next 
section. 
The simple spectral method gives a bisection 

and, since the graph bisection problem is NP- 
complete [GJ79], may not give an optimum result. That 
is, the simple spectral algorithm is a heuristic method. 
A number of modifications have been proposed that may 
improve on its performance. The following modifica- 
tions, all of which use the characteristic valuation, are 
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presented in [HK9212 : 
l Partition the vertices based on the signs of their 

values; 

l Look for a large gap in the sorted list of eigenvector 
components, and partition the vertices according 
to whether their values are above or below the gap; 
and 

l Sort the vertices according to value. For each index 
1 5 i 5 n - 1, consider the ratio for the separator 
produced by splitting the vertices into those with 
sorted index 5 i and those with sorted index > i. 
Choose the split that provides the best separator 
ratio. 

Note that the last idea subsumes the first two. We will 
consider a variant of this algorithm below. Since this al- 
gorithm does not consider the case where multiple ver- 
tices may have the same value, we will specify that only 
splits between vertices with different values are consid- 
ered (we refer to such cuts as threshold cuts). We 
call this algorithm the modified simple spectral al- 
gorithm; the fact that we’ve slightly changed the defi- 
nition above does not alter its performance with respect 
to the counterexamples below (other than slightly sim- 
plifying the analysis). 

Also note that the idea of cutting at an arbitrary 
point along the sorted order can be extended to choosing 
two split points, where the corresponding partitions are 
the vertices with values between the split points, and 
those with values above the upper or below the lower 
split point. Again, the pair yielding the best ratio is 
chosen. 

The algorithms mentioned so far have only used 
the eigenvector us. Another possibility is to look at 
the partitions generated by the set of eigenvectors for 
some number of smallest eigenvalues: for each vertex, 
a value would be assigned by computing a function of 
that vertex’s eigenvector components. Partitions could 
then be generated in the same way as they are for u2 in 
the various algorithms given above. 

Given the variety of heuristics cited above, it would 
be nice to know which ones work well for which classes 
of graphs. It would be particularly useful if it were pos- 
sible to state reasonable bounds on the performance of 
these heuristics for classes of graphs commonly used in 
practice (e.g., planar graphs, planar graphs of bounded 
degree, three-dimensional finite element meshes, etc.). 

2These revised heuristics can give different splits than bisec- 

tions. In such cases, we will use the separator ratio or cut quotient 

(defined in Section 3) in judging how close the split is to optimal. 

Computing the separator with the minimum ratio is NP-hard (see, 

e.g., [L-8]). 

Unfortunately, this is not the case. We start by proving 
that the simple spectral method may produce a bad sep- 
arator for a bounded-degree planar graph in Section 4; 
first, however, we need to introduce some terminology 
and background results. 

3 Terminology, Notation, and Background 
Results 

We will assume that the reader is familiar with the basic 
definitions of graph theory (in particular, for undirected 
graphs), and with the basic definitions and results of 
matrix theory. A graph consists of a set of vertices 
V and a set of edges E; we will denote the vertices 
(respectively edges) of a particular graph G as V(G) 
(respectively E(G)) if there is any ambiguity about 
which graph is referred to. The notation (G( will be 
sometimes be used as a shorthand for IV(G)/. When it 
is clear what graph we are referring to, we will use n to 
denote (VI. 

We will use capital letters to represent matrices and 
bold lower-case letters for vectors. For a matrix A, aij 
or [A]ij will represent the element in row i and column j; 
for the vector x, ~i or [xii will represent the ith entry in 
the vector. The notation with square brackets is useful 
in cases where adding subscripts to lower-case letters 
would be awkward (e.g., where the matrix or vector 
name is already subscripted). The notation x = 0 
indicates that all entries of the vector x are zero; i 
indicates the vector that has 1 for every entry. For ease 
of reference, we will index the eigenvalues of an n x n 
matrix in non-decreasing order. X1 will represent the 
smallest eigenvalue, and X, the largest. For 1 < i < n, 
we have Xi-1 5 Xi 5 &+I. We will use ui to represent 
the eigenvector corresponding to Xi. 

We will use the term path graph for a tree that 
has exactly two vertices of degree one. That is, a path 
graph is a graph consisting of exactly a path. 

The crossproduct of two graphs G and H (de- 
noted G x H) is a graph on the vertex set { (z1,v) 121 E 

V(G),V E V(H)), with ((21, v), (u’, v’)) in the edge set 
if and only if either u = u’ and (v, w’) E E(H) or v = w’ 
and (u,u’) E E(G). 

