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Randomization and Heavy Traffic Theory:
New Approaches to the Design and Analysis of
Switch Algorithms

By
Devavrat Shah

Abstract

This thesis addresses the design and analysis of implementable high-performance algorithms
for high speed data networks, such as the Internet. Our focus is on designing scheduling
algorithms for crossbar switches. We exhibit a natural tradeoff between implementational
simplicity and goodness of performance for scheduling algorithms operating in very high speed
switches. Our goal will be to resolve this tradeoff using novel design methods which involve
randomization on the one hand; and to develop new methods to analyze the performance of
these algorithms on the other. Along these lines, this thesis has two main parts.

The first part is motivated by the following considerations. The scheduler of a high speed
switch poses challenging problems to the algorithm designer. It needs to provide a good
performance even though scheduling decisions need to be made in a very limited time and
while utilizing meagre computational resources. To illustrate, a switch in the Internet core
operates at a line rate of 10 Gbps. This implies that scheduling decisions need to be made
roughly every 50 ns. Complicated algorithms cannot be designed to operate at this speed;
only the simplest algorithms are implementable. But a simple algorithm may perform rather

poorly, if it is not well-designed.
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We choose randomization as a central tool to design simple, high-performance switch
schedulers. This choice affords us the ability to exploit several desirable features of random-
ized algorithms: simplicity, good performance, robustness, and the possibility of derandomiza-
tion for eventual implementation. Specifically, we exhibit three algorithms that exhibit these
features.

Our second contribution is a new approach for analyzing the delay induced by a switch
scheduling algorithm. Traditional methods, based largely on queueing and large deviation
theories, are inadequate for the purpose of analyzing the delays induced by switch schedulers.
We adopt a different strategy based on Heavy Traffic Theory which advances our understanding
of delay in the following two senses. First, it leads to the characterization of a delay-optimal
scheduling algorithm. Second, it helps explain some intriguing observations other researchers

have made through simulation-based studies about the delay of scheduling algorithms.
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Preliminaries

Notation

A very useful representation of state of an n x n switch is an n x n real-valued matrix.
Hence, a lot of notation used in thesis is matrix based. Let M be the set of n x n real-valued
matrices, and ML, the subset consisting of R, -valued matrices. Let S(x) be the subset of Ml
consisting of matrices all of whose row sums and column sums are equal to x, and write S
for S(1), the set of doubly stochastic matrices. A matrix = = [m;;] € S is called permutation
matrix if 7;; € {0,1} for all 4, j. Let IP be the set of n x n permutation matrices. Schedule

in a switch will be represented by a permutation matrix, # € P. For a matrix a € M, write
;. = E agj, a.; = E aij, a. = E Ay, and
J i i,
a* =max{a;.,a;}, a,=min{a;; : a;; > 0}.
o 277

3

For matrices a,b € My and function f: R — R, let

a-b= E aijbija
tj

ab = (aijbi]')z’j € M,

fla) = (f(ay)),; € M.
Let component-wise multiplication have precedence over -, so that a - bc = a - (be).

XV



The - operation is commutative. Further, the following distributive law holds.
a-(b+c)=a-b+a-c.

The well-known Birkhoff-von Neumann's theorem states that the set of all doubly stochas-
tic matrices, S, is a convex set with P as the set of all possible extreme points. Further, the

dimension of the set is 7 = n? — 2n 4+ 1. Hence, a matrix a € S can be written as

n
a = E T,
k=1

where m, € P, o > 0 for all k and Y . o = 1. A matrix b € My is called a doubly
sub-stochastic if all of its n row sums and n column sums are no more than 1. A doubly

sub-stochastic matrix can be upper bounded component-wise as
b < b*a,

where a € S.

Conventions

In this thesis, we assume discrete time packetized network. All packets are assumed to be
of the same size. The line-rates are normalized to unit. The packet sizes are chosen so that
one packet can arrive in a unit time. In practice, though the packets arriving at a router are of
different size, they are internally divided into equal sized “cell”s for the purpose of scheduling.

In an abstract setting, it is possible to consider an m x n, m # n, switch but in practice
each data port of a router acts as an input as well as an output leading to consideration of an
n X n switch. Hence, in this thesis we restrict ourselves to n x n switch.

We will use the words schedule, matching and permutation interchangeably.

The Maximum Weight Matching scheduling algorithm is central to the study this thesis.
Though, many versions of the Maximum Weight Matching algorithm are studied in this thesis
depending on the definition of weight function, whenever we write Maximum Weight Matching
or MWM without any additional qualifier, we refer to the basic Maximum Weight Matching
that uses queue-sizes as weights. See the Section 2.1 for exact definition of the basic MWM

algorithm.
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How to Read This Thesis

This thesis is about design and analysis of scheduling algorithms for Input Queued switches.
The thesis is logically divided into three part: (1) Introduction (Chapter 1), (2) Design methods
for switch algorithms (Chapter 3) and (3) Analysis methods for switch algorithms (Chapter
2 and 4). A reader is advised to reach Introduction first. The Design methods and Analysis
methods can be read in any order. But, a reader is advised to read Chapter 2 before Chapter
4. Also, if reader decided to read Chapter 3 before Chapter 2, she or he is advised to read
statement of Theorem 1 from Chapter 2 for better understanding of motivation for algorithms
of Chapter 3.

In Chapters 2-4, we provide references and proper credit to original contributor in the
Section titled " Bibliographic Notes” at the end of the chapter. This is done in order to

possibly provide a better flow.

This thesis assumes a fair amount of background in Algorithms, Probability theory, Real
analysis and Combinatorics. In addition, background in Convex Optimization, Computer Ar-
chitecture and Router design is useful. Possible reference if required are as follows. For
algorithms, a good set of references are Introduction to Algorithms by Cormen et al. [1990],
Randomized Algorithms by Motwani and Raghavan [1995] and Data Structures and Network
Algorithms by Tarjan [1983]. For Probability theory, some good references are Probability:
Theory and Examples by Durrett [1995] and Probability and Measure by Billingsley [1995].
In addition, Brownian Motion and Stochastic Calculus by Karatzas and Shreve [1991] can be
useful. For Real analysis and Topology, see Introduction to Topology and Modern Analysis by
Simmons [1963] and Topology by Munkres [1999]. For Combinatorics, see A Course in Com-
binatorics by van Lint and Wilson [1992], Enumerative Combinatorics by Stanley [1999] and
Combinatorial Algorithms: for computers and calculators by Nijenhuis and Wilf [1978]. For
an introductory text on Graph Theory, refer to Introduction to Graph Theory by West [1996].
For Convex Optimization, refer to Convex Optimization by Boyd and Vandenberghe [2004]
and Convex Analysis and Optimization by Bertsekas et al. [2003]. For Computer Architecture,
see Computer Architecture by Hennesy and Patterson [1986] and a survey article Survey on

Router Design by Keshav and Sharma [1998] for state-of-art information on router design.
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CHAPTER 1

Introduction

The focus of this thesis is the design and analysis of implementable algorithms for prob-
lems arising in high speed networks, such as the Internet. Our goals are two-fold: To resolve
the tradeoff between implementational simplicity and the goodness of performance of switch
scheduling algorithms, to develop new methods for analyzing the performance of these algo-
rithms. Along these lines, this thesis has two main parts.

The first part is motivated by the following considerations. A high speed network presents
the algorithm designer with highly constrained problems: the algorithms need to work at a
very high speed and utilize limited computational resources, while providing good performance.
Consequently, only the simplest algorithms are implementable. But a simple algorithm may
perform rather poorly if it is not well-designed. This tension between implementability and
high-performance is inherent to the design of crossbar switch scheduling algorithms.

To illustrate this point, let us consider the scheduler of a crossbar switch operating in the
core of the Internet. Such switches reside, for example, inside Cisco Systems' GSR 12000
series of Internet routers. The switch operates at a line-rate of 10 Gbps. This implies that
the scheduler needs to configure the fabric of the switch roughly once every 50 ns. Each
configuration allows the transfer of packets (more precisely, parts of packets) from the inputs to

the outputs. This small amount of time and the rather limited computational requirements at a
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core router make the design of implementable, high performance schedulers a very challenging
problem. The situation will be aggravated in the next generation of routers which will operate

at line-rates of 40 Gbps and higher.

