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ABSTRACT
In this paper, we address two longstanding questions about
finding good separators in graphs of bounded genus and de-
gree:

1. It is a classical result of Gilbert, Hutchinson, and Tar-
jan [12] that one can find asymptotically optimal sep-
arators on these graphs if he is given both the graph
and an embedding of it onto a low genus surface. Does
there exist a simple, efficient algorithm to find these
separators given only the graph and not the embed-
ding?

2. In practice, spectral partitioning heuristics work ex-
tremely well on these graphs. Is there a theoretical
reason why this should be the case?

We resolve these two questions by showing that a simple
spectral algorithm finds separators of cut ratio O(

p
g/n)

and vertex bisectors of size O(
√
gn) in these graphs, both

of which are optimal. As our main technical lemma, we
prove an O(g/n) bound on the second smallest eigenvalue
of the Laplacian of such graphs and show that this is tight,
thereby resolving a conjecture of Spielman and Teng. While
this lemma is essentially combinatorial in nature, its proof
comes from continuous mathematics, drawing on the theory
of circle packings and the geometry of compact Riemann
surfaces.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory [Graph algorithms]; F.2.0 [Theory
of Computation]: Analysis of Algorithms and Problem
Complexity—General

General Terms
Algorithms, Theory
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1. INTRODUCTION
Spectral methods have long been used as a heuristic in

graph partitioning. They have had tremendous experimen-
tal and practical success in a wide variety of scientific and
numerical applications, including mapping finite element cal-
culations on parallel machines [20, 24], solving sparse linear
systems [6, 7], partitioning for domain decomposition, and
VLSI circuit design and simulation [5, 14, 2]. However, it is
only recently that people have begun to supply formal jus-
tification for their efficacy [13, 21]. In [21], Spielman and
Teng used the results of Mihail [18] to show that the qual-
ity of the partition produced by the application of a certain
spectral algorithm to a graph can be established by prov-
ing an upper bound on the Fiedler value of the graph (i.e.,
the second smallest eigenvalue of its Laplacian). They then
provided an O(1/n) bound on the Fielder value of a planar
graph with n vertices and bounded maximum degree. This
showed that spectral methods can produce a cut of ratio
O(
p

1/n) and a vertex bisector of size O(
√
n) in a bounded

degree planar graph.
In this paper, we use the theory of circle packings and con-

formal mappings of compact Riemann surfaces to generalize
these results to graphs of positive genus. We prove that the
Fiedler value of a genus g graph of bounded degree is O(g/n)
and demonstrate that this is asymptotically tight, thereby
resolving a conjecture of Spielman and Teng. We then apply
this result to obtain a spectral partitioning algorithm that
finds separators whose cut ratios are O(

p
g/n) and vertex

bisectors of size O(
√
gn), both of which are optimal. To our

knowledge, this provides the only truly practical algorithm
for finding such separators and vertex bisectors for graphs of
bounded genus and degree. While there exist other asymp-
totically fast algorithms for this, they all rely on being given
an embedding of the graph in a genus g surface (e.g., [12]).
It is not always the case that we are given such an em-
bedding, and computing it is quite difficult. (In particular,
computing the genus of a graph is NP-hard [23], and the best
known algorithms for constructing such an embedding are
either nO(g) [10] or polynomial in n but doubly exponential
in g [9].) The excluded minor algorithm of Alon, Seymour,
and Thomas [1] does not require an embedding of the graph,
but the separators that it produces are not asymptotically
optimal.
The question of whether there exists an efficient algorithm

for providing asymptotically optimal cuts without such an
embedding was first posed twenty years ago by Gilbert,
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Hutchinson, and Tarjan [12].1 We resolve this question here,
as our algorithm proceeds without any knowledge of an em-
bedding of the graph, and it instead relies only on simple
matrix manipulations of the adjacency matrix of the graph.
While the analysis of the algorithm requires some somewhat
involved mathematics, the algorithm itself is quite simple,
and it can be implemented in just a few lines of Matlab
code. In fact, it is only a slight modification of the spectral
heuristics for graph partitioning that are widely deployed in
practice without any theoretical guarantees.
We believe that the techniques that we employ to obtain

our eigenvalue bounds are of independent interest. To prove
these bounds, we make what is perhaps the first real use
of the theory of circle packings and conformal mappings of
positive genus Riemann surfaces in the computer science
literature. This is a powerful theory, and we believe that it
will be useful for addressing other questions in spectral and
topological graph theory.
The structure of the paper is as follows. In Section 2,

we provide the necessary background in graph theory and
spectral partitioning, and we state our main results. In Sec-
tion 3, we provide a brief outline of our proof techniques.
In Section 4, we review the basic theory of circle packings
on compact Riemann surfaces. We then use this theory in
Section 5 to prove our main results.

2. BACKGROUND IN GRAPH THEORY AND
SPECTRAL PARTITIONING

In this section we provide the basic definitions and results
from graph theory and spectral partitioning that we shall
require in the sequel.

2.1 Graph Theory Definitions
Throughout the remainder of this paper, let G = (V,E)

be a finite, connected, undirected graph with n vertices, m
edges, and no self-loops. In this section, we shall define two
objects associated to G: its Laplacian, and its genus.
Let the adjacency matrix A(G) be the n×n matrix whose

(i, j)th entry equals 1 if (i, j) ∈ E, and equals 0 otherwise.
Let D(G) be the n× n diagonal matrix whose ith diagonal
entry equals the degree of the ith vertex of G.