For a connected graph G, an edge separator is 
a set S of edges such that if removed would break the 
graph into two (not necessarily connected) components 
G1 and Gp such that there are no edges between G1 
and G2. (We will assume that an edge separator is 
a minimal set with respect to the particular G1 and 
Gz.) A vertex separator is a set S of vertices such 
that if these vertices and all incident edges are removed 
the graph is broken into two components G1 and G2 
such that there are no edges between G1 and Gz (again, 
we’ll assume that such a separator is minimal). The 
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goal in finding separators is to find a small separator 
that breaks the graph into two fairly large pieces; often 
this notion of “large pieces” is expressed as a restriction 
that the number of vertices in either component be at 
least some specified fraction of the number of vertices 
in G. For edge separators, this can be stated more 
generally in terms of the separator ratio p, defined 
as ISl/ (1611. lG21). The optimum ratio separator 
popt is the one that minimizes the separator ratio over 
all separators for a particular graph [LR88]. 

A related concept (again, for edge separators) is the 
isoperimetric number i(G), defined as: 

We will refer to the quantity ISl/ min (\Gll, IGzl) as the 
cut, quotient for the edge separator S. It is easy to see 
that vopt > i(G) 2 npopt/2. 

It is well known that an edge separator S can easily 
be converted into a vertex separator S’ by considering 
the bipartite graph induced by S (where the parts of 
the bipartition are determined by the components G1 
and GQ), and setting S’ to be a minimum edge cover for 
that graph. 

Graphs can be represented by matrices. For exam- 
ple, the adjacency matrix A of a graph G is defined 
as a~ = 1 if and only if (vi,zlj) E E(G); aij = 0 oth- 
erwise. (For such representations we will assume that 
the vertices have been numbered to correspond to the 
indices used in the matrix.) 

A common matrix representation of graphs is the 
Laplacian. Let D be the matrix with dii = degree(vi) 
for wi E V(G), and all off-diagonal entries equal to zero. 
Let A be the adjacency matrix for G as defined above. 
Then the Laplacian representation of G is the matrix 
B=D-A. 

The following are some useful facts about the Lapla- 
cian matrix: 

l The Laplacian is symmetric positive semidefinite, 
so all its eigenvalues are greater than or equal to 0 
(see e.g. [Moh88]). 

l For a gra,ph G and its Laplacian B, X2 of B figures 
in upper and lower bounds on the isoperimetric 
number for G [Moh89]. In particular, we have: 

where A is the maximum degree of any vertex in 
G. This implies the size of any bisection is at least 
L&2 

Tie’proof of the preceding upper bound has inter- 
esting implications about the threshold cuts based on 
the second eigenvector. For any connected graph G, 
consider the characteristic valuation. The vertices of G 
will receive k 5 n distinct values; let tl > t2 > . . . > tk 
be these values. For each threshold ti, i < Ic, divide the 
vertices into those with values > ti, and those with val- 
ues < ti. Compute the cut quotient pi for each such cut, 
and let qmin be the minimum over all qi’s. The following 
theorem can be derived from the proof of Theorem 4.2 
in [Moh89]: 

THEOREM 3.1. Let G be a connected graph with 
maximal vertex degree A with second smallest eigen- 
ualue X2. Further, let G not be any of K1, K2, or KS. 
Let Pmin be as defined above. Then 

x2 
2 5 qmin 5 &,@A - X2). 

This can be extended to the separator ratio for the best 
u2 cut in the obvious way. 

A weighted graph is a graph for which a real 
value wi is associated with each vertex vi, and a real, 
nonzero weight wij is associated with each edge (vi, wj) 
(we consider a zero edge weight to indicate the lack 
of an edge). The generalized Laplacian B for a 
weighted graph G has b;; = w;; for i # j and (wi, vj) f 
E(G), b,, = -wij, and bij = 0 otherwise. Note that 
the Laplacian matrix of a graph is also a generalized 
Laplacian where the vertex weights are taken to be the 
degrees of the vertices, and all edge weights are 1. 

Note that any generalized Laplacian is a real sym- 
metric matrix, so any theorems for such a matrix will 

l A graph G is connected if and only if 0 is a simple apply. The following two theorems about the interlac- 
eigenvalue of G’s Laplacian (see e.g. [Moh88]). ing of eigenvalues are particularly useful properties of 

l If G is a crossproduct of two graphs G1 and 
the generalized Laplacian. 