Our main approach for designing simple, high-performance switch schedulers is to use
randomization. The main idea of randomization is simple to state: Basing decisions on a
small, randomly chosen sample is a good surrogate for basing decisions upon the complete
state. Therefore, randomized algorithms lead to the simple implementation of otherwise
complicated solutions. While this general philosophy gives hope, specific problem instances
require the designer to exploit the structure of the problem to come up with good randomized
algorithms. In this respect we shall see that exploiting the fact that switch scheduling is

equivalent to bipartite graph matching is key.

Clearly, the performance of a randomized algorithm depends crucially on the quality of the
samples and we are motivated to ask: (a) Is it possible to improve the quality of the samples
without increasing their number? (b) If yes, how well would such an improvement perform? We
build on a previous design by Tassiulas [1998] to devise a simple trick for recursively improving
the sample quality, whilst leaving its size fixed. This trick yields a significant performance boost
while retaining the essential simplicity of randomized schemes and has some quite interesting
theoretical implications. For example, we shall find that one of our algorithms, Serena, exploits
both the structure of matchings and the recursive trick mentioned above to be a very simple,

high-performance randomized approximant of the (ideal) maximum weight matching algorithm.

Our second contribution is a new approach for analyzing the delay induced by a switch
scheduling algorithm. Traditional methods, based on queueing and large deviation theories for
example, are inadequate for the purpose of analyzing delay. We adopt a different strategy
based on Heavy Traffic Theory which advances our understanding of delay in the following
two senses. First, it leads to the characterization of a delay-optimal scheduling algorithm.
Second, it helps explain some intriguing observations other researchers have made through

simulation-based studies about the delay of scheduling algorithms.

This thesis is centered around switches that operate in the core of the Internet and which
have an Input-Queued (IQ) architecture (for example, GSR 12000 Series Router of Cisco
[2000]). For the sake of completeness, we will review fundamental concepts from the theory
of switching in this chapter. The rest of the chapter is organized as follows. Section 1.1 is
devoted to a brief introduction of a typical crossbar switch in the core of the Internet. We

describe canonical crossbar-based switch architectures and explain the constraints in building
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them. In Section 1.2, we establish the notation that shall be used in the rest of this thesis,
and define the problem of scheduling an 1Q crossbar switch. We also survey the previous work
on scheduling algorithms. In Section 1.3, we discuss in some detail our contributions, and we

end with an outline of the rest of the thesis in Section 1.4.

1.1 Switch Architectures

Switching is an integral function of data networks. In an Internet router, packets arrive
at various input (ingress) ports destined for any of the output (egress) ports. Figure 1.1
shows the path of a typical packet through a router. On the arrival of a packet at the router,
the admission control (AC) module decides whether to admit it or not. Additional policing
or pricing mechanisms may be performed at the ingress port. If the packet is admitted,
the routing lookup (RL) module decides the output port to which the packet should be sent
depending on its final destination and routing information available in locally maintained tables.
Subsequently, the packet may be queued before being switched to the corresponding output
port via the switch fabric. At the output port, the output scheduler (OSch) decides when to

transmit the packet on the egress line.

AC o
—'> —_—
[ ) [ )
RL > Queuing > Switch —»!  OSch . Output
Input
° o L4
Policing
° [ )

Figure 1.1: Path of a typical packet through a generic Router.

As opposed to the above packet-centric view of a router, Figure 1.2 presents a functional
view of the router. The latter representation aggregates modules of the router depending
on the kind of information they require to process a packet. Thus, the AC, RL and policing

modules require only control information from the header of the packet; whereas the switching
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and OSch modules perform data-dependent operations. Note that only the modules in the
data plane are affected by the size of packets.

Now, as the speed of a network scales, the router is subject to an increasing amount of
computational strain. But whereas the effect on the control plane can be alleviated, say by
diving the flow into packets of larger size, problems encountered by the data plane have no
such immediate solution. Thus, the functional view clearly identifies those modules that are
hit hardest by the scaling of speed of the network, and which need to be addressed effectively.
Our work will focus on providing efficient solutions to problems encountered by the data plane

modules, in particular, the switch scheduler.

Control Plane AC RL Policing

Data Plane
Switching Output Scheduling

Figure 1.2: Functional view of a Router.

The main function of a switch is to transfer packets from input ports to their destined
output ports. An n x n switch can, by definition, receive packets on n inputs, and is possibly
required to send packets out to all n outputs. A schematic diagram of a 3 x 3 switch is
given in Figure 1.3. A switch mainly consists of two parts: (i) Switch fabric, which transfers
packets from input to output ports; and (ii) Buffers, which store packets that cannot be sent
out immediately. For a switch residing in a core router, line-rates are on the order of Gbps.
For example, in the current OC-192 standard, the line-rate is 10 Gbps. Soon, the line-rate is
expected to increase to 40 Gbps when OC-768 standard is adopted. The buffer of a switch
must operate at a rate that is at least twice the line-rate (corresponding to a read and a write
operation per time slot).

In recent years, due to the rapid and ubiquitous deployment of optical fibers, the line-
rate has increased at a very fast pace. Roughly speaking, line-rates have doubled every 12

months. This should be contrasted with the fact that memory speed is doubling every 18
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_.--Switch Fabric

4
—)*\::\ ************************** o 7—>
) >:’/ \\\:’\/\/\
Input — i P R -$—>  Output
—):’:——————————————————————————:§—’

Figure 1.3: A Schematic Diagram of a 3 x 3 Switch.

months according to Moore's law Hennesy and Patterson [1986]. Currently it is barely feasible
to build a switch with memory fast enough to operate at the line-rate. In the future, it is likely
to become extremely challenging to build switches that operate at line-rate. (The source of
the above information is McKeown).

Given that memory bandwidth is one of the most significant constraints in building high
speed switches, in what follows, the relative goodness of a switch architecture shall be decided
by its memory-bandwidth requirement.

Next we discuss three popular switch architectures, which differ essentially in the placement

of buffers.
1. Output-Queued (OQ) switches, where buffers are at the output port,
2. Input-Queue (1Q) switches, where buffers are at the input port, and

3. Combined Input-Output Queued (CIOQ) switches, where buffers are at both the input
and the output port.

1.1.1 Output-Queued Switch

Figure 1.4 shows a 3 x 3 OQ switch. In an OQ switch, arriving packets are directly
transfered from input to output ports and stored in the buffers residing at the output ports,
if required. In such a switch, only the packets destined for the same output will contend for

sharing bandwidth of the outgoing line. This is the least contention of bandwidth expected
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in any switch. This makes an OQ switch an ideal switch in terms of performance. But an
OQ switch requires huge memory bandwidth: in an n x n OQ switch, the buffer memory is
required to run n + 1 times faster than the line-rate because possibly n packets arrive and one
packet departs from the same output port in a time slot. As discussed above, the limitation
on memory bandwidth makes it infeasible to build high-speed OQ switches with large number
of ports.

Though unbuildable, the performance of the OQ switch is ideal. Hence, it is used as a
theoretical reference to which the performance of other switches can be compared. A detailed
exposition on this topic can be obtained in the works by Prabhakar and McKeown [1999],
Chuang et al. [1999], Iyer et al. [2002], Iyer [2002], Keslassy [2004], Shah [2003], Krishna
et al. [1999] etc.

—»x\::—————————————————————————:;'——> >
Input ~——f=Tt oo I3 IREF RN +—> Output
—_— /i::i ______________________ iii*.—» —

Figure 1.4: An example of an Output-Queued Switch.

1.1.2 Input-Queued Switch

Figure 1.5 shows a 3 x 3 IQ switch with a crossbar switch fabric. The arriving packets
are stored in the buffers at the input side. At each input, there are separate buffers for each
output, which are called Virtual Output Queues (VOQ). The crossbar fabric imposes the
following logical constraints: in a time slot, each input can transfer at most one packet to any
output and each output can receive at most one packet from an input. For example, Figure
1.5 shows an instance when input 1 is connected to output 1, input 2 to output 2 and input
3 to output 3. Due to the crossbar fabric, at most one packet arrive at each output port in a
time slot. Hence, buffers are not needed at the output ports.