Definition 2.1. The Laplacian L(G) is the n×n matrix
given by

L(G) = D(G)− A(G).
Since L(G) is symmetric, it is guaranteed to have an or-
thonormal basis of real eigenvectors and exclusively real
eigenvalues. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues
of L(G), and let v1, . . . , vn be a corresponding orthonormal
basis of eigenvectors. For any G, the all-ones vector will be
an eigenvector of eigenvalue 0. It is not difficult to see that
all of the other eigenvalues will always be positive, so that
v1 = (1, . . . , 1), and λ1 = 0.
There has been a great deal of work relating the eigen-

values of L(G) to the structure of G. In the present paper,
we shall concern ourselves exclusively with λ2, also known
as the algebraic connectivity or Fiedler value of G. We call
the vector v2 the Fiedler vector of G. As we shall see in
Section 2.2, the Fiedler value of a graph is closely related to
how well connected the graph is.
1Djidjev claimed in a brief note to have such an algo-
rithm [8], but it has never appeared in the literature.

A different measure of the connectivity of a graph is pro-
vided by its genus, which measures the complexity of the
simplest orientable surface on which the graph can be em-
bedded so that none of its edges cross. Standard elementary
topology provides a full classification of the orientable sur-
faces without boundary. Informally, they are all obtained by
attaching finitely many “handles” to the sphere, and they
are fully topologically classified (i.e., up to homeomorphism)
by the number of such handles. This number is called the
genus of the surface. The genus 0, 1, 2, 3, and 4 surfaces
are shown in Figure 1.

Figure 1: The surfaces of genus 0, 1, 2, 3, and 4.

Definition 2.2. The genus g of a graph G is the smallest
integer such that G can be embedded on a surface of genus
g without any of its edges crossing one another.

In particular, a planar graph has genus 0. By making a
separate handle for each edge, it is easy to see that g =
O(m).
Using these definitions, we can now state our main tech-

nical result:

Theorem 2.3. Let G be a graph of genus g and bounded
degree. Its Fiedler value obeys the inequality

λ2 ≤ O(g/n),
and this is asymptotically tight.

2.2 Spectral Partitioning
We recall that a partition of a graph G is a decomposition

G = A ∪ A of G into disjoint subsets of its vertices. For
such a partition, we let E(A) be the set of edges (i, j) such
that i ∈ A and j ∈ A, and we call |E(A)| the cut size of our
partition. The ratio of our partition is defined to be

φ(A) =
|E(A)|

min(|A|, |A|) .

If our partition splits the graph into two sets that differ in
size by at most one, we call it a bisection.
Spectral methods aim to use the Fiedler vector to find a

partition of the graph with a good ratio. A theorem that
begins to address why these work was proven by Mihail and
restated in a more applicable form by Spielman and Teng:

Theorem 2.4 ([18, 21]). Let G have maximum degree
∆. For any vector x, there is a value s so that the partition
of G into {i : xi ≤ s} and {i : xi > s} has ratio at mostr

2∆
xTL(G)x

xTx
.

If x is an eigenvector of L(G), the fraction xT L(G)x

xT x
is equal

to its eigenvalue. So, if we find the eigenvector with eigen-
value λ2, we will thus be quickly able to find a partition of
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ratio
√
2∆λ2. By Theorem 2.3, finding the second eigen-

vector of the Laplacian thus allows us to find a partition of
ratio O(

p
g/n) for a graph of bounded degree. There is no

guarantee that this partition has a similar number of ver-
tices in each of the two sets. However, a theorem of Lipton
and Tarjan [16] implies that a simple method based on re-
peated application of this algorithm can be used to give a
bisector of size O(

√
gn).

For every g, Gilbert, Hutchinson, and Tarjan exhibited
a class of bounded degree graphs that have no bisectors
smaller than O(

√
gn) [12]. This implies that our algorithm

gives the best results possible, in general. Furthermore, it es-
tablishes the asymptotic tightness of our eigenvalue bound,
as a smaller bound would show that every genus g graph has
a partition of size o(

√
gn).

Putting all of this together yields our main algorithmic
result:

Theorem 2.5. Let G be a genus g graph of bounded max-
imum degree. There is a simple spectral algorithm that pro-
duces cuts of ratio O(

p
g/n) and vertex bisectors of size

O(
√
gn) in G, and both of these values are optimal.

All that remains of the proof of Theorem 2.5 is the eigenvalue
bound set forth in Theorem 2.3, which is the goal of the
remainder of this paper.