Gz, then the eigenvalues of G’s Laplacian are all 
The First Interlacing Property (the following 

pairwise sums of the eigenvalues of G1 and Gz (see 
statement is from page 411 of reference [GL89]; the 

e.g. [Moh88]). 
proof is in [Wi165]): If A, denotes the leading T x T 
principal submatrix of an n x n symmetric matrix A, 

l For any vector x and Laplacian matrix B of the then for T = 1 : n - 1 the following interlacing property 

graph G, we have (see e.g. [HK92]): holds: 

xTBx = c (Xi - z:j12 X,+1(&+1) L &(A,) 2 M&+1) 2 . . . 
(Vi dJj)EE(G) . . . L X2(&+1) 2h(A+) L h(A-cl)- 



SPECTRAL GRAPH PARTITIONING PERFORMANCE 

The Second Interlacing Property (the following 
statement is a restricted version of a theorem from 
page 412 of reference [GL89]; the proof is in [Wi165]): 
Suppose B = A + CW?, where A is a real symmetric 
n x n matrix, c is a real vector of length 1, and a is real 
and greater than 0. Then for all i, 1 5 i 5 n - 1 we 
have: 

&(A) 5 h(B) L &+1(A) 
The Second Interlacing Property implies that if an edge 
e is added to a graph G to produce the graph G’, then 
X2(G) I X2(Q). 

3.1 The Structure of Laplacian and General- 
ized Laplacian EigenvectorsThe theorems and lem- 
mas presented in this section are useful in proving re- 
sults about the eigenvectors of the families of graphs 
presented in later sections. The first set concern eigen- 
values of Laplacian matrices of graphs with automor- 
phisms of order 2. A graph automorphism is a per- 
mutation 4 on the vertices of the graph G such that 
(vi,vj) E E(G) if and only if (u+(~),u+(~)) E E(G). The 
order of a graph automorphism is the order of the per- 
mutation on the vertices. 

For weighted graphs, we add two conditions to the 
definition of automorphism: the weights of vertices vi 
and v,#,(i) must be equal for all i, and the weights of 
edges (vi, uj) and (v@(i), v+(j)) must be equal. 

The next two theorems concern the structure of 
eigenvectors with respect to automorphisms of order 
2. They hold both for Laplacian matrices for graphs 
under the standard definition of automorphism, and for 
generalized Laplacians for weighted graphs under the 
generalized definition of automorphisms for weighted 
graphs. 

Let G be a graph with an automorphism C$ of order 
2. Let B be the Laplacian of G. A vector x that has 

xi = Q(i) for all i in the range 1 5 i < n is an even 
vector with respect to the automorphism I$; an odd 
vector y has gi = -94~~) for all i. It is easy to show 
that for any even vector x and odd vector y (both with 
respect to 4) that x and y are orthogonal. 

THEOREM 3.2. [Even-Odd Eigenvector Theo- 
rem] Let B be the Laplacian of a graph G that has an 
automorphism C$ of order 2. Then there exists a com- 
plete set U of eigenvectors of B such that any eigenvec- 
tor u E U is either even or odd with respect to q5. This 
also holds if G is a weighted graph, B the generalized 
Laplacian of G, and q5 a weighted graph automorphism 
of order 2. 

The proofs of this and the other results in this 
section are given in the complete version of this paper. 

COROLLARY 3.1. Let B be the (generalized) Lapla- 
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tomorphisms of order 2. Then the eigenvector for any 
simple eigenvalue is either even or odd with respect to 
every such automorphism. 

THEOREM 3.3. [Even-Odd Graph Decomposi- 
tion Theorem] For every (weighted) graph G with 
(generalized) Laplacian B and an automorphism q5 of 
order 2, there exist two smaller weighted graphs Godd 
and G,,,, such that the eigenvalues of Bodd (the gener- 
alized Laplacian of Godd) are the same as the odd eigen- 
values of B, the eigenvalues of B,,,, (the generalized 
Laplacian of G,,,,) are the same as the even eigenval- 
ues of B, and IV(Go&l + IV(G,,,n)I = IV(G)I. Fur- 
ther, a complete set of eigenvectors of B can be con- 
structed from the eigenvectors of Bodd and B,,,, in a 
straightforward way. 