The crossbar constraints require the buffer memory to run only twice (one for read and
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one for write) the line-rate of a switch of any number of ports. This low memory bandwidth
requirement makes it possible for an IQ switch to operate at very high speed. Though crossbar
constraints are useful for low memory bandwidth, they create the following scheduling problem:
in every time slot a scheduling algorithm is required to find a “schedule” of the packets which
form a “matching” between inputs and outputs. Now, the performance of a switch depends
on the scheduling algorithm. For good performance, the algorithm is required to find a good
schedule. Further, engineering constraints require it to be simple so as to be implementable.
In this thesis, we present methods for designing implementable high performance scheduling
algorithms.

The IQ switch architecture has been studied for more than a decade. It was first introduced
by Karol et al. [1987]. Later, the works of Tamir and Chi [1993]Anderson et al. [1993]|Karol
et al. [1992] led to the development of the theory of switch scheduling. The Section 1.2

introduces the problem of scheduling formally.

.-~ Cross-bar Fabric

1 /
— 4
—_— =
2
[nput ——> -
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3 /
I 4
—> >
1 2 3
Q32 Y Y Y
Output

Figure 1.5: An example of an Input-Queued Switch.

1.1.3 Combined Input-Output Queued Switch

Figure 1.6 shows a 3 x 3 CIOQ switch with a crossbar fabric. A CIOQ switch is essentially

an IQ switch with the crossbar fabric running at a rate higher than the line-rate. If the crossbar
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fabric runs s times faster than the line-rate, then the CIOQ switch is said to have speedup
s. The speedup s > 1 in a CIOQ switch requires it to have buffers at both input and output
ports. The buffers are required to operate rate s+ 1 times the line-rate in a CIOQ switch with

speedup s.

The CIOQ switch architecture was formally introduced by Prabhakar and McKeown [1999].
They showed the possibility of emulating the performance of an OQ switch by a CIOQ switch
with a constant® speedup. However, the algorithms required for this emulation are very complex
to implement due to the communication overhead in a computing schedule and the requirement

of additional speedup.

.-- Cross-bar Fabric

-

— y
— —
Input ——> >
| - Cross-point

— y/
> >

‘ Y ‘ Y Y ‘

Output

Figure 1.6: An example of a Combined Input-Output Switch.

*Speedup 4 was shown to be sufficient in Prabhakar and McKeown [1999]. In Chuang et al. [1999] speedup
2 was shown to be necessary and sufficient.
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1.2 Scheduling in 1Q Switch

Consider an n x n 1Q switch. The packets arriving at input ¢ destined for output j are
stored in VOQ (4, 7). The occupancy of VOQ (7,7) is represented by @Q;;. As noted before, the
crossbar fabric imposes the following constraints: in a time slot, (i) each input can transfer at
most one packet, and (ii) each output can receive at most one packet. The switch scheduling
problem is to find a schedule of packets satisfying the above constraints.

A natural and a very useful representation of an IQ switch is a weighted bipartite graph.
A weighted bipartite graph corresponding to a 3 x 3 1Q switch is shown in the Figure 1.7(a).
The nodes on the left represent inputs and the nodes on the right represent outputs. An
edge between input 4 and output j corresponds to (a non-empty) queue (7,7). Edge (i,7) is
assigned weight which is a function of the state of the switch. For example, weight of the edge
(4,j) can be queue-size @;; or a function of @;;. A matching’ in such a weighted bipartite
graph corresponds to a possible schedule in the 1Q switch. The Figure 1.7(b) shows one of
the possible matchings or schedules for the bipartite graph in part (a) of the figure. Thus, a

scheduling algorithm is equivalent to a matching algorithm on a weighted bipartite graph.

Input Output Input Output
9 e 9 2 e 2
3 3 3 L] 3

Q32
(a) (b)

Figure 1.7: (a) Bipartite graph corresponding to a 3 x 3 switch. (b) A matching corresponding
to a valid schedule.

In the rest of the section, we introduce notation, definitions and the switch dynamics that

shall be used in this thesis.

TA matching is a collection of edges such that no two edges are incident on the same vetrex.
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1.2.1 Notation, Setup, and Dynamics of a Switch

Let time be indexed by m. Initially, m = 0. Let the n x n integer valued matrix Q(m) =
[Qij(m)] denote the queue-sizes of the switch at time m > 0. We assume that the switch
starts empty, i.e. Q(0) = [0]. For reasons that will become apparent later in the thesis,
we call @;.(m) the workload at input i; ().;(m) the workload at output j at time m; and
Q..(m) the overall workload in the switch. We are interested in the dynamics of Q(-), which
depends on the arrival and service process. The arrival process is exogenous while the service
process depends on the scheduling algorithm. Next, we describe the necessary notation and

assumptions on the arrival and service processes.

Let A(m) = [A;;(m)] denote the cumulative arrival process until time m, i.e. A;;(m)

denote the number of packets arrived at input 7 for output j in the time interval [0,m]. Let
Ajj(m) = A;j(m) — A;j(m — 1) be the number of packets arriving at input 4 for output j in
time slot m. Since at most one packet can arrive at input 4 in a time slot, the A,;j(m) are
0-1 variables. Let u;;(k) denote the inter-arrival time between the (k —1)* and k" packet at

input ¢ for output 5. Thus,

14
A;j(m) = max{l : Zu”(k) < m}.
k=1

Similarly, D(m) = [D;;(m)] denotes the cumulative departure process from Q(m), and D(m)
denoted the number of departures in time m. We assume that A(0) = D(0) = [0].

Now, the line-rates are normalized to one, and hence at most one packet can arrive at
an input and at most one packet can depart from an output in a given time slot; i.e. for all

m, ¢ > 0 and for all 4, 7,

Aij(m+0) — Ajj(m) < £, Djj(m +¢€) — Dyj(m) < £. (1.1)
Additionally, we assume that the arrival process satisfies the following assumption.
Assumption 1. The inter-arrival times (u;;(-)) are IID random variables for all i,j. Let the

arrival rate-matrix be A = [);;], that s,

E[A(1)] = A (1.2)
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Further, whenever \;; # 0 (i.e. packets arrive at input i for output j),
E[u?j(l)] < o0 (1.3)

Under a Bernoulli 11D arrival process, {A;;(m),m > 1} are Bernoulli [ID random variables
with Pr(A;;(1) = 1) = X;;. Note that, the Bernoulli IID arrival process satisfies Assumption 1
as stated above. As we shall see later in the thesis, the Bernoulli IID arrival process provides

us with a good understanding of the throughput and delay under various switch algorithms.

Assumption 2. We assume that the switch starts empty at time 0, that is,

Q(0) = [0]. (1.4)

The line-rates are one and hence by definition A;. is at most 1 for all 7. Since the output
line-rates are one, in order to have finite queue sizes, A is required to be less than 1. Motivated

by this, we call an arrival rate-matrix A as admissible if it is strictly doubly sub-stochastic, i.e.
A < 1; Aj <1, Vi, j. (1.5)

We say that an input (output) port 4 (j) is critically loaded if A;. =1 (A; =1).

In switches, queues are served by schedules (or permutations). Hence, the service pro-
cess (subsequently departure process) is completely determined by {S;(m),m € P,m > 0},
where S;(m) denotes the cumulative amount of time a scheduling algorithm chooses to serve
permutation = in the time interval [0,m]. Let S;(0) =0, V& € P.

Now, we are ready to describe the dynamics of the switch. The dynamics of a switch
have two components: (1) Algorithm-independent dynamics, and (2) Algorithm-dependent

dynamics.

Algorithm-independent dynamics

The dynamics of a switch are completely described by the quantities Q(-), A(-), D(-) and
S(-) = (Sz(-))xep. That is, the tuple X(-) = (Q(-), A(-),D(:),S(:)) describes the switch.

These quantities are related by the following basic queueing equation.

Q(m) = Q(0)+ A(m) — D(m)
= A(m) — D(m), (1.6)
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since @Q(0) = 0 from Assumption 2. In each time slot, at most one of the permutations is

served, and we are interested in non-idling switches. Hence,

ZSﬂ(m) = m. (1.7)

TeP

Clearly, D(m) and {S.(-), m € P} are related to each other. Specifically,

Dij(m) = Zzﬁijlgij(3)>o (Sx(€) = Sz(£—1)), Vi, j. (1.8)

TeP £=1
Equivalently,

Dv](m) - Dv](m - 1) = Z"rileM(m)>U (Sw(m) - Sw(m - 1)) , Vi, g (19)
melP

Note that, the equations (1.6)-(1.9) hold for a switch with any scheduling algorithm.