3. OUTLINE OF THE PROOF OF
THEOREM 2.3

The proof of Theorem 2.3 necessitates the introduction
of a good deal of technical machinery. Before launching
into several pages of definitions and background theorems,
we feel that a brief roadmap of where we’re going will be
helpful.
The basic motivation for our approach comes from an ob-

servation made by Spielman and Teng [21]. They noted that
one can obtain bounds on the eigenvalues of a graph G from
a nice representation of G on the unit sphere in R

3 known as
a circle packing for G. This is a presentation of the graph on
the sphere so that the vertices are the centers of a collection
of circles, and edges between vertices correspond to tangen-
cies of their respective circles, as shown in Figure 2. Only
planar graphs can be embedded as such if we require the
circles to have disjoint interiors. However, if we allow the
circles to overlap, as shown in Figure 3, we can represent
nonplanar graphs as well. This will give rise to a weaker
bound in which the eigenvalue bound is multiplied by the
maximum number of circles containing a given point (i.e.,
the number of layers of circles on the sphere).
There is a well developed theory of circle packings, both

on the sphere and on higher genus surfaces. The portions of
it that we shall use will tell us two main things:

1. We can realize our graph as a circle packing of circles
with disjoint interiors on some genus g surface.

2. The theory of discrete circle packings can be thought
of as a discrete analogue of classical complex function
theory, and many of the results of the latter carry over
to the former.

In classical complex analysis, you can put a complex an-
alytic structure on a genus g surface to obtain a Riemann
surface. Any genus g Riemann surface has a map to the

sphere that is almost everywhere k-to-one for k = O(g),
with only O(g) bad points at which this fails. With this as
motivation, we shall try to use the representation of G as a
circle packing on a genus g surface to obtain a representation
of it as a circle packing on the sphere with O(g) layers.
Unfortunately, the discrete theory is more rigid than the

continuous one, and this will turn out to be impossible. In-
stead, we shall actually pass to the continuous theory to
prove our result. To do this, we shall provide a subdivision
lemma that shows that it suffices to prove Theorem 2.3 for
graphs that have circle packings with very small circles. We
shall then show that the smooth map that we have from the
Riemann surface to the sphere will take almost all of the
circles of our circle packing to curves on the sphere that are
almost circles. We will then show that this representation
of our graph as an approximate circle packing is enough to
provide our desired bounds.

4. INTRODUCTION TO CIRCLE PACKINGS
Our proof of Theorem 2.3 operates by obtaining a nice

geometric realization of G. We obtain this realization using
the theory of circle packings. In this section, we shall re-
view the basics of circle packing theory and quote the main
results that our proof will employ. For a more comprehen-
sive treatment of this theory and a historical account of its
origins, see [22].
Loosely speaking, a circle packing is a collection of circles

on a surface with a given pattern of tangencies. We remark
at the outset that the theory that we are discussing is not
the same as the classical theory of sphere packing. Our
theory is concerned with the combinatorics of the tangency
patterns, not with the maximum number of circles that one
can fit in a small region. The coincidence of nomenclature
is just an unfortunate historical accident.

4.1 Planar Circle Packings
For simplicity, we begin by discussing circle packings in

the plane.

Definition 4.1. A planar circle packing P is a collection
of finitely many2 (possibly overlapping) circles C1, . . . , Cn of
respective radii r1, . . . , rn in the complex plane C . If all of
the Ci have disjoint interiors, we say that P is univalent.

The associated graph A(P) of P is the graph obtained by
assigning a vertex vi to each circle Ci and connecting vi and
vj by an edge if and only if Ci and Cj are mutually tangent.
This is illustrated in Figures 2 and 3.

We thus associate a graph to every circle packing. It is
clear that every graph associated to a univalent planar circle
packing is planar. A natural question to ask is whether every
planar graph can be realized as the associated graph of some
planar circle packing. This is answered in the affirmative by
the Koebe-Andreev-Thurston Theorem:

Theorem 4.2 (Koebe-Andreev-Thurston). Let G be
a planar graph. There exists a planar circle packing P such
that A(P) = G.

This theorem also contains a uniqueness result, but we have
not yet developed the machinery to state it. We shall gen-
eralize this theorem in Section 4.3, at which point we shall
2Some authors have expanded this definition to include infi-
nite circle packings. We shall not require them in the present
paper, so we neglect them for simplicity.
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Figure 2: A univalent circle packing with its associ-
ated graph.

Figure 3: A nonunivalent circle packing with its as-
sociated graph.

have the proper terminology to state the uniqueness part of
the theorem.
We note that if we map the plane onto the sphere by stere-

ographic projection, circles in the plane will be sent to circles
on the sphere, so this theorem can be interpreted as saying
that every genus 0 graph can be represented as a circle pack-
ing on the surface of a genus 0 surface. This suggests that
we attempt to generalize this theorem to surfaces of higher
genus. The theory of circle packings on surfaces of arbitrary
genus acts in many ways like a discrete analogue of classi-
cal Riemann surface theory. As such, a basic background in
Riemann surfaces is necessary to state or motivate many of
its results. It is to this that we devote the next section.

4.2 A Very Brief Introduction to Riemann
Surface Theory

In this section, we provide an informal introduction to
Riemann surface theory. Our goal is to provide geometric
intuition, not mathematical rigor. We assume some famil-
iarity with the basic concept of a manifold, as well as with
the basic definitions of complex analysis. For a more com-
plete exposition of the theory, see [11].
We recall that an n-dimensional manifold is a structure

that looks locally like R
n . For example, the orientable 2-

dimensional manifolds are precisely the genus g surfaces de-
scribed above. If an ant were standing on one of these sur-
faces and could only see a small region around himself, he
would be unable to tell that he was on one of these surfaces
and not just on R

2 . These surfaces differ from R
2 globally,

but they are identical locally.
More formally, we write our manifold M as a topological

union of patches Si, and we endow each patch with a home-
omorphism ϕi : Si → Bn, where Bn is the ball {|x| < 1|x ∈
R

n}. Furthermore, we require a compatibility among these
maps to avoid cusps and such. To this end, we mandate
that the compositions ϕj ◦ ϕ−1

i : ϕi(Si ∩ Sj) → ϕj(Si ∩ Sj)
be diffeomorphisms.