Though the proof of this theorem is too long to 
include here, we can give the construction of Godd and 
G even and the construction of the eigenvectors of B from 
those of &,dd and B,,,, . First we need some notation: 
The vertices of G can be divided into two disjoint sets on 
the basis of how 4 operates on them. Let Vf be the set 
of vertices vi such that 4(i) = i (i.e., the vertices fixed 
by 4); and let V, be the set of vertices 7-j such that 
4(j) # j (i.e., the vertices moved by 4). V, consists of 
vertices in orbits of length 2; we will call a subset of V, 
that consists of exactly one vertex from each such orbit 
a representative set and denote it V,. 

Godd is a weighted graph on Vr. Start with the 
subgraph of G induced by V,, with the weight of vertex 
vi equal to the weight of vi in G and the weight of edge 
(wi,vj) equal to its weight in G. Adjust the weights 
according to the following two rules: 

l Vertex weight adjustment rule: For each ver- 
tex ‘ui E V,, if there is an edge in G from wi to v$ti), 
then increase the weight of vi in Godd by w+(i). 

l Edge weight adjustment rule: For each pair of 
distinct vertices vi, vj E V, and i < j, if there is 
an edge (vi, v+(j)) in G, add an edge (vi, vj) with 
weight -I+ to Godd (if there is already an edge 
(WJj) in Godd, subtract “i,+(j) from its weight). 

Delete from Godd any edge that ends up with weight 
zero. 

For any eigenvector u of Bodd we construct an 
odd eigenvector x for B as follows: for each vertex 
vi E V’, xi = 0; for each vertex vj E V,, xj = uj 
and z&(j) = -uj. 

G eve??, is a weighted graph on V, U Vf. Start with 
the subgraph of G induced by Vr U Vf, with the weight 
of vertex vi E V, U Vf equal to its degree in G and 
the weight of each edge (vi, vj) equal to its weight in 
G. Adjust the weights according to the following three 

cian of a (weighted) graph G that has one or more au- rules: 
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Vertex weight adjustment rule: For each ver- 
tex ‘ui E V,, if there is an edge in G from vU~ to v+(~), 
then decrease the weight of vi in G,,,, by wi+(i). 

Vr-to-Vf Edge weight adjustment rule: For 
each edge (vi,vj) in G,,,, such that vi E V, and 
wj E I’,, multiply its weight by &. 

Vr-to-Vr Edge weight adjustment rule: For 
each pair of distinct vertices vi, v~j E V, and i < j, 
if there is an edge (Vi, ~$(j)) in G, add an edge 
(vi, uj) with weight ZQ,(~) to G,,,, (if there is 
already an edge (vi,vj) in G,,,,, add wi,@(j) to its 
weight). 

Delete from G,,,, any edge that ends up with weight 
zero. 

For any eigenvector u of B,,,, we construct an even 
eigenvector x for B as follows: for each vertex vi E Vf, 
xi = fi . ui; for each vertex vj E V,, xj = x+(j) = uj. 

The following technical lemmas about the eigenval- 
ues and eigenvectors of weighted path graphs will be 
useful in subsequent results. 

LEMMA 3.1. [Zero Entries of Path Graph 
Eigenvectors Lemma] Let B be the generalized Lapla- 
cian matrix of a weighted path graph G on n vertices. 
For any vector x such that Bx = Xx for some real X, 
X - 0 implies x = 0. Likewise, x1 = 0 implies x = 0. 
Ifnthere are two consecutive elements xi and xi+1 that 
are both zero, then x = 0. 

Since eigenvectors are by definition not equal to 
the zero vector, the theorem above implies that for 
eigenvectors of the generalized Laplacian B of any 
weighted path graph, neither the first nor the last entry 
is zero. Likewise, such an eigenvector cannot have two 
consecutive zero entries. 

LEMMA 3.2. All eigenvalues of the generalized 
Laplacian B of a weighted path graph G on n vertices 
are simple (i.e., have multiplicity one). 

A path graph on n vertices has exactly one auto- 
morphism of order two: d(i) = n - i + 1. Thus we can 
talk about odd and even eigenvectors of a path graph 
without ambiguity; they are always with respect to this 
automorphism. 

LEMMA 3.3. The eigenvector up corresponding to 
the second smallest eigenvalue X2 of the Laplacian B of 
a path graph G on n vertices is odd. 

4 A Bad Family of Bounded-Degree Planar 

simple spectral method have size o(n) for both edge 

Graphs for the Simple Spectral Algorithm 

In this section we present a family of bounded-degree 
planar graphs that have constant-size separators. How- 
ever, the separators for these graphs produced by the 

and vertex separators. Since there are algorithms that 
produce O(J) n vertex separators for pIanar graphs, and 
hence O(fi) edge separators for bounded-degree planar 
graphs, the simple spectral method performs poorly on 
these graphs relative to other algorithms. 