Algorithm-dependent dynamics

Now we describe the dynamics of a switch that depends on the algorithm, unlike the above
equations. In particular, an algorithm decides which permutations are chosen for service, that
is, {Sx(-),m € P}. Here, we describe the dynamics for the following algorithms of particular
interest: (1) a very well-studied algorithm called the Maximum Weight Matching algorithm,
(2) Maximum Size Matching, (3) Maximal Matching, and (4) Round-Robin algorithm.

(1)Maximum Weight Matching. Consider the switch bipartite graph, as in Figure 1.7. Let
the edge (i,j) be assigned weight @Q;;(m) at time m. Then, the basic Maximum Weight
Matching algorithm, denoted by MWM, selects a schedule corresponding to the maximum
weight matching in the bipartite graph. Equivalently, at time m, MWM chooses a permutation,
7*(m) such that

™ (m) = argrggg)gw-@(m). (1.10)

An equivalent condition is the following.

Sz(m) =8z(m—1) if 7w Q(m) <m€a];<p-Q(m), mE Z,. (1.11)
p
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Now, if edge (7,7) is given weight f(Q;;(m)) for some function f : Ry — Ry, then the cor-
responding Maximum Weight Matching, denote by MWMT, satisfies the following conditions:

Sp(m) = Sx(m —1) if - f(Q(m)) <maxp- f(Q(m)). m € 2. (1.12)
An MWMf algorithm using f(z) = 2%, a € Ry, is denoted by MWM-a. In this thesis, we will
study the properties of MWM-« algorithms in a great detail.

(2) Maximum Size Matching. The Maximum Weight Matching algorithm assigns the queue
size (or a function of it) as the weight of an edge, and serves the maximum weight matching.
Instead, consider the following weight: let the weight be 0 if the queue is empty and 1 otherwise.
The Maximum Weight Matching algorithm with respect to this weight serves the matching that
maximizes the number of packets transferred. That is, the algorithm serves a maximum size

matching. The Maximum Size Matching (MSM) algorithm satisfies the following equations.

Sx(m) = Sx(m —1) if W'l(Q(m))<rgg§P-1(Q(m))a me Zy, (1.13)

. 1, if >0,
where the function 1(z) =
0, otherwise.

(3) Maximal Matching. The use of a word maximal matching is not unique to one particular
algorithm, but is a characteristic of a large class, including MWM and MSM described above.
Intuitively, an algorithm is called maximal if the schedule used by algorithm is such that no
more packets can be transferred in the same time slot, in addition to the packets transferred
by the algorithm, while obeying the matching constraints. Precisely, a Maximal Matching

algorithm satisfies the following conditions.

Qij(m) > 0= | Y (Sx(m) — Selm — 1)) (mir L, my>0 + Thilgy, my>0) | >0 (1.14)
TeP k=1

(4) Round-Robin. Let all n! permutations of P be numbered from 1,...,n! in some order.
Let 7(I) denote the permutation numbered [ according to this order. The Round-Robin (RR)
algorithm selects the schedule corresponding to the permutation 7(m mod n! + 1) at time

m. Hence, under the RR algorithm, the switch obeys the following equations.

Sray(m) = Sray(m = 1) +1g—(m  mod ni1)}, M € Z4. (1.15)
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1.2.2 Performance Measures

The performance of a scheduling algorithm is measured in terms of throughput and average
packet delay. Intuitively, throughput is the rate at which the switch can transfer data from
inputs to outputs. As discussed above, any rate A that can be transferred by switch has to be

admissible. Next, we define the notion of stability or 100% throughput.

Definition 1 (Stable Algorithm). A scheduling algorithm is called rate-stable (equivalently,
it is said to deliver 100% throughput) if under any arrival process satisfying Assumption 1 and

admissible rate-matrix A, the departure process is such that

D(m
lim ﬂ =\, with probability 1.

m—oo 1M,

A rate-stable algorithm is called strongly stable if

lim sup E[Q;;(m)] < oo, Vi, .

m— 00

The delay of a packet is the time spent by the packet in the switch until it departs. By
Little's Law, average delay is related to average queue-size for a stable system. Hence, in this

thesis, we may use the words average delay and average queue-size interchangeably.

1.2.3  Previous work on Scheduling Algorithms

Input-Queued switch scheduling algorithms have been very well studied in the last decade
or so. A lot of research has been done by people in industry and academics to obtain imple-
mentable scheduling algorithms with good performance guarantees. To evaluate the perfor-
mance of scheduling algorithms, a great deal of theory has been developed. Unfortunately, not
much success has been achieved either in terms of designing good implementable algorithms

or in developing theory to analyze the delay of scheduling algorithms.

Previous work on Design of Algorithms

The initial work on the design of scheduling algorithms focused on obtaining stable schedul-
ing algorithms. McKeown et al. [1996] showed that under a Bernoulli IID arrival process, Max-
imum Weight Matching (with queue-size as weight) is stable. A similar result in the context

of Radio-hop networks was obtained by Tassiulas and Ephremides [1992]. Recent results by



1.2. SCHEDULING IN IQ SWITCH 15

Prabhakar and McKeown [1999], Chuang et al. [1999] and Krishna et al. [1999] proposed
algorithms for CIOQ switches to emulate the performance of an OQ switch with speedup
between 2 and 4. These algorithms are stable and permit the use of sophisticated mechanisms
for supporting quality-of-service (QoS).

However, the above algorithms are too complicated to implement. For example, the best
known algorithm to find a Maximum Weight Matching requires O(n?) operations in the worst
case Edmonds and Karp [1972]. That is, for a 30-port switch, it will require 27000 operations.
Thus, a switch operating at 10Gbps, with packet size of 50 bytes, will be required to do this
many operations roughly every 5-10ns. This is infeasible under current technology. Further,
due to the back-tracking nature of the routine involved in such an algorithm, it is not suitable
for pipelining. Similar reasons hold for other well-known algorithms.

Implementation considerations have therefore led to the proposal of a number of practicable
scheduling algorithms. A very successful algorithm, called iSLIP, was proposed by McKeown
[1995] and McKeown [1999]. The iSLIP algorithm is a maximal matching algorithm with
the possibility of distributed implementation. Due to the simplicity of iSLIP, its variants are
implemented in some commercially available routers. The iSLIP algorithm, though very simple
to implement, performs poorly. To improve the performance while retaining simplicity a number
of other algorithms have been proposed; notably iLQF by McKeown [1995], RPA by Marsan
et al. [1999], MUCS by H.Duan et al. [1997], Parallel Iterative Matching by Anderson et al.
[1993] and Wave Front Arbiter by Tamir and Chi [1993]. However, these algorithms perform
poorly compared to MWM when the input traffic is non-uniform: they induce very large delays
and their throughput can be less than 100%.

More recently, some particularly simple-to-implement scheduling algorithms have been pro-
posed by Chang et al. [2001] and by lyer [2002] and proven to be stable. But these algorithms
require multiple switch fabrics. Essentially they reduce the complexity of the scheduling al-
gorithm by additional (expensive) resources. Nevertheless, these algorithms demonstrate a
significant point: delivering 100% throughput does not complicate the scheduling problem.
On the other hand, in order to keep delays small, it seems necessary to find very good match-

ings; and finding good matchings is generally very hard, requiring complex algorithms.

Previous work on Analysis of Algorithms

A significant amount of research has been done to develop methods for analyzing the per-

formance of algorithms. A great amount of success has been achieved in developing methods
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for throughput analysis, but delay analysis methods are still lacking.

Throughput analysis methods are mainly based on Lyapunov function theory and fluid
model techniques. The method of using Lyapunov functions is quite ancient. In the con-
text of switching, it was first used by Tassiulas and Ephremides [1992] and McKeown et al.
[1996] to prove the stability of the Maximum Weight Matching algorithm under Bernoulli 11D
arrival processes. Subsequently, it has been utilized very heavily. For example, in Tassiulas
[1998]Keslassy and McKeown [2001a]Giaccone et al. [2003]Marsan et al. [2003].

The fluid model technique is one of the significant development of the 1990s for throughput
analysis of stochastic networks. Dai and Prabhakar [2000] were the first ones to apply the fluid
model technique in the context of switch scheduling algorithms. They proved rate-stability of
the MWM algorithm and showed that any maximal matching is stable for a CIOQ switch at
speedup 2 or more. This method is quite general and has been used extensively. For example,
in Shah [2001].

