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I. INTRODUCTION 
 
The study of eigenvalues and eigenvectors of various matrices associated with graphs 
play a central role in our understanding of graphs.  The set of graph eigenvalues are 
termed the spectrum of the graph.  Over the past thirty years or so, many interesting 
discoveries have been made regarding the relationship between various graph properties 
and the spectrum of the associated matrices.  The goal of these studies is to deduce 
characteristic properties or structures of graphs from its spectrum as well to use spectral 
techniques to aid in the design of useful algorithms.   
 
This report first presents a brief survey of some of the results and applications of spectral 
graph theory.  A significant portion of the report is then devoted to a discussion of using 
spectral techniques in solving graph partitioning problems where graph vertices are 
partitioned into two disjoint sets of similar sizes while the number of edges between the 
two sets is minimized.  This problem has been shown to be NP-complete.  It has been 
found that partitioning a graph based on its spectrum and eigenvectors provides a good 
heuristic for this problem.  Indeed, spectral partitioning techniques are widely used in 
practice and work well on a large set of graphs.  It is intriguing and not obvious why the 
spectral technique works at all.  In this report, I summarize three papers [1], [2], and [3] 
that discuss the quality of spectral partitioning and try to gain some insights on why this 
technique works well on some graphs but not on others.  
 
 
II. PRELIMINARIES 
 
A graph ( ),G V E=  is specified by its vertex set V  and edge set E .  Let { }1,...,V n=  and 
E m= .  In this report, all graphs are undirected and finite, without self-loops, and 

without multiple edges between two nodes.   
 
There are several associated matrices of interest: 

Adjacency matrix GA : n n×  matrix whose entries ,i ja  are given by ( )
,

1    if ,
0   otherwisei j

i j E
a

 ∈= 


 

 

Degree matrix GD : n n×  matrix whose entries ,i jd  are given by ,
    if 

0     otherwise
i

i j
d i j

d
=

= 


, 

where id  is the degree of vertex i . 
 
Incidency matrix GB : n m×  matrix.  Each column of GB  corresponds to an edge ( ),i j E∈ .  
In that column, the entry is 1 in the i th row, -1 in the j th row, and 0 in all other rows.  
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Laplacian matrix GL : n n×  matrix given by G GD A− .  The entries ,i jl  are expressed 

explicitly by 
( )

,

1    if ,
    if 

0     otherwise
i j i

i j E
l d i j

− ∈


= =



, where id  is the degree of vertex i .   

Since GL  is a symmetric matrix, all of its eigenvalues are real and eigenvectors 
corresponding to different eigenvalues are orthogonal.  The Laplacian matrix is closely 
related to the incidency matrix since T

G G GL B B=  (where T  denotes transpose).  Take a 

vector ( )1 2, ,..., n
nx x x x= ∈ , then ( )( ) ( )

( )

2

,

0
TT T T T T

G G G G G i j
i j E

x L x x B B x x B x B x x
∈

= = = − ≥∑ .  

Hence the Laplacian matrix of every graph is positive semidefinite and its eigenvalues 
are non-negative real numbers.  Since each row of GL  sums to 0, the matrix is singular 
with at least one eigenvalue equal to 0 and the corresponding eigenvector equal to 
( )1,1,...,1 T .  Let ( )1 2, ,..., T

nu u u  be the eigenvector corresponding to a non-zero eigenvalue, 

then since eigenvectors of symmetric matrices are orthogonal, 
1

0
n

i
i

u
=

=∑ .  

 
 
III. SOME PROPERTIES AND APPLICATIONS OF GRAPH SPECTRA 
 
A. Connectedness of Graphs 
The second smallest eigenvalue of the Laplacian matrix indicates the connectedness of a 
graph.  
Theorem III.1.  Let ( ),G V E=  be a connected graph and let 1 2 ... nλ λ λ≤ ≤ ≤  be the 
eigenvalues of its Laplacian matrix.  Then 2 0λ > .  
Proof:  Since GL  is a symmetric matrix, it is orthogonally diagonalizable and has n  
linearly independent eigenvectors.  Let x  be an eigenvector of GL  corresponding to an 

eigenvalue of 0.  Then 0GL x =  and ( )
( )

2

,

0T
G i j

i j E

x L x x x
∈

= − =∑ .  This implies i jx x=  for 

every ( ),i j E∈ .  Since the graph is connected, this means that 1 2 ... nx x x= = = .  Therefore, 
for connected graphs, the eigenspace of 0 has dimension 1 for connected graphs.  

□ 
The magnitude of 2λ  has been considered as a measure of how well-connected a graph is 
[4].  2λ  is called the Fiedler value of a graph and the corresponding eigenvector, v , is 
termed Fielder vector.   
 