The family of graphs is parameterized on the pos- 
itive integers. Gk consists of two path graphs each on 
3k vertices, with a set of edges between the two paths 
as follows: la,bel the vertices of one path from 1 to 3k in 
order (the upper path), and label the other path from 
3k + 1 to 6k in order (the lower path). For 1 2 i 5 Ic 
there is an edge from vertex 2k + i to 5/c + i. This is 
shown in Figure 1. It is obvious that Gk is planar for 
any k, and that the maximum degree of any vertex is 3. 

Note that the graph has the approximate shape of 
a cockroach, with the section containing edges between 
the upper and lower paths being the body, and the other 
sections of the paths being antennae. This terminology 
will allow us to refer easily to parts of the graph. 

Gk has one automorphism of order 2 that maps the 
vertices of the upper path to the vertices of the lower 
path and vice versa. For the rest of this section, the 
terms “odd vector” and “even vector” will be used with 
respect to this automorphism. Thus, an even vector x 
has xi = xsk+i for all i in the range 1 2 i I 3k; an odd 
vector y has vi = -yak+ for all i, 1 5 i 5 3k. 

We can now discuss the structure of the eigenvectors 
of the Laplacian of Gk. 

LEMMA 4.1. Any eigenvector ui with eigenvalue Xi 
of the Laplacian Bk of Gk can be expressed in terms of 
linear combinations of even and odd eigenvectors with 
eigenvalue Xi. In particular, ui can be expressed as a 
linear combination of: 

an even eigenvector of BI, in which the values 
associated with the upper path are the same as for 
the eigenvector with eigenvalue )ci (if it exists) of a 
path graph on 3k vertices, and 

an odd eigenvector of Bk in which the values as- 
sociated with the upper path are the same as for 
the eigenvector with eigenvalue Xi (if it exists) of 
a weighted graph that consists of a path graph on 
3k vertices for which the vertex weights of v2k+1 
through V3k have been increased by 2. 

Proof. The first claim follows by the Even-Odd 
Eigenvector Theorem applied with respect to the au- 
tomorphism that maps the vertices of the upper path 
to the vertices of the lower path and vice versa. 

The second claim follows by a direct application 
of the construction used in the proof of the Even- 
Odd Graph Decomposition Theorem with respect to the 
same automorphism. 

We now aive the nroof that the simnle snectral . - 
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method gives bad separators for the family of graphs Since x*x = zrz, this gives us 
Gk. 

THEOREM 4.1. The simple spectral method pro- 
duces O(n) edge and vertex separators for Gk for any 
k, 

Proof. The first step is to show that us is odd. 
Intuitively, this implies that the spectral method will 
split the graph into the upper path and the lower path. 

Recall that X2 = minxli w. We will construct 

an odd vector x such that the quotient xc$x is less 

than w for any even eigenvector y perpendicular 

to i (1 is the smallest even eigenvector). To do 

this, we need to show that -$&$ is less than the 
second smallest even eigenvalue. From Lemma 4.1 
above, we know that the second smallest even eigenvalue 
of Bk is the same as the second smallest eigenvalue 
of the Laplacian of a path graph on 3k vertices; it 
is well-known that this value is 4sin2(&) (see for 
example [Moh88]). 

Let z be the eigenvector corresponding to the second 
smallest eigenvalue ~2 for the Laplacian B of the path 
graph G on 4k vertices (p-12 = 4sin2(&)). Construct x 
as follows: 

Xi 1 5 i 5 2k, 
Xi = Zrk--i+l 3k + 1 < i 5 5k, and 

0 otherwise. 

That is, we assign the first 2k values from the path G to 
the upper antenna of the roach, working in the direction 
towards the body, and we assign the last 2k entries from 
G to the lower antenna, working from the body outward. 
Since z and x have the same set of non-zero entries, 
xTx = zTz. Likewise, since z is perpendicular to the 
“all-ones” vector, so is x. 

In order to see that XTBkX < zTBz, recall that 
y*Ay = Cc,. v,)eE(gi - 1~j)~ for Laplacian A. For 
every edge in ‘% except one, there is an edge in GI, 
that contributes the same value. The one exception 
is the edge (W2k,‘Usk+l). Since z is an odd vector by 
Lemma 3.3, and since z has 4k entries, z2k = -zzk+l. 
By the Zero Entries of Path Graph Eigenvectors Lemma 
(Lemma 3.1), it is not possible for both Zgk and xpk+l to 
be zero, so Z2k is equal to some non-zero value c, and this 
edge contributes 4c2 to the value of zT Bz. On the other 
hand, there are two edges in Gk that contribute non- 
zero values and that do not have corresponding edges 
in G: (W2k, wzk+r) and (‘r&k, 2)5k+r). Each of these edges 
contributes c2 to xTBkx. Thus we have 

xTBkx = z*Bz - 4c2 + 2c2 = zTBz - 2c2 < zTBz. 