The definition of throughput assumes availability of infinite size buffers. In practice, routers
have finite size buffers. Hence, sometimes throughput fails to capture the notion of " practical
capacity”. To explain this, we present an example. Consider two algorithms, Algo2 and iSLIP.
A detailed description of the Algo2 can be found in Section 3.1 of Chapter 3. The Algo2
provides 100% throughput (i.e. stable) while iSLIP algorithm is believed to be unstable for
non-uniform traffic. Now for a particular non-uniform traffic pattern (called Diagonal traffic
pattern), we find the simulation results as shown in Figurel.8. The Figure 1.8 plots average
queue-length versus the normalized load for various algorithms. The performance under the
MWM algorithm is plotted as a reference. The figure suggests that at load 0.5 (i.e. at 50%
loading) the performance of iSLIP is vastly better than Algo2. In particular, at the load of 0.5
the average queue-size under iSLIP is less than 10 while the average queue-size under Algo?2 is
so large that can not be plotted in the figure (i.e. a lot larger than 10000). Thus, if a router
has buffer size equal to 1000, then the effective throughput achieved at load 0.5 under iSLIP
is at least is 99% of arriving traffic while the Algo2 will certainly lose a significant fraction of
the throughput. Thus, iISLIP seems much better algorithm than Algo2 for particular situation
explained above.

The above example motivates the necessity of studying queue-size or delay induced by an
algorithm. Unlike throughput analysis methods, delay analysis methods are not well developed.
The main reason is the inherent difficulty in analyzing delay in complex systems like switches.

However, some interesting approaches for analysing the delay of a switch algorithm have been
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Figure 1.8: Comparison of Algo2 and iSLIP.

developed, which we now describe.

Prabhakar and McKeown [1999] introduced the notion of Output Queued switch emulation.
This allows for the evaluation of the delay of an algorithm as it is relatively easy to explicitly
evaluate delay of an OQ switch for a large class of arrival process. Unfortunately, OQ emulation
is a rare property and hence this strategy is not very useful in general.

Leonardi et al. [2001] obtained delay bounds for the Maximum Weight Matching algorithm
for Bernoulli 11D arrival process. Unfortunately, their method, as presented, does not seem to

apply well to general algorithms.

Summary of Previous Work

The previous work can be summarized with the help of Figure 1.9. This figure plots the
known algorithms and architectures with respect to implementability and performance. The
OQ switch as well as the CIOQ switch (emulating an OQ switch) are ideal in performance but
practically infeasible to implement in a high speed switch. The iSLIP algorithm and its variants
are very good in terms of implementation but very poor in performance. Algorithms based on
Maximum Weight Matching provide Statical guarantees but still remain unimplementable.
The questions that remain open are: (i) what is an implementable algorithm that is good in

performance? (A in Figure 1.9); and (ii) what is an ideal scheduling algorithm for an I1Q switch
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in terms of throughput and delay? (B in Figure 1.9).

Performance
oQ | Not
Ideal Emulation Feasible

Statistical
Guarantees @

Poor

Not Feasible Feasible
Implementability

Figure 1.9: Summary of previous results: performance v/s implementability.

1.3 Contributions

This thesis has two main contributions: first, we develop new design methods for imple-
mentable algorithms with performance guarantees; second, we develop a new analysis method,

based on Heavy Traffic theory, to study the delay of algorithms.

1.3.1 Design Methods

We exploit three design techniques to obtain simple-to-implement high performance schedul-
ing algorithms: (1) Randomization with Memory, (2) Use of arrival information and (3) Par-
allelism.

For more than a decade, randomization has been used in many problems to design simple

algorithms (see Motwani and Raghavan [1995]). The basic idea behind randomized algorithms
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is as follows: the decision is based on a few randomly chosen samples instead of the whole
state. In many applications, clever choice of few random samples gives excellent performance.
Unfortunately, in the context of switch scheduling, randomization alone does not help in
obtaining a good scheduling algorithm. Observe though that the state (i.e. queue-sizes) of
a switch changes very little between successive time slots. Hence a heavy schedule remains
heavy (with respect to queue-size as weight) in the successive time slots. Thus, the use of
information from the past, or memory, is very useful. We use randomization and memory
along with the structure of matchings to obtain the high performance algorithm LAURA.

In switches, the goal of a scheduling algorithm is to keep the delay or queue-sizes small.
To do so, the algorithm should serve longer queues with higher priority. The queues to which
arrivals happen often are more likely to be longer. Hence, looking at the queues that are
exposed by arrivals leads to a way to discover good schedules. The algorithm SERENA is
based on this idea.

Finally, the structure of permutations allows for the parallelism in discovering good schedule
from a previous schedule. We use this idea to obtain the algorithm APSARA.

The algorithms implemented in the current routers (for example Cisco [2000]) have poor
performance. Hence, in order to guarantee high performance, an ISP over provisions the
network in terms of routers. We believe that by employing the algorithms proposed in this
thesis (especially APSARA and SERENA), the performance of routers will improve significantly.
Hence, the ISP using these new routers will require a lot fewer routers in order to guarantee
the same level of performance. Consequently, the cost of operating a core-network will reduce

drastically.

1.3.2 Analysis Methods

Perhaps the most important contribution of this thesis is the delay analysis method based
on the Heavy Traffic Theory.

The Heavy Traffic theory has been well developed over the past two to three decades.
As the name suggests, roughly speaking under heavy traffic scaling the system is loaded
critically. In this regime, for many networking systems, a phenomenon called “state space
collapse” occurs. This means that the state of the system under heavy traffic lives in a
smaller dimensional space compared to the original space. Stolyar [2004] studied the state
space collapse property of MWM algorithms under the special case of heavy traffic in which

only one logical resource (i.e. one input port or one output port) is saturated while the rest
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are underloaded. The result obtained by Stolyar [2004] strongly depends on the fact that only
one logical resource is saturated. The techniques do not extend to the case when multiple

resources are saturated.

In this thesis, we study the switches under heavy traffic when one or more ports are
saturated. When all ports are saturated, we find that the state space collapse region is
different for different algorithms, unlike the results of Stolyar [2004], who finds the same state
space collapse for all algorithms. Our results build on the recent work by Bramson [1998] and
Williams [1998] in the heavy traffic theory.

The state space collapse characterization of algorithms extends our understanding of the
performance of algorithms. First, we use this characterization to find an optimal algorithm
in terms of throughput and average delay. In particular, we show that the formal limit of
MWM-a algorithm as « — 07 is an optimal algorithm. As explained in Chapter 4, this is a
Maximum Size Matching algorithm which breaks ties among multiple maximum size matching

by selecting the maximum weighted maximum size matching.

Next, we use this technique to demonstrate that the MWM (i.e. MWM-1) algorithm is
not optimal. Thus, we show that the long-standing folk-lore in the switching community about

the optimality of MWM s false.

Finally, we use these results to explain the following intriguing conjecture made by Keslassy

and McKeown [2001a] based on empirical observations.

Conjecture 1. For o € R, the average delay of the MWM-« algorithm decreases as «

decreases.

It can be shown that all MWM-« algorithms are stable for & € R, using the traditional
method based on fluid model (see Section 4.2 of Chapter 4). But, traditional methods for
delay analysis are not useful in explaining the delay behavior of algorithms as claimed by the
Conjecture 1. Again, we use the state space collapse characterization of MWM-a algorithms

to explain the observed monotonicity in the delay behavior of the MWM-« algorithms.

Our methods are general and we believe that they can be easily extended to other scheduling
problems where a scheduling decision corresponds to an extreme point of a closed and bounded

convex set in R% for some finite d.
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1.4 Organization of Thesis

The rest of the thesis is organized as follows. In Chapter 2, we prove the throughput and
delay properties of MWM and its approximations under Bernoulli [ID traffic. We develop a
method based on Lyapunov functions to obtain the delay bounds.

In Chapter 3, we present various implementable high-performance scheduling algorithms.
We prove their performance guarantees and discuss implementation details.

Chapter 4 studies a class of switch algorithms under heavy traffic scaling. In order to obtain
the state space collapse property of algorithms, we first study the algorithms under fluid scaling.
This allows us to obtain two types of results: first, the rate-stability of algorithms; second,
the characterization of the state space collapse space. Using the state space collapse space,
we obtain a characterization of a delay optimal scheduling algorithm and offer an explanation
for the Conjecture 1.