An n-dimensional complex manifold is the natural com-
plex analytic generalization of this. We write our manifold
M as a union of patches Si and endow each patch with a
homeomorphism ϕi : Si → C

n . Now, instead of requiring
the compositions of these functions to obey a smooth com-
patibility condition, we require them to obey an analytic
one: we demand that the compositions ϕi ◦ ϕ−1

j be biholo-
morphic maps.
As such, an n-dimensional complex manifold M is a 2n-

dimensional real manifold with additional complex analytic
structure. This structure allows us to transfer over many of
the definitions from standard complex analysis. The basic
idea is that we define these notions as before on the lo-
cal patches, and the compatibility condition allows them to
make sense as global definitions. In particular, we say that
a function f : M → N between two complex manifolds of
the same dimension is holomorphic if it is holomorphic on
each of the local patches. Since the compositions ϕi ◦ ϕ−1

j

are holomorphic, this notion makes sense where the regions
overlap.

Definition 4.3. A Riemann surface is a one-dimensional
complex manifold.

In this paper, we shall take all of our Riemann surfaces
to be compact. Since there is a natural way to orient the
complex plane, we note that the complex structure can be
used to define a orientation on the manifold. As such, all
complex manifolds, and, in particular, Riemann surfaces,
are orientable. Compact Riemann surfaces are thus, topo-
logically, two-dimensional orientable real manifolds. Every
compact Riemann surface is therefore topologically one of
the genus g surfaces discussed above. The complex struc-
ture imposed by the ϕi, however, varies much more widely,
and there are many different such structures that have the
same underlying topological space.
Nothing in the definition of a Riemann surface supplies

a metric on the surface. Indeed, there is no requirement
that the different φi agree in any way about the distance
between two points in their intersection. One can assign
many different metrics to the surface. However, it turns
out that there is way to single out a unique metric on the
surface, called the metric of constant curvature. This allows
us to supply an intrinsic notion of distance on any Riemann
surface. In particular, this allows us to define a circle on our
Riemann surface to be the locus of points at a fixed distance
from some center.
One particulary important Riemann surface that we shall

consider is the Riemann sphere, which we denote bC . It is
topologically a sphere. It should be thought of as being
obtained by taking the complex plane and adjoining a single
point called ∞. One way of visualizing its relation to C is to
consider the stereographic projection away from the North
Pole of a sphere, onto a plane. The North Pole corresponds
to ∞, and the rest of the sphere corresponds to C .
We recall from single variable complex analysis that the

requirement that a map be analytic is quite a stringent one,
and that it imposes a significant amount of local structure
on the map. Let f : C → C be nonconstant and analytic
in a neighborhood of the origin, and assume without loss
of generality that f(0) = 0. There is some neighborhood
of the origin in which f can be expressed as a power series
f(z) = a1z+a2z

2+a3z
3+ . . . . If a1 �= 0, f(z) is analytically

invertible in some neigbhorhood of the origin, so it is locally
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an isomorphism. In particular, it is conformal—it preserves
the angles between intersecting curves, and the image of a
small circle is another small circle.
If a1 = 0 and an is the first nonzero coefficient in its

power series, f has a branch point of order n at the origin.
In this case, f operates, up to a scale factor and lower order
terms, like the function f(z) = zn. This function is n-to-1
on a small neighborhood of the origin, excluding the origin
itself. It sends only 0 to 0, however. The preimages of the
points in this small neighborhood thus trace out n different
“sheets” that all intersect at 0. This confluence of sheets is
the only sort of singularity than can appear in an analytic
map. We note that the angles between curves intersecting
at the branch point are not preserved, but they are instead
divided by n.
This local behavior is identical for Riemann surfaces. From

this, we can deduce that if f : M → N is an analytic map
of Riemann surfaces, it has some well-defined degree k. For
all but finitely many points p in N , #|f−1(p)| = k. The
preimage of each of these points looks like a collection of k
sheets, and f has nonzero derivative at all of them. There
exist some points q ∈ M at which f ′ = 0. At such a point
there is a branch point, so the sheets intersect, and f(q) has
fewer than k preimages.
However, the global structure of Riemann surfaces pro-

vides further constraints on maps between them, and there
are, generally speaking, very few functions f : M → N of
a given degree. For example, topological arguments, using
the local form of analytic maps described above, show that
there are no degree 1 maps from the torus to the sphere, and
no degree 2 maps from the genus 2 surface to the sphere.
There is a deep theory of maps of Riemann surfaces that

describes rather precisely when a map of a given degree ex-
ists between two Riemann surfaces, and, if it exists, where
and how such a map must branch. Of this theory we shall
only require one main result, which is a direct corollary of
the celebrated Riemann-Roch theorem:

Theorem 4.4. Let M be a Riemann surface of genus g.

There exists an analytic map f :M → bC of degree O(g) and
with O(g) branch points.