XT&X 
X2(G) 5 ___ 

zTBz 

XTX 
<- 

ZTZ 
= 4sin2(&) < 4sin2(s). 

That is, the second smallest eigenvalue of Bk is less 
than any non-zero even eigenvalue, and is thus odd by 
the Even-Odd Eigenvector Theorem (Theorem 3.2). 

There are a few details to finish off. In particular, 
we need to show that there aren’t too many zero en- 
tries in u2 (the simple spectral method as defined in 
this paper won’t separate vertices with the same value). 
Since u2 has no even component, Lemmas 3.1 (the Zero 
Entries of Path Graph Eigenvectors Lemma) and 4.1 
imply that u2 cannot have consecutive zeros, and the 
values corresponding to vertices 3k and 6k are non-zero. 
Thus the edge separator generated by the simple spec- 
tral method must cut at least half the edges between the 
upper and lower paths; since none of these edges share 
an endpoint, the cover used in generating the vertex 
separator must include at least this number of vertices. 
The theorem follows. 

5 A Bad Family of Graphs for the Modified 
Simple Spectral Algorithm 

While the roach graph defeats a simple spectral bisec- 
tion method, the second smallest eigenvector can still be 
used to find a small separator using the modified simple 
spectral algorithm. In particular, Theorem 3.1 implies 
that considering all threshold cuts induced by uz will 
let us find a constant-size cut: If qmin is the minimum 
cut quotient for these cuts, then 

v% 
bin - < 4W-4 - X2> 5 41c’ 

which implies qmin is O(i). Since the denominator of 
qmin is less than or equal to z, the number of edges in 
this cut must be bounded by a constant. 

In the next section we define the Tree-Cross-Path 
Graph, for which the modified simple spectral algorithm 
does poorly. 

5.1 The Tree-Cross-Path GraphConsider a 
graph that consists of two complete binary trees of k 
levels for some k > 0, connected by an edge between 
their respective roots. We will refer to such a graph as 
a doubIe tree. 

We call a graph consisting of the crossproduct of 
a double tree on pl vertices and a path graph on pz 
vertices a tree-cross-path graph. We will show below 
that there is a tree-cross-path graph that will defeat the 
modified simple spectral algorithm. In order to show 
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that, we will need to understand the structure of the 
eigenvectors of such a graph; that requires that we have 
bounds on the size of X2 for trees and double trees. 

5.2 Bounds on X:! for Trees and Double Trees 
To bound the size of Xp of a tree, we first apply the Even- 
Odd Decomposition Theorem (Theorem 3.3) a number 
of times to show that the eigenvalues of a balanced 
binary tree can be computed from a few simple types 
of weighted graphs. We then bound the eigenvalues for 
these types of graphs using the interleaving theorems 
and matrix perturbation techniques. We show that for 
a complete binary tree on n vertices, X2 = O(i). More 
specifically, i < X2 < z. We state this result in the 
form of a lemma; the proof is in the complete version of 
the paper. 

LEMMA 5.1. For a complete balanced binary tree on 
n vertices, we have ; < X2 < i. 

For double trees where each of the component trees 
has k levels and n = 2”+l - 2 vertices, we have the 
following lemma: 

LEMMA 5.2. For a double tree on n vertices, we 
have A < X2 < ;. 
The proof of this lemma is also given in the complete 
version of the paper. 

We can now formally state the result for this 
section: 

THEOREM 5.1. There exists a graph G for which 
the modijied simple spectral algorithm finds a separator 
S such that the cut quotient for S is bigger than i(G) by 
a factor as large (to within a constant) as the theoretical 
upper bound provided by Theorem 3.1. 

Proof. Let G be the tree-cross-path graph that is 
the crossproduct of a double tree of size p and a path 
of length cpi for some c in the range 3.5 < c < 4. To 
insure that we have integer sizes for the tree and the 
path, we restrict p to integers of the form 2’ - 2 for 
k > 2. Then we choose c in the range specified such 
that cpi is an integer (by our choice of p there will be 
an integer in this range). 