Define the Rayleigh quotient to be 
( )( )

2

,
2

T i ji j EG
x T

i

x xx L x
x x x

φ ∈
−

= =
∑

∑
, where nx∈ .  

Observe the Fiedler value satisfies 
( )2 1,...,1

min xx
λ φ

⊥
=  with the minimum occurring only when 

x  is a Fiedler vector.     
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Corollary III.1. The spectrum of the Laplacian of an unconnected graph is the union of 
the spectra of the disconnected components.  The multiplicity of the 0 eigenvalue equals 
to the number of connected components of G .    
 
B. Testing Graph Isomorphism 
Two graphs ( ),G V E=  and ( ),H V F=  are isomorphic if there is a way of re-labeling the 
vertices that makes the two graphs the same.  If the spectra of G  and H  are different, 
then the two graphs are non-isomorphic.  However this does not determine graph 
isomorphism since there are non-isomorpic graphs with the same spectra.  As shown in 
[5], the eigenvectors of the adjacency matrix can be used to test for isomorphism.  They 
construct polynomial time algorithms which test isomorphism of graphs whose 
eigenvalues associated with the adjacency matrix have bounded multiplicity.  
 
C. Graph coloring 
The goal in graph coloring problems is to assign a color to each vertex, selected from a 
minimum set of colors, such that each edge connects vertices of different colors (ie. 
finding the chromatic number Gχ  of a graph G ).  Several results indicate that the 
spectral properties of a graph provide some information on its chromatic number.  Let 

1 2 ... nλ λ λ≤ ≤ ≤  be the eigenvalues of a graph’s adjacency matrix, then 
1

1 1n
G n

λ
χ λ

λ
− ≤ ≤ +  

[6].  In [6], the authors designed a polynomial time algorithm that colors optimally with 
high probability for random 3-colorable graphs based on spectral techniques.   
 
D. Expander Graphs [7, 8, 9] 
Consider a sequence of graphs nG , one for each n .  A sequence of d-regular graphs is a 
family of expander graphs if there exists a constant c  such that ( )2 nG cλ ≥  for all n .  It is 
known that randomly chosen d-regular graphs are expanders with high probability.  Good 
constructions of expanders exist and they enable good constructions of error-correcting 
codes and pseudo-random generators.  In [7], the authors present an asymptotically good 
family of linear error-correcting codes that can be decoded in linear time.  These codes 
are derived from expander graphs and are termed “expander codes”.  Expander codes 
belong to the class of low density parity check codes.   
 
Among the various applications of expander graphs, those in communication networks 
have the longest history and can be traced to the early development of switching 
networks.  [9] shows the construction of a nonblocking network using Ramanujan graphs 
which are a family of expander graphs. 
 
F. Paths, Flows, and Routing [9] 
Flows and routes are useful in providing lower bounds for eigenvalues.  For a d-regular 

graph on n  vertices, suppose there is a set of 
2
n 
 
 

 paths joining all pairs of vertices such 

that each path has length at most l  and each edge of G  is contained in at most m  paths, 

then 2
n

kml
λ ≥ , where 2λ  is the second-smallest eigenvalue of the normalized Laplacian 
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matrix.  [9] also shows that for graphs with good eigenvalue lower bounds, short routes 
and effective routing schemes exist with small congestion.  
 
 
IV. GRAPH PARTITIONING 
 
In general graph partition problems, the goal is to find a partition of the vertices into two 
disjoint subsets, S  and S , such that some conditions on the number of edges between the 
sets and the size of the sets are met.  Two common variations of this problem are the 
bisection and ratio-partition problems.  Let ( ),E S S  be the set of edges with one endpoint 

in S  and the other in S .  The cut size of the partition ( ),S S  is ( ),E S S .  In the bisection 

problem, the cut size is minimized subject to the constraint that S  and S  differ by at 

most 1.  Finding the best value of ( ),E S S  for this problem is NP-complete [10].  In the 

ratio-partition problem, the objective is to minimize the cut ratio, which is defined as 

( )
( )
( )

,

min ,
G

E S S
S

S S
φ = .  This also has the effect of finding a partition with a small cut size 

while balancing the number of nodes in each subset.  The minimum value ( )minG GS V
Sφ φ

⊂
=  

is called the isoperimetric number of a graph.  Note that G  is connected iff 0Gφ > .   
 
The graph partitioning problem arises in a variety of parallel computing problems,  
including sparse matrix-vector multiplication, solving PDEs, optimizing VLSI layout, 
telephone network design, and sparse Gaussian elimination [11]. 
 