Finally, in Chapter 5 we present the conclusions of the thesis and discuss future research

directions.



22

CHAPTER 1.

INTRODUCTION



CHAPTER 2

Maximum Weight Matching

The Maximum Weight Matching(MWM) algorithm has been very well studied in the con-
text of IQ switch scheduling. One of the main reason for the popularity of MWM is the natural
association of the switch scheduling problem with bipartite matching problem.

The MWM and its approximation algorithms are central to the study of this thesis. Hence,
this chapter is dedicated to the study of properties of MWM and its approximation algorithms.
In Section 2.1, we briefly recall the definition and known algorithms to find MWM. We state
throughput and delay properties of MWM. We use method based on Lyapunov functions to
derive these properties of MWM. The excellent performance of MWM raises the following
question: do approximate MWM algorithms have good properties? In Section 2.2, we address
this question. We introduce a class of approximate MWM algorithms which we denote by
(o,p)-MWM with approximation parameters o € Z,, p € (0,1]. This notion of (o,p)-
MWM is motivated by the theory of approximation algorithms. Again, we use Lyapunov
functions based methods to analyze throughput and delay properties of these algorithms. We
find the following intuitively pleasing conclusion: a good approximate MWM algorithm also
approximates the performance of MWM very well in terms of throughput and delay.

We discuss the strength and weakness of the results of this chapter in Section 2.3. Some

of the results that are presented in this section are known. As noted earlier in the Preliminaries,

23
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the background, related work and citations are presented in the bibliographic notes (Section
2.4). We note that, the results of this chapter will be useful throughout this thesis in various

contexts.

2.1 The Basic MWM

Consider an n x n switch operating under the MWM algorithm. Let the arrival process be
Bernoulli 1ID with admissible arrival rate-matrix A. In this chapter, we only consider Bernoulli
[ID arrival process. General arrival processes are considered in Chapter 4.

Next, we recall definition of MWM. Let = = [m;;] € P be one of n! possible schedules
a scheduling algorithm can choose. Define weight of the schedule 7 at time m, denoted by

wy(m), as
wa(m) = Q(m)-m="Y m;Qi(m). (2.1)
(]

The MWM algorithm schedules packets according the schedule with the maximum weight.

That is, MWM chooses a schedule 7*(m) at time m, where
7w (m) = arg max{w,(m) : m € P}.

If there are multiple schedules with the highest weight, then MWM breaks tie arbitrarily. As
we shall see later in this thesis, a class of Maximum Weight Matching algorithms is obtained
by changing the definition of weight. In this chapter, we focus only on the weight as defined
in (2.1). We shall discuss how our results of this chapter change when weight functions differ
in section 2.3.

We briefly note that, finding a MWM schedule is well-known algorithmically. There are
known polynomial time (in n) algorithms that find MWM (independent of weight). These
algorithms are classified as network-flow type algorithms. See Section 2.4 for detailed refer-

ences.

2.1.1 Properties of MWM

Now, we state the results about throughput and delay property of the MWM.
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Theorem 1. Consider a switch operating under MWM algorithm. Let the arrival process be
Bernoulli 11D with admissible arrival rate-matrix A. Then, the switch is strongly stable. Further,

the average queue-size is bounded above as

2

> BQy) < (22)
ij

Proof. \We first prove the strong stability of the switch under MWM algorithm. To do so, we

use the quadratic Lyapunov function, whose value at time m is given as follows.
L(Q(m)) = Q(m)-Q(m) =" QF(m). (2.3)
ij

The results of Kumar and Meyn [1995] suggest that to prove strong stability, that is,

lim sup E[Q;;(m)] < oo, Vi,j,

m— 00

it is sufficient to show that for all time m,

E[L(Q(m +1)) = L(Q(m))|Q(m)] < —€l|Q(m)l + B, (2.4)

where € and B are positive constants. We note that, the same conclusion also follows by the
Foster's Criteria (see books by Asmussen [1987] and Meyn and Tweedie [1993a] and works by
Meyn and Tweedie [1993b] and Meyn and Tweedie [1993c] for a detailed exposition on the

use of Foster's Criteria).

Now we prove (2.4). Consider the following.

L(Q(m +1)) — L(Q(m)) = Y [Q}(m+1) — Q};(m)]

]

= Y [Qij(m+1) = Qij(m)][Qij(m + 1) + Qij(m)].

i,J

Let 7*(m) be the schedule used by MWM at time m, D(m) be the induced departures at time

m and A(m + 1) be the arrivals to queues at time m + 1.

Qij(m +1) = Qij(m)+ Ajj(m + 1) — D;;(m), (2.5)

Dij(m) = mj;(m)1{qQ,;(m)>0}- (2.6)
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From (2.6), we obtain,

L(Q(m +1)) — L(Q(m)) = Z 2Qi5(m) (Aij(m + 1) — Djj(m))

i’j
+ E(Aij(mﬂ)fD,;j(m))?. (2.7)
ivj

Now, in a time slot, at most n packets arrive and n packets depart as well as (A;;(m) —
D;j(m)) € {—1,0,1}. Hence,

> (Aij(m +1) = Di(m))* < 2n. (2.8)
i,j

Also, (2.6) implies that
Qij(m)Dij(m) = Qij(m)m;;(m). (2.9)

From (2.7),(2.8) and (2.9), we obtain

LQm +1)) ~ LQ(m) < 3 2Qu(m) (Ay(m +1) - w5(m)) +2n.  (2.10)
(]
Taking conditional expectation with respect to Q(m) in (2.10), we obtain

E[LQ(m+1)) = L(Q(m)|Q(m)] < 2 Qij(m) [E [Ay(m+1) —xj;(m)|Q(m)]] + 2n
ij

2 Qij(m)[Nij — mj;(m)] + 2n
ij
— 2(Q(m)- A — Q(m) - 7 (m)) + 2n. (2.11)

We used the fact that arrival process is Bernoulli IID to obtain (2.11).

Now the arrival rate-matrix A is doubly sub-stochastic. Hence, we can upper bound A

component-wise as
77,2
A< MDY e | (2.12)
k=1

where for all k&, m;, € P, o € Ry and ), o = 1.
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Also, by property of MWM,
Q(m) -7 < Q(m)-7*(m), VreP. (2.13)
From (2.11),(2.12) and (2.13), we obtain
E[L(Q(m +1)) = L(Q(m))|Q(m)] < =21 =A")(Q(m) - 7"(m)) +2n. (2.14)

Now the weight of * is at least as large as the average weight of a matching when it is
chosen uniformly at random from P. When a matching is chosen uniformly at random, edge
(i,7) belong to matching with probability 1/n. Hence average weight of randomly chosen
matching is

Q(m) - (1/n); Zsz ) = Qum) .

where [lal|y = }_;; a;; for a € My. Now, we obtain

Qm) - w*(om) > Q). (2.15)
From (2.14) and (2.15) we obtain

E[L(Q(m + 1)) — L(Q(m))|Q(m)] < - At )IIQ( )|y + 2n. (2.16)

Thus, (2.16) satisfies the desired condition (2.4). This completes the proof of strong stability
of MWM algorithm.

Now, we prove the claimed bound on the average queue-size. Consider the following.

EILQ(m +1))] = E{E[LQ(m +1)) — L(Q(m))|Q(m)]} + E[L(Q(m))]

< 22D Q] + 20+ BBQm)], (217)

Here, the (2.17) follows from (2.16).

Now telescopic summation of (2.17) from m =0 to m = T — 1 and recalling that switch

starts empty, we obtain

T 1
E[L(Q(T))] < ZEHQ \] + 2n. (2.18)
m=0
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Note that, by definition
EIL(Q(T))] = O. (2.19)

Further, since switch is strongly stable under MWM and Q(m) forms an irreducible, aperiodic

Markov chain, it is ergodic and converges to equilibrium distribution. Hence,

‘ 1 T-1
Jim fn;E[||Q<m)||1} = E[Q(c0)lh], (2.20)

where (00) is the queue-size random variable distributed according to its stationary (equilib-
rium) distribution.