4.3 Circle Packings on Surfaces of Arbitrary
Genus

We now have the machinery in place to deal with general
circle packings. Throughout this section, let G be a genus g
graph, and suppose that it is embedded on a genus g surface
S so that none of its edges cross. The graph G divides S
into faces. We say that G is a fully triangulated graph if
all of these faces are triangles, in which case we say that
it gives a triangulation of S. If G is not fully triangulated,
one can clearly add edges to it to make it so. It will follow
immediately from Equation 2 in Section 5 that this will only
increase λ2(G), so we shall assume for convenience that G
gives a triangulation of S. We are now ready to define our
primary objects of study:

Definition 4.5. Let S be a compact Riemann surface en-
dowed with its metric of constant curvature. A circle packing
P on S is a collection of finitely many (possibly overlapping)
circles C1, . . . , Cn of respective radii r1, . . . , rn on the sur-
face of S. If all of the Ci have disjoint interiors, we say that
P is univalent.

The associated graph A(P) of P is the graph obtained by

assigning a vertex vi to each circle Ci and connecting vi and
vj by an edge if and only if Ci and Cj are mutually tangent.
Alternatively, we say that P is a circle packing for A(P) on
S.

The main result on circle packings that we shall use is the
Circle Packing Theorem, which is the natural extension of
the Koebe-Andreev-Thurston Theorem to this more general
setting. It was originally proven in a restricted form by Bear-
don and Stephenson[3] and then proven in full generality by
He and Schramm[15].

Theorem 4.6 (Circle Packing Theorem). Let G be
a triangulation of a surface of genus g. There exists a Rie-
mann surface S of genus g and a univalent circle packing P
such that P is a circle packing for G on S. This packing is
unique up to automorphisms of S.

IfG is embedded in a surface of genus g but is not fully trian-
gulated, the Riemann surface and circle packing guaranteed
by the theorem still exist, but they need not be unique.
The complex structure on the Riemann surface allows us

to define the angle at which two edges of a face meet. If
the points u, v, and w are the vertices of a face, we denote
the angle between the edges uv and vw at v by 〈uvw〉. We
can thus define the angle sum at a vertex to be

P〈uvw〉,
where the sum is taken over all faces containing v. If P is
a univalent sphere packing, the angle sum at any vertex of
A(P) is clearly 2π.
In a nonunivalent circle packing, it is possible for the cir-

cles at a point to wrap around the point more than once.
In the case of a nonunivalent circle packing, the edges of
its associated graph may intersect, but we can still define
an associated triangulation of the surface—there just may
be more than one triangle covering a given point. We can
therefore compute the angle sum at a point. In this case,
it need not be 2π. However, the circles must wrap around
the vertex an integral number of times, so it must be some
multiple 2πk. (See Figure 3.) We then say that the vertex
is a discrete branch point of order k.
These discrete branch points behave very much like the

continuous branch points present on Riemann surfaces. In
fact, there is an extensive theory that shows that a large
portion of the theory of Riemann surfaces has an analogue
in the discrete realm of circle packing. One can define maps
of circle packings, just as one can define maps of Riemann
surfaces. They consist of a correspondence of the circles on
one surface to those on another in a way that commutes
with tangency. While analytic maps send infinitesimal cir-
cles to infinitesimal circles, maps of circle packings send fi-
nite circles to finite circles. The analogue of branched cov-
ering maps in Riemannian geometry takes univalent circle
packings and places them as non-univalent circle packings
on other surfaces. Unfortunately, these maps are somewhat
rarer than their continuous analogues.
In particular, if we have a circle packing on a genus g sur-

face S, there is no known analogue of the Riemann-Roch
theorem, and thus no analogue of Theorem 4.4. We are
therefore not guaranteed that there is a branched circle pack-
ing on the sphere carrying the same associated graph. Intu-
itively, this comes from the fact that the analytic maps from

S to bC are required to be branched over a very restricted
locus of points. The discrete maps, however, can only be
branched over the centers of circles. If there does not exist
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an admissible set of branch points among the centers of the
circles, we will have difficulty constructing a discrete ana-
lytic map. This will lie at the root of many of the technical
difficulties that we shall face in the remainder of this paper.

5. AN EIGENVALUE BOUND
In this section, we prove Theorem 2.3. We begin by re-

calling the expression of the Fiedler value of G as a so-called
Rayleigh quotient :

λ2 = min
x⊥(1,...,1)

xTL(G)x

xTx
. (1)

A straightforward calculation shows that for x = (x1, . . . , xn) ∈
R

n ,

xTL(G)x =
X

(i,j)∈E

(xi − xj)
2,

so that Equation (1) becomes

λ2 = min
x⊥(1,...,1)

P
(i,j)∈E(xi − xj)

2

xTx
. (2)

As noted by Spielman and Teng [21], it follows easily from
Equation (2) that we can replace the scalar values xi with
vectors vi ∈ R

k , so that

λ2 = min

P
(i,j)∈E ||vi − vj ||2Pn

i=1 ||vi||2 , (3)

where the minimum is taken over all sets of vectors such
that

P
vi = (0, . . . , 0).

The general goal is thus to find a set of vi that gives
a small value for this quotient. The vi that we use will
(almost) be the centers of a branched circle packing on the

sphere bC . The efficacy of this follows from the following
theorem, which follows easily from the work of Spielman
and Teng [21].