A. Spectral Partitioning 
There are a variety of algorithms for the bisection problem, including greedy search 
algorithms, randomized algorithms, and spectral methods.  For a discussion, see [12].    
Spectral methods are widely used to compute graph separators.  It is first suggested by 
Donath and Hoffman in 1972.  Typically, the Laplacian matrix is used.  The eigenvector 
v  of GL  corresponding to 2λ  is computed and is treated as a one-dimensional drawing of 
the graph G  (ie. map the vertices to their corresponding entries in v ).  Choose some real 
number s  and consider the partition of the vertices given by { }:L iV i v s= ≤  and 

{ }:L iV i v s= > .  For the bisection problem, s  is the median of { }1,... nv v .  For the ratio-
partitioning problem, s  is the value that gives the best cut ratio.   
 
The spectral bisection technique is best illustrated by an example.  Consider the graph in 
Figure 1.  The Fiedler vector is [-0.2887  -0.5774  -0.2887  0.2887  0.5774  0.2887].  
Hence vertices { }1,2,3  are mapped with negative entries in the vector and { }4,5,6  are 
mapped with positive entries.  In this example, s  = -0.2887 or 0.2887.  This bisects the 
graph into { }1,2,3  and { }4,5,6  as shown in Figure 1 and is the optimal bisection.  
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Figure 1. Sample Graph 
 
B. Theoretical Results 
Although spectral partitioning is used extensively in practice, there is little work on how 
well these methods work.  In 1995, Guattery and Miller first attempted to provide some 
theoretical basis for this problem [1].  They showed that naïve applications of spectral 
partitioning, such as simple spectral bisection, will fail on some graphs that could arise in 
practice.  In 1996, Spielman and Teng showed that for bounded-degree planar graphs and 
finite element meshes, spectral partitioning works quite well.  In particular, they showed 
that bounded-degree planar graphs have Fiedler value at most ( )1O n , which implies that 

spectral techniques can be used to find bisectors of size at most ( )O n  in these graphs.  

These bounds are the best possible for planar graphs [2].  Recently in 2004, Kelner 
extended these results to graphs with bounded genus [3].  I summarize some of the main 
results of these papers below with more focus on the theorems developed in [2].      
 
Performance of Spectral Graph Partitioning (Guattery and Miller) [1] 
An example of a graph where simple spectral bisection yields poor results is shown in 
Figure 2.  Let there be n  nodes with a ladder shaped bottom and the top 2/3 of the rungs 
kicked out.  The simple bisection method suggests partitioning the graph along the rungs 
which clearly yields poor results for 3k ≥ .   
 
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2. Bisecting the Roach Graph 

Simple Spectral Bisection Optimal Bisection 
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Let kG  be the Roach Graph parameterized by k .  
Theorem IV. 1.  The simple spectral bisection method produces cut size of ( )nΘ  for kG , 
for any k .     
 
As we will show next, there are algorithms that produce cut size of ( )O n  for bounded 

degree planar graphs.  Hence the simple spectral method performs poorly on the family 
of Roach Graphs.  
 
Spectral Method Works for Planar Graphs (Spielman and Teng) [2, 10] 
There are two equivalent definitions of planar graphs.  For concreteness, planar graphs 
of 4n ≤  is shown in Figure 3.  
Definition 1. A graph is planar if there exists an embedding of the vertices in 2 , 

2:f V →  and a mapping of edges e E∈  to simple curves in 2 , [ ] 2: 0,1ef →  such that 
the endpoints of the curves are the vertices at the endpoints of the edge, and no two curve 
intersect in their interiors.  
 
Definition 2. A graph is planar if there exists an embedding of the vertices in 2 , 

2:f V → , such that for all pairs of edges ( ),a b  and ( ),c d  in E, with , , ,a b c d  distinct, 
the line segment from ( )f a  and ( )f b  does not cross the line segment from ( )f c  and 
( )f d . 

 
 

Figure 3. Planar Graphs of 4n ≤ , [6] 
 
 
Lemma IV.2 (Embedding Lemma).  For any dimension 1d ≥ ,  

( )
2

,
2 12

1

min : ,..., , 0
ni ji j E d

n i
ii

x x
x x x

x
λ ∈

=

 − = ∈ = 
 
 

∑
∑∑

.  
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Proof: For 1d = , this is the standard characterization 
( )( )

2

,
2 20

min
i

i ji j E

x i

x x

x
λ ∈

=

−
=
∑

∑
∑

.  Apply 

this component-wise.  For 1d > and all { }1,..., nx x such that 
1

0
n

ii
x

=
=∑ , 

( ) ( )( ) ( )( )
2 22

, , , ,, , 1 ,
22 2 2

, ,1 1 1

min

d
i j i k j k i k j ki j E i j E k i j E

n d nk
i i k i ki k i

x x x x x x

x x x
λ∈ ∈ = ∈

= = =

− − −
= ≥ ≥

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

.  