Recall that the eigenvalues of a graph crossproduct 
are all pairwise sums of the eigenvalues from the graphs 
used in the crossproduct operation. Let ~2 be the second 
smallest eigenvalue of the double tree on p vertices, and 
let ~2 be the second smallest eigenvalue for the path on 
cpi vertices. If ,UZ < 29, then X2 for the crossproduct 
will be ~2 (i.e., ~2 added to the zero eigenvalue of the 
double tree). But we have that 1-12 = 4 sin2( -$), and 

that u2 is greater than or equal to k. Therefore we need 
to show that 

4sin2 -+ < -. 
( > 

1 

2cpz P 

Reorganizing, simplifying, and noting that sin(e) < 8 
forO<0I%,wewant 

7r 1 
y<--i, or ?r<c. 
2cpn 2pn 

Clearly by our choice of c this inequality holds. 
Since path graph eigenvalues are sim- 

ple (Lemma 3.2), the second smallest eigenvalue of G 
will also be simple. 

We note that the tree-cross-path graph can be 
thought of as cpq copies of the double tree, each 
corresponding to one vertex of the path graph. Each 
vertex in the ith copy of the double tree is connected 
by an edge to the corresponding vertex in copies i - 1 
and i + 1. This description allows us to construct 
the eigenvector for the second smallest tree-cross-path 
eigenvalue as follows: Assign each vertex in double 
tree copy i the value for vertex i in the path graph 
eigenvector for ~2. Note that this is the only possible 
eigenvector since the eigenvalue is simple. 

Now consider any copy of the double tree: every 
vertex in that copy gets the same value in the charac- 
teristic valuation. Thus the cut S made by the modi- 
fied simple spectral method must separate at least two 
copies of the double tree, and thus must cut at least p 
edges. There is a bisection S* of size cpi (cut the edge 
between the roots in each double tree); because this cut 
is a bisection, the ratio between the cut quotient q for 
S and i(G) is at least as large as the ratio between the 
sizes of these cuts: 

L>(s(>P=, pi 
i(G) - IS*1 - cp+ ( 1. 

From Theorem 3.1, we have that 

x2 < q 5 i( &2(2A -AZ>, 
T- 

This plus the fact that the tree-cross-path graph has 
bounded degree (A = 5) implies we must have 

9 
i(G) ’ 

2,/X2(2A - X,) 

x2 
=o(&) =o($). 

These two bounds imply that, to within a constant 
factor, the ratio is as large as possible, and the theorem 
holds. 

6 A Bad Family of Graphs for Generalized 
Spectral Algorithms 

The results of the previous section can be extended to 
more general algorithms that use some number k (where 
k might depend on n) of the eigenvectors corresponding 
to the k smallest non-zero eigenvalues. In particular, 
consider algorithms that meet the following restrictions: 
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l The algorithm computes a value for each vertex 
using only the eigenvector components for that 
vertex from Ic eigenvectors corresponding to the 
smallest non-zero eigenvalues (for convenience, we 
refer to these as the k smallest eigenvectors). 
The function computed can be arbitrary as long as 
its output depends only on these inputs. 

l The algorithm partitions the graph by choosing 
some threshold t and then putting all vertices with 
values greater than t on one side of the partition, 
and the rest of the vertices on the other side. 

l The algorithm is free to compute the break point t 

in any way; e.g., checking the separator ratio for 
all possible breaks and choosing the best one is 
allowed. 

We will call such an algorithm purely spectral. 
The following theorem gives a bound on how well 

such algorithms do when the number of eigenvectors 
used is a constant: 

THEOREM 6.1. Consider the purely spectral algo- 
rithms that uses the k smallest eigenvectors for k a fixed 
constant. Then there exists a family of graphs B such 
that G E G has a bisection S’ with IS*( >_ (k’n)f , 
and such that any purely spectral aEgom’thm using the 
k smallest eigenvectors will produce a separator 5’ for G 

such that ISI 2 (&)2. 

Proof. We will show that G is the set of tree-cross- 
path graphs that are the crossproducts of double trees 
of size p (where p is an integer of the form 2” - 2) and 
paths of length cpi, where c is a constant chosen such 
that rk < c 5 rk + 1 and cpi is an integer. 