Theorem 5.1. Let P be a circle packing on the sphere
S2 = {x ∈ R

3 | ||x||2 = 1} so that the graph A(P) has no
vertex of degree greater than ∆. Suppose further that the
packing is of degree k, so that no point on the sphere is
contained in the interior of more than k circles, and that
the centroid of the centers of the circles is the origin. Then
the Fiedler value

λ2(A(P)) ≤ O(∆k/n).
Proof. This follows immediately from Equation (3). Let

the circles be C1, . . . , Cn, and let the corresponding radii be
r1, . . . , rn. Let vi ∈ R

3 be the x, y, and z coordinates of the
center of the ith circle. The sum

P
vi = 0 by assumption, so

λ2 is less than or equal to the fraction in Equation (3). Since
all of the vi are on the unit sphere, we have

P ||vi||2 = n, so
it just remains to bound the numerator. If there is an edge
(i, j), the two circles Ci and Cj must be mutually tangent,
so that ||vi − vj ||2 ≤ (ri + rj)

2 < 2(r2i + r2j ). It thus follows
that X

(i,j)∈E

||vi − vj ||2 ≤
X

(i,j)∈E

2(r2i + r2j ) ≤ 2∆
nX

i=1

r2i .

However, the total area of all of the circles is less than or
equal to k times the area of the sphere, since the circle pack-
ing is of degree k. We thus have that

Pn
i=1 r

2
i ≤ O(k), from

which the desired result follows.

Figure 4: The hexagonal subdivision procedure ap-
plied to a triangulation with two triangles.

This suggests that we use the Circle Packing Theorem
(Theorem 4.6) to embed our graph on a genus g surface
and then try to use some analogue of Theorem 4.4 to ob-
tain a branched circle packing on the sphere of degree O(g).
Unfortunately, as previously noted, such a circle packing
need not exist, due to the restrictiveness of the discrete the-
ory. As such, we shall instead show that a certain subdi-
vision process on our graph does not significantly decrease
nλ2. We shall then show that performing this subdivision
enough times causes our discrete circle packing to approx-
imate a continuous structure on the Riemann surface, at
which point we can use the continuous theory in addition to
the discrete one.
The refinement procedure that we shall use is called “hexag-

onal refinement.” It operates on a triangulation of a surface
by replacing each triangle with four smaller triangles, as
shown in Figure 4. This process produces another triangu-
lation of the same surface, so we can iterate it arbitrarily
many times.

Lemma 5.2. Let G be a graph with n vertices, m edges,
and maximum degree d that fully triangulates some surface
without boundary, and let G′ be the graph with n′ vertices
and m′ edges obtained by performing k successive hexagonal
refinements on G. Then

nλ2(G) ≤ C(d)n′λ2(G
′).

Proof. For the sake of continuity, we defer this proof to
Appendix A.

The refinement process replaces each triangle in our graph
with four smaller triangles. If all of the original triangles
remained the same size and shape, this would imply that
performing enough hexagonal refinements would give rise to
a circle packing whose circles have arbitrarily small radii.
However, it is possible for the original triangles to change
size and shape as we refine, so this is no longer obvious. Nev-
ertheless, it remains true, as shown by the following lemma:

Lemma 5.3. Let G be a graph that fully triangulates a
genus g Riemann surface without boundary, and let G(k) be
the graph obtained by performing k hexagonal refinements
on G. For every ε > 0, there exists some kε so that for all
+ ≥ kε, every circle in G(�) has radius less than ε.

Proof. This was essentially proven by Rodin and Sulli-
van [19]. Their proof, however, was only stated for the genus
0 case. The precise statement above is proven by Bowers and
Stephenson [4].

We get a new Riemann surface for each iteration of the
refinement procedure. It is intuitive that, as the number
of iterations grows and the circles in the refined graph get
arbitrarily small, the Riemann surfaces will somehow con-
verge, and the embedding of the graph on these Riemann
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surfaces will somehow stabilize. This can be made formal
by the following lemma:

Lemma 5.4. Let G be a graph that triangulates a genus
g compact Riemann surface without boundary, let G(k) be
the result of performing k hexagonal refinements on G, and
let S(k) be the Riemann surface on which G(k) is realized
as a circle packing. Further, let hk : S(k) → S(k+1) be the
map that takes a triangle to its image under the subdivision
procedure by the obvious piecewise-linear map. The sequence
of surfaces {S(k)} converges in the moduli space of genus g
surfaces, and the sequence of maps {hk} converges to the
identity.

Proof. This is proven by Bowers and Stephenson [4].

We shall also require one last definition:

Definition 5.5. Let f : X → Y be a map between two
locally Euclidean metric spaces. The quantity

Hf (x, r) =
max|x−y|=r |f(x)− f(y)|
min|x−y|=r |f(x)− f(y)| − 1.

is called the radius r distortion of f at x.

We are now finally ready to prove Theorem 2.3.