□ 
 
Theorem IV.3 (Koebe-Andreev-Thurston).  Let G  be a planar graph.  Then, there exist 
a set of disks { }1,..., nD D  in the plane with disjoint interiors such that iD  touches jD  iff 

( ),i j E∈ .   
Such an embedding is called a kissing disk embedding of G .  An example of kissing disk 
embedding is shown in Figure 4. 

 
Figure 4. Kissing Disk Embedding of Planar Graphs 

 
The analogue of a disk on the sphere is a cap.  A cap is given by the intersection of a 
half-space with the sphere, and its boundary is a circle.  To bound the eigenvalue, 
Spielman and Teng lift the disk embedding to a unit sphere in 3  by applying the 
stereographic projection.   
 
Definition (Stereographic Projection).  Consider a plane and a unit sphere touching the 
plane in its origin.  Call this point on the sphere the south pole, and the point on the 
sphere farthest away from the plane the north pole.  For a point 2x∈ , consider the line 
passing through x  and the north pole.  Define ( )xπ  to be the other point x′  where this 
line intersects the sphere.  
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Figure 5. Stereographic Projection 

 
Circles in the plane are mapped onto circles on the sphere.  Thus the projection can lift 
the disk embedding { }1,..., nD D  to obtain a disk embedding ( ) ( ){ }1 ,..., nD Dπ π  on the 

sphere.  It still holds that ( ) ( )i jD Dπ π ≠ ∅∩  iff ( ),i j  is an edge. 
 
Theorem IV.4. For all planar graphs G  with n  vertices and maximum degree ∆ , 

2
8
n

λ ∆
≤ .  

Proof: Let ix  be the center of ( )iDπ  on the sphere.  It can be shown that 0ix =∑ .  Then 

1ix = , 2

1

n

i
i

x n
=

=∑ .  Let ir  be the radius of the cap ( )iDπ , measured in a straight line 

from ix  to the boundary of ( )iDπ .  If ( ),i j E∈ , the two caps touch, and therefore 

( ) ( )22 2 22i j i j i jx x r r r r− ≤ + ≤ + .  On the other hand, the caps are interior-disjoint and the 

sum of their areas does not exceed the area of the sphere, therefore 2 4irπ π≤∑ .  Hence, 

( )
( )

( )

2 2 2 2

, ,

2 2 8i j i j i i
i j E i j E i

x x r r d r
∈ ∈

− ≤ + ≤ ≤ ∆∑ ∑ ∑ .  For the Fiedler value, we get 

( )
2

,
2 2

8i ji j E

i

x x

nx
λ ∈

− ∆
≤ ≤
∑

∑
.  Hence the Fiedler value of every bounded degree planar 

graph is ( )1O n . 
□ 

 
Theorem IV.5 (Mihail). Let G  be a graph of maximum degree ∆ , and let ( )1,...,1x ⊥  , 

then 2
T

G
G T

x L x
x x

φ ≤ ∆ .   
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Combined with the bound on 2λ  for planar graphs, this yields a cut of ratio 

2
42G n

φ λ ∆
≤ ∆ ≤  for planar graphs.  Hence planar graphs have Fiedler cuts of ratio 

( )1O n .  

 
Theorem IV.6 (Lipton-Tarjan). For any planar graph with n  vertices and degrees i∆ , 

there exists a bisection ( ),S S  with ( ) 2
, iE S S O n ≤ ∆ ≤ ∆ 

 
.  

 
Now it can be shown through the following lemma that bisector of size ( )O n  can be 

found by repeatedly applying Fiedler ratio-partitions.  Note that this recursive algorithm 
produces much better results than the simple spectral bisection algorithm used to partition 
the Roach Graph at the expense of increased complexity. 
 
Lemma IV.7. Assume that we are given an algorithm that will find a cut of ratio at most 
( )kφ  in every k-node subgraph of G , for some monotonically decreasing function φ .  

Then repeated application of this algorithm can be used to find a bisection of G  of size at 

most ( )
1

n

x
x dxφ

=∫ .  

 

If ( ) 1 2x xφ −= , then ( ) ( )
1

2 1
n

x
x dx nφ

=
= −∫ , giving a bisector of size ( )O n . 

   
Spectral Partitioning for Graphs with Bounded Genus (Kelner) [3] 
The genus g  of a graph G  is the smallest integer such that G  can be embedded on a 
surface of genus g  without any of its edges crossing one another.  A sphere, disc, and 
annulus all have genus zero.  A torus has genus one.  The genus of a planar graph is 0 
since it can be drawn on a sphere without self-crossing.  
 
Kelner shows that a graph of genus g  and bounded degree have Fiedler value 

( )2 O g nλ ≤ .  This is asymptotically tight.  Furthermore, he shows that there is a spectral 

algorithm that produces cuts of ratio ( )O g n  and vertex bisectors of size ( )O gn .  

Both of these values are optimal.  
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