From (2.18),(2.19) and (2.20) we obtain that the stationary average queue-size is bounded

above as
n2
D ElRs) < (2.21)
17]
This completes the proof of Theorem 1. O

A straightforward corollary of the Theorem 1 is as follows.

Corollary 1. Consider a switch operating under MWM algorithm. Let the arrival process
be Bernoulli with admissible arrival rate-matrix A. Then, the net stationary average delay is

bounded above as

2

< sao (2.22)

E[D]

Proof. By Little's Law, for any stable system, the average queue-size, E[Q], and average

delay, E[D], are related as
EDI]x = E[Q, (2.23)

where )\ is the arrival rate to the system. Now, when the whole switch, when considered as
one system, the net queue-size is [[Q(mn)|1 at time mn and the net arrival rate is A.. = 32, ; Aij.

Hence, by Theorem 1 and (2.23), we obtain the statement of Corollary 1. ]
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2.2 Approximate MWM Algorithms

In this section, we consider a class of approximate MWM algorithms. First, we define

these algorithms.

Definition 2 ((0,0)-MWM). Let 0 € Z, and p € (0,1]. Consider an algorithm A and let
queue-size of switch under this algorithm be Q(m) at time m. Let m*(m) denote the schedule

used by algorithm A at time m. Now, define

Alm) = max{(Q(m) - 7) — p(Q(m) - 7)}. (2.24)

Then algorithm A is called (o,p)-MWM if (A(m),Q(m)) is jointly stationary and ergodic as

well as limsup,,_, ., E[A(m)] < o < co.

The above definition of (o,p)-MWM algorithm includes a very wide class of approximation
algorithms. Before stating properties of these algorithms, we present few examples of such

algorithms that arise naturally.

2.2.1 Examples of (o,p)-MWM

We present two examples of such approximation algorithms. There are many other ap-
proximations that naturally arise, either due to simplification of MWM algorithm or due to
structure of the problem. In particular, all the algorithms presented in the Chapter 3 belong

to this class.

Example 1. Consider a batch MWM algorithm. Suppose due to the slow logic of a switch,
MWM algorithm can compute schedule every K times slots. Thus, algorithm uses queue-size
which may be at most K time slots old to compute new schedule. Further, the same schedule
is used for K time slots. Now since at most one arrival can occur to each input and at most
one arrival can happen to each output, the weight of a matching or schedule change at most
by KN in K time slots. Further, the queue-size matrix used to compute a new matching can
also be different from actual queue-size matrix by K N packets. Hence, the weight of schedule
used by batch MWM is at most 2K N less than the weight of MWM. That is, batch MWM is
(2KN,1)-MWM.

Example 2. Consider a well-known greedy maximum weight matching algorithm. The algo-

rithm finds schedule as follows:
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1. Sort all n? queue-sizes in decreasing order.

2. Pick the largest queue-size and match corresponding input-output pair.
3. Remove all edges incident on this input-output pair.

4. Repeat steps 1-3 till no more inputs-outputs are left unmatched.

It is well known that the weight of greedy maximum weight matching algorithm is at least
half the weight of maximum weight matching schedule for the same queue-size. Thus, greedy

maximum weight matching is (0,0.5)-MWM algorithm.

2.2.2  Properties of (o,p)-MWM

We state the following theorem characterizing the throughput and average queue-size of
(c,p)-MWM algorithms.

Theorem 2. Consider a switch operating under a (o,p)-MWM algorithm. Let the arrival
process be Bernoulli with admissible arrival rate-matrix . Then, the switch is strongly stable

if \* < p. Further, when \* < p, the stationary average queue-size is bounded above as

n(n+ o)
%;E[Qm < e (2.25)

Proof. The proof is very similar to that of Theorem 1. Let the (o,p)-MWM algorithm under
consideration be denoted by A. As in proof of Theorem 1, we first prove the strong stability of
algorithm A and then obtain bound on average queue-size. Now, recall the quadratic Lyapunov

function, whose value at time m is
LQ(m)) = Q(m)-Q(m) =Y QF(m). (2.26)
ij

To prove the strong stability under Bernoulli 1ID arrival process with rate-matrix A such that

A* < p, we will show that under these conditions, for all time m,

E[L(Q(m +1)) = L(Q(m))|Q(m)] < —€l|Q(m)l: + B, (2.27)

where ¢ and B are positive constants.
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Following the arguments of the proof of Theorem 1, similar to (2.11), we obtain

E[L(Q(m +1)) — L(Q(m))|Q(m)] < 2(Q(m) - A — Q(m) - = (m)) + 2n, (2.28)

where 74 (m) is the schedule used by algorithm A at time m.

By definition of (o,0)-MWM, A has the property that

E[A(m)] < o, (2.29)
where
A(m) = pggg(@(m)-w)—@(m)-w““(m)- (2.30)

Now the arrival rate-matrix A is such that A* < p. As before, we can upper bound A

component-wise as
n2
A< MDY e | (2.31)
k=1

where for all k, m, € P, o, € Ry and >, ap = 1.
From (2.28)-(2.31) leads to the following.

EILQ(m +1)) - L@m))|@(m)] < —2(p — A7) max(Q(m) - 7) + 20 + 2n.(2.32)

We have used stationarity of A(m) in the above inequality.
Using inequality (2.15) along with (2.32), we conclude

(p— ")

EL(Q(m +1)) ~ L(Q(m)|Q(m)] < —27=———[Q(m)|1 +2(n+0). (2.33)

Thus, (2.33) satisfies the desired condition (2.27). This completes the proof of strong stability
of (o,p)-MWM algorithm whenever \* < p.
Now, we prove the claimed bound on the average queue-size. Similar to arguments of

Theorem 1 (i.e. (2.17)-(2.20)) yield the following bound on stationary queue-size.

n(n + o)
ZZ;E[QU] < - e (2.34)
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This completes the proof of Theorem 2. O

Similar to Corollary 1, we obtain the following Corollary. We skip the proof as it is exactly

the same as Corollary 1.

Corollary 2. Consider a switch operating under (o,p)-MWM algorithm. Let the arrival process
be Bernoulli with admissible arrival rate-matrix X such that \* < p. Then, the net stationary

average delay is bounded above as

n(n + o)

E[D] A(p— %)

(2.35)

2.3 Chapter Summary and Discussion

In this chapter, we studied the throughput and delay property of scheduling algorithms
based on MWM algorithm under Bernoulli 1ID arrival process. We first stated the known
stability result about MWM. We obtained bound on the average delay for MWM. Motivated
by the definition of approximation algorithms, we define (o, p)-MWM algorithms. We charac-
terized their throughput region and obtained bounds on average delay. The main tool that we
utilized to analyze throughput and delay of algorithms is based on the associated Lyapunov
function. The method developed in this chapter, especially to bound average delay, is quite
general in its scope of application. Though, it requires further work to obtain sharper bounds.
Next, we explain the scope of the method and discuss its weakness.

The method is quite general. Given a stable algorithm for which a Lyapunov function is
known, the above method gives the bound on average “discrete derivative” of the Lyapunov
function as long as the algorithm is MWM with respect to the weight that is equal to the
“discrete derivative” of Lyapunov function. This in turn can possibly lead to bounds on average

delay. We explain this via the following example.

Example 3. Consider MWM-2 algorithm where weight of edge (i,7) in switch bipartite graph

is Q?j(m) at time m. Equivalently, MWM-2 chooses w5(m) as schedule at time m, where

T, = arg max{z Q?jm;j :mw € P}
]

For this algorithm, consider the following cubic Lyapunov function, whose value at time m is
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given as
LQ(m)) = > Q¥(m). (2.36)
1,J

Consider the discrete derivative of this cubic Lyapunov function. After substitution and sim-

plification (similar to that in the proofs of Theorems 1 and 2), we obtain

LQ(m+1)) — L(Q(m)) = 3Q%(m)dij(m) + 3Qi;(m)d};(m) + 63;(m), (2.37)

]

2¢n
€

where §;;(m) = A;j(m + 1) — D;;(m). Considering two cases: (i) Q* = max; ; Qi; >
and (i) Q* = max;; Q;; > 2‘%" for any ¢ > 1 and e = (1 — X*). Now since MWM-2
chooses schedule that maximizes the weight, where weight is quadratic queue-size, we obtain
the following crude bound on (2.37).