Proof of Theorem 2.3. Using the Circle Packing The-
orem (Theorem 4.6), realize the graph G = G(0) as a circle

packing on some Riemann surface S of genus g. Let G(k)

be the result of performing k hexagonal refinements on G,
and let S(k) be the Riemann surface on which it can be
realized as a circle packing. By Theorem 4.4, there exists
an analytic map f (k) from S(k) to the Riemann sphere of
degree O(g) and with O(g) branch points. Embed the Rie-
mann sphere as the unit sphere in R

3 using the conformal
map given by inverse stereographic projection. By the work
of Spielman and Teng (Theorem 9 of [21]), post-composing
with a Möbius transformation allows us to assume, without
loss of generality, that the centroid of the images of the ver-
tices of each G(k) under f (k) is the origin. By Lemma 5.4,
the S(k) converge to some surface S(∞), and the f (k) can
be chosen so as to converge to some continuous limit map
f (∞).
By Lemma 5.2, it suffices to the prove the theorem for an

arbitrarily fine hexagonal refinement of the original graph.
Away from its branch points, a map of Riemann surfaces is
conformal, meaning it sends infinitesimal circles to infinites-

imal circles. In particular, given a map f : S → bC , the
compactness of S guarantees that for every ε, κ > 0, there
exists a δ > 0 so that the radius δ distortion Hf (x, δ) is
less than ε for every x that is at least distance κ from any
branch point. In fact, by the convergence results of the last
paragraph, there exist some N and δ such that this holds
for every f (k) with k > N . Fix ε and κ, and let δ and N be
chosen so that this is true.
We shall break S(k) into two parts, S(k) = S

(k)
1 ∪ S(k)

2 as
follows. Construct a ball of radius κ around each branch
point of f (k), and let S

(k)
2 be the union of these balls. Let

S
(k)
1 be the complement S(k) \ S(k)

2 .
We can now use Equation (3) to bound λ2, just as in

the proof of Theorem 5.1. Let G(k) have nk vertices. The
denominator of Equation (3) is equal to nk, so it suffices
to bound the numerator. We shall consider separately the

circles in S
(k)
1 and S

(k)
2 .

We begin with the circles in S
(k)
1 . Every circle of the

packing gets mapped by f to some connected region on bC ,
and there are at most O(g) such regions covering any point

of the sphere. Let C be a circle in S
(k)
1 , letD be the diameter

function, which takes a region to the length of the longest
geodesic it contains, and let A be the area function. The
ratio D2(f(C))/A(f(C)) is at most O(1 + ε). Using the
same argument as in the proof of Theorem (5.1), no vertex
can contribute more than O(dD2) to the sum, and the total

area of the regions from S
(k)
1 cannot exceed O(g), so the

total contribution to the numerator of the vertices in S
(k)
1

cannot be more than O(dg(1 + ε)).
If this were the only term in the numerator, we could com-

plete the proof by sending ε to zero. It thus remains to show

that the contribution from the circles in S
(k)
2 can be made

small. To do this, we need only show that the contribution
θ(k)(x) to the numerator per unit area at a point x from
these circles remains bounded as we subdivide, since we can

make the area of S
(k)
2 arbitrarily small by sending κ to zero.

Let xi, i = 1, . . . , 3, be the coordinate functions on R
3 ,

and let f (k)∗xi be their pullbacks along f (k) to S(k). (That

is, if y is a point on S(k), f (k)∗xi(y) = xi(f
(k)(y)).) In

addition, let η(k)(x, i) be the smooth Laplacian of f (k)∗xi

at x. By a simple computation, such as the one set forth
by McCaughan [17], as k gets large and the circles get small,

θ(k)(x) remains bounded by a polynomial in the xi, η
(k)(x, i),

and the maximum degree of a vertex in the graph. Since all
of these quantities are manifestly bounded as the subdivi-
sion procedure converges, it follows that the contribution to

the Laplacian of the vertices in S
(k)
2 shrinks to zero as k

goes to infinity and κ is made arbitrarily small. By sending
κ and ε to zero, our desired result follows.
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APPENDIX

A. PROOF OF LEMMA 5.2
Let G = (VG, EG) be the original graph, and let G′ =

(VG′ , EG′) be the graph that results from performing k suc-
cessive hexagonal refinements on G. The genus embeddings
endow both G and G′ with triangulations; let TG and TG′
be the respective sets of triangles in these triangulations.
There is a natural inclusion ι : VG ↪→ VG′ , since the subdivi-
sion procedure only adds vertices to the original set. There
is also a map η : TG′ → TG that takes a triangle from
the subdivided graph to the one in the original graph from
which it arose. For a vertex v in either graph, let N(v) be
the set of triangles containing it. For a vertex w ∈ VG, let
P (w) = η−1(N(w)) be the set of triangles in T (G′) taken
by η to elements of N(w). (See Figure 5.)

Figure 5: A subdivided graph, with P (w) and N(w)
shaded for a vertex w.

Our proof will proceed by producing a randomized con-
struction of a subgraph H of G′. Given a vector that assigns
a value to every vertex of G′, we can obtain such a vector
on H by restriction. We shall also show how to use such
a vector on H to construct such a vector on G. The vec-
tor on each graph will give rise to a Rayleigh quotient for
each graph, where the Rayleigh quotients for G and H will
depend on the random choices made in the construction of
H . By relating the terms in all three Rayleigh quotients, we
shall then provide a probabilistic proof that there exists an
H that gives rise to a small Rayleigh quotient on G, which
will suffice to prove our desired bound.
H will be produced by randomly choosing representatives

in VG′ for each vertex in VG and representing every edge in
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EG by a randomly chosen path in G′ between the represen-
tatives of its endpoints.
We first construct the map πV : VG → VG′ that chooses

the representatives of the vertices. For each v ∈ VG we
choose πV (v) uniformly at random from the vertices con-
tained in P (v) that are at least as close to ι(v) as to ι(w)
for any other w ∈ VG.
We now construct πE , which maps edges in EG to paths in