Recall that the eigenvalues of a graph crossproduct 
are all pairwise sums of the eigenvalues from the graphs 
used in the crossproduct operation. Assume for the 
moment that the k smallest nonzero eigenvalues of 
any G E G are the same as the k smallest nonzero 
eigenvalues of the path graph used in defining G. This 
will clearly hold if we can show that these Ic eigenvalues 
are smaller than X2 of the double tree; in that case the 
k smallest non-zero eigenvalues of the crossproduct will 
be these eigenvalues from the path graph added to the 
zero eigenvalue of the double tree. Since the path graph 
eigenvalues are simple (Lemma 3.2), the corresponding 
tree-cross-path eigenvalues will also be simple. 

We note that the tree-cross-path graph can be 
thought of as c$ copies of the double tree, each 
corresponding to one vertex of the path graph. Each 
vertex in the ith copy of the double tree is connected by 
an edge to the corresponding vertex in copies i-l and i+ 
1. This description allows us to construct an eigenvector 
for each of these k tree-cross-path eigenvalues as follows: 

Assign each vertex in double tree copy i the value 
for vertex i in the path graph eigenvector for this 
eigenvalue. Note that these are the only possible 
eigenvectors since these eigenvalues are simple. 

The purely spectral algorithm will produce a cut 5’ 
with cut quotient q. Recall our assumption about the 
k smallest eigenvectors and consider any copy of the 
double tree: since every vertex in that copy gets the 
same value for each eigenvector, the same value will be 
assigned to each vertex in this copy by the algorithm. 
This implies that S must separate at least two copies of 
the double tree, and thus must cut at least p edges. 

There is bisection S* of size cpi (cut the edge 
between the roots in each double tree); because n = cpi 
and c > k we have IS’1 > kg n*. It is obvious that 

since we have c 5 nk + 1, the claim in the theorem 
statement holds if our assumption holds. 

To prove that the assumption about the form of 
the k smallest eigenvectors holds for all G E 6, we still 
need to prove that a path graph on cpi vertices has k 
nonzero eigenvalues smaller than X2 for a double tree on 
p vertices. Recall that the eigenvalues of a path graph 
on 1 vertices are 4 sin’($) for 0 5 i < I, and that Xz for 
a double tree on p vertices is greater than or equal to 
f . Therefore we need to show that 

4 sin2 

Reorganizing, simplifying, and noting that sin(Q) < 6 
forO<Bs T, wehave 

rk 1 
1 
2cpH 

<F, or rk<c. 
2p5 

Clearly this inequality holds 

Note that for the case in which k is constant, we 
have the following results: 

l the cut quotient qs will be no better than the 
best cut quotient qnzin produced by looking at all 
threshold cuts for ~2, and 

l the gap between i(G) and qmin is as large as 
possible (within a constant factor) with respect to 
Theorem 3.1. 

These results can be shown using techniques from the 
previous section. Thus, G is a graph for which using k 
eigenvectors does not improve the performance of the 
modified simple spectral algorithm. 



242 GUATTERY AND MILLER 

6.1 Purely Spectral Algorithms that Use 
More than a Constant Number of Eigenvectors 
There are still a number of open questions about the 
performance of purely spectral algorithms that use more 
than a constant number of eigenvectors (in particular, 
how well can such algorithms do if they are allowed 
to use all the eigenvectors?). However, just using 
more than a constant number of eigenvectors is not 
sufficient to guarantee good separators. In particular, 
the counterexamples and arguments in the previous 
sections can be extended to prove the following theorem: 

THEOREM 6.2. For large enough n and 0 < E < 2, 
there exists a bounded-degree graph G on n vertices such 
that any purely spectral algorithm using the n’ smallest 
eigenvectors will produce a separator S for G that has 
a cut quotient greater than i(G) by at least a factor of 
,(a-4 - 1. 
The proof of this theorem is in the complete version of 
this paper. 

6.2 A Final Note About Tree-Cross-Path 

GraphsWhile the tree-cross-path graph appears to be 
very specialized, we can make the following argument 
that it has some relation to practice: We noted in 
Section 3 that the Second Interleaving Theorem implies 
that adding an edge to a graph G gives a new graph G’ 
with Xl, greater than or equal to X2 for G. Therefore 
the preceding results holds if we replace each tree in 
the double trees with a graph that has a complete 
binary tree as a spanning tree (the edge between the 
two graphs will be between the vertices at the roots 
of the spanning trees, and connections between copies 
of the “double graphs” in the crossproduct will be 
between corresponding vertices in the spanning trees). 
We could therefore construct a three-dimensional finite 
element mesh from our example that would represent 
the channel tunnel (the Chunnel) between England and 
France; the chunnel is a pair of long tubes with a small 
connection between the center. 
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