G′. Let e = (v1, v2) be an edge in G, and let w1 and w2 equal
πV (v1) and πV (v2) respectively. The two neighborhoods in
G, N(v1) and N(v2), share exactly two triangles, t1 and
t2. Let x be a vertex randomly chosen from the vertices
in η−1(t1 ∪ t2). We shall construct a path from each wi

(i = 1, 2) to x, so that their composition gives a path from
w1 to w2. We shall use the same construction for each, so,
without loss of generality, we shall just construct the path
from w1 to x.
Both w1 and x are in P (v1), and we give a general proce-

dure for constructing a path between any two such vertices.
The images under the inclusion ι of the triangles in N(v1)
encircle ι(v1). Suppose w1 is contained in T1, and x is con-
tained in T2. Traversing the triangles in a clockwise order
from T1 to T2 gives one list of triangles, and traversing in a
counterclockwise order gives another. Let T1, Q1, . . . Q�, T2

be the shorter of these two lists, with a random choice made
if the two lists are the same length. Choose a random vertex
ai in each Qi, and let a0 = w1 and a�+1 = x. We thus have
a vertex representing each triangle in the list. Our path will
consist of a sequence of segments from each representative
to the next.
Note that all of the triangles are distinct, except if T1 = T2

and the list is of length 2. We suppose for now that we
have two vertices ai and ai+1 in distinct triangles, and we
deal with the degenerate case later. The two triangles in
question are adjacent, and their union contains a grid graph
as a subgraph. (See Figure 6.) Given two vertices in a grid,
there is a unique path between them that one obtains by
first moving horizontally and then vertically, and another
that one obtains by moving vertically and then horizontally.
(These two coincide if there is a line connecting the two
points.) Randomly choose one of these two paths. This
is the path connecting ai to ai+1. If ai and ai+1 lie in
the same triangle, randomly choose one of the two adjacent
triangles to form a grid, and then use the above construction.
Composing the paths between each ai and ai+1 completes
the construction of πE . The entire construction is illustrated
in Figure 7.

Figure 6: An illustration of how the grid graph ex-
ists as a subgraph of the union of two adjacent sub-
divided triangles.

Figure 7: The entire construction illustrated for a
given edge of the original graph.

We now consider the Rayleigh quotient for the three graphs
we have constructed. After k hexagonal refinements, every
edge in G is split into r = 2k pieces, every triangle gets re-
placed with r2 smaller triangles, and the number of vertices
grows quadratically in r. A vector y ∈ R

|VG′ | that assigns a
value to each vertex in G′ gives the Rayleigh quotient

R(G′) =

P
(i,j)∈EG′ (yi − yj)

2

yT y
. (4)

This induces a vector on the vertices of H by restriction.
The probability, taken over the random choices in the con-
struction of πV and πE , that a given edge of G′ appears
on the path representing a given edge e of G is zero if it is
not in P (α) with α equal to one of the endpoints of e, and
at most O(1/r) otherwise. Since the maximum degree of a
vertex in G is assumed constant, the expected number of
times that a given edge of G′ occurs in H is O(1/r). Every
vertex in G′ is selected as a representative of a vertex in G
with probability Θ(1/r2). We thus have

E

2
4 X

(i,j)∈EH

(yi − yj)
2

3
5 ≤ O(1/r)

X
(i,j)∈EG′

(yi − yj)
2, (5)

and

E

2
4X

i∈VG

y2πV (i)

3
5 = Θ(1/r2)

X
(i,j)∈EG′

y2i , (6)

where the expectations are taken over the random choices in
the construction of (πV , πE). This implies that there exists
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some choice of (πV , πE) such thatP
(i,j)∈EH

(yi − yj)
2P

i∈VG
y2

πV (i)

≤ O(r)

P
(i,j)∈EG′ (yi − yj)

2P
(i,j)∈EG′ y

2
i

= O(r)R(G′). (7)

Now suppose we assign to each vertex v ∈ VG the value
assumed by y at πV (v). Using the fact that maximum de-
gree of a vertex is bounded, so that there are O(1) triangles
surrounding any vertex in G, we see that every path repre-
senting an edge is of length O(r). We note that if i1, . . . , is
is a sequence of vertices,

(yis − yi1)
2 ≤ s

s−1X
a=1

(yia+1 − yia)
2.

As such, we haveX
(i,j)∈EG

(yπV (i) − yπV (j))
2 ≤ O(r)

X
(i,j)∈EH

(yi − yj)
2. (8)

Applying this to the inequality in (7) yieldsP
(i,j)∈EG

(yπV (i) − yπV (j))
2P

i∈VG
y2πV (i)

≤ O(r2)R(G′). (9)

We have thus constructed an assignment of values to the ver-
tices of G that produces a Rayleigh quotient of O(r2)R(G′).
If we choose the yi to be the values that give the Fiedler
value of G′, we thus obtain

λ2(G) ≤ O(r2)λ2(G
′).

Since the number of vertices inG′ grows as r2 times the num-
ber of vertices in G, this completes the proof of Lemma 5.2.
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