BQUn + 1) = LQm) < 11 s, |~ 5@ m) | + 1260 - 2n
i,j
< MZQ%(W +12¢n° /e + 2n. (2.38)

]

This in turn will lead to the following bound on stationary queue-size.

2 4¢n3+2n/3
R Y) (239)

Certainly, (2.39) can imply bound on Zi,j E[Qij]. Moreover, the bound (2.39) itself is inter-

esting.

The weakness of this method is the same as the strength: its too general. Due to its
generality, it provides weaker bounds. To expose the weakness, we obtain a direct bound on
a trivial Random algorithm. This bound turns out to be better than that of Theorem 1 !

Certainly, we believe the MWM is better than Random algorithm.

Example 4. The Random algorithm does the following: every time, pick a matching © uni-
formly at random from all n! matching of P and use it as the schedule. Under Bernoulli 11D

uniform traffic, the arrival rates are such that, \;; = ’%,Vz’,j. Under Random algorithm, the
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probability that queue (i,j), is serviced at any time is 1/n independent of every time. Thus,
each queue Q;;(m) has Bernoulli IID arrival process of rate \*/n and Bernoulli 11D service
process of rate 1/n. The average queue-size of such a queue is a well-known queuing fact,

which is as follows.

A(n—1)
FE . 2.40
Summing over all n® queues, we obtain,
n(n — 1)\*
Y EQy] = 7(1 — )\’)‘ : (2.41)
i,

A straightforward comparison of bounds from Theorem 1 and (2.41) shows that (2.41) is
smaller. We strongly believe that Random is not better than MWM. Thus, exposes weakness

of our method.

The main outcome of this chapter is the following: MWM and its approximations have very
good throughput and delay property. This makes them very attractive scheduling algorithms
for the purpose of implementation. Unfortunately, due to the implementation concerns, MWM
or its known approximations are not not feasible to implement. In the next chapter, we will

present new design techniques to obtain simple-to-implement approximations of MWM.

2.4 Bibliographic Notes

The problem of finding MWM can be posed as a Linear program. Hence, for example,
Simplex Algorithm can be used to find MWM Dantzig [1963]. However, it may not find MWM
scheduling in polynomial time (in n). In 1970s and 1980s, a lot of interesting work was done in
the field of Combinatorial algorithms to find good algorithm for MWM. Notably, an algorithm
based on the results of Edmonds and Karp finds MWM in O(n?) time (see works by Edmonds
[1965] and Edmonds and Karp [1972]). This algorithm along with many other related network
flow algorithms can be found in monograph by Tarjan [1983].

The result about stability of MWM under Bernoulli 11D traffic was first established by
McKeown et al. [1996]. The results of Tassiulas and Ephremides [1992] in the context of Radio
hop networks imply these results. Both of these results used quadratic Lyapunov function in

order to achieve throughput results.
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The definition of (o,p)-MWM is motivated from the classical notion of competitive ra-
tio for online algorithm which was first introduced by Sleator and Tarjan [1985]. Our main
contributions in this Chapter are the method for obtaining bound on average delay and the
study of (o,p)-MWM. These results are primarily based on work by Shah and Kopikare [2002].
Initial results on obtaining delay bounds for MWM was done by Leonardi et al. [2001] using
somewhat different method. Though, their results are qualitatively very similar, their method
does not extend as well as our method. Another application of the method of this chapter can
be found in work by Shah [2003].

Historically, obtaining bounds on delay or queue-size for complex queuing system has been
central to the study of stochastic networks. There are known results in past that utilized
Lyapunov function to obtain bounds on delay. For example, see works by Hajek [1982], Kumar
and Kumar [1994].
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CHAPTER 3

Implementable High-Performance Algorithms

This chapter presents simple-to-implement and high-performance scheduling algorithms for
IQ switches. The results of Chapter 2 show that Maximum Weight Matching has maximal
throughput and low packet delay. This makes MWM a very attractive algorithm. However,
MWM is not implementable for the following reasons: the best known algorithm to find
Maximum Weight Matching requires O(n3) operations in the worst case. For example, for a
30 port switch, it will require 27000 operations. Thus, a switch operating at 10Gbps, with
packet size of 50 bytes will be required to do so many operations roughly every 5-10ns. This is
infeasible under current technology. Further, due back-tracking type routine involved in such
algorithm, it is not suitable for pipelining. Similar to MWM, other known good algorithms
are very difficult to implement. This leads us to the following questions: is it possible for an
algorithm to compete with the throughput and delay performance of MWM and yet be simple
to implement? if yes, what feature of the scheduling problem should be exploited?

In this chapter, we answer the above questions in affirmative by exploiting the following
features: (1) Randomization: in a variety of situations where the scalability of deterministic
algorithms is poor, randomized algorithms are easier to implement and provide a surprisingly
good performance. (2) Using memory: the state of the switch, that is queue-lengths, change

very little during successive time slots. Hence, a heavy matching will continue to be heavy over

37
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a few time slots, suggesting that carrying some information, or retaining memory, between it-
erations should help simplify the implementation while maintaining a high level of performance.
(3) Using arrivals: since the increase in queue-lengths is entirely due to arrivals, knowledge of
recent arrivals can be useful in finding a heavy matching. (4) Hardware parallelism: finding
heavy matchings essentially involves a search procedure, requiring a comparison of the weight
of several matchings. The natural structure on the space of matchings allows use of parallelism
in hardware to conduct this search efficiently.

The rest of the chapter presents algorithms exploiting the above observations and novel
methods to analyze their performance. The Section 3.1 discusses use of randomization and
memory to obtain a very simple stable algorithm. We show that randomization alone is not
useful to obtain stable algorithm. But, combining randomization with memory yields a stable
algorithm. A derandomization of this algorithm is also stable. Though, these simple algorithms
are stable, they have very poor average delay compared to MWM. To improve delay, we present
algorithms LAURA, SERENA and APSARA in Section 3.2. We study throughput and delay
properties of these algorithms theoretically and via extensive simulation study. Our results
show that all of these algorithms perform very competitively with respect to MWM. In Section
3.3, we discuss implementation details of these algorithms. Finally, we present bibliographic

notes related to this chapter in Section 3.4.

3.1 Stable Randomized Algorithms

Randomized algorithms are particularly simple to implement because they work on a few
randomly chosen samples rather than on the whole state space. The MWM finds, from
amongst the n! possible permutations of P, that permutation whose weight is the highest. An
obvious randomization of MWM yields the following algorithm, which we denote by Algol: At
each time m, let the permutation used by Algol be the heaviest of d (d > 1) permutations
chosen uniformly at random from P.

For simplicity, we want to have small d. Unfortunately, the following theorem shows that

Algol is not stable, even when d = ©(n).
Theorem 3. For any d < c¢n, where ¢ > 0, Algol is not stable.

Proof. Consider the queue at input ¢ for output 5. This queue is served, that is, input ¢ is

matched to output 7 at time m, only if input 7 is matched to output j by at least one of the



3.1. STABLE RANDOMIZED ALGORITHMS 39

d randomly chosen permutations or matchings. Consider the following.

pij = Pr(iis matched to j in one of the d random s)
= 1 — Pr(i is not matched to j in any of the d random matchings)

= 1 — Pr(i is not matched to j in one random matching)?

d
1
n

1 cn
1—(1——) ford <cn

IA

n

- 1—-e ¢

Therefore, the service rate available for packets from input 4 to output jisat most 1 —e™ ¢ < 1.

And, as soon as A;; > 1 —e ¢, we have that the switch is unstable under Algol. ]

Remark: Note that the above theorem has a much stronger implication: Any scheduling
algorithm that only uses d = O(n) random matchings cannot achieve 100% throughput.
Further, there is no assumption about the distribution of the packet arrival process, only a

rate assumption. This adds strength to the next algorithm, Algo2, due to Tassiulas [1998].

3.1.1 Algo2: Randomized Algorithm with Memory

The Algo2 uses randomization with memory. It is described as follows.
Algo2:

(a) Let m(m) be the schedule used at time m.

(b) At time m + 1 choose a matching «”"(m + 1) uniformly at random from the set of all n!
possible matchings.
(c) Let m(m + 1) = arg max - Q(m+1).
me{m(m),x" (m+1)}

The following theorem states that Algo2 is stable.

Theorem 4. Algo2 js stable under any Bernoulli 11D arrival process with admissible arrival

rate-matrix X and the average queue-size is bounded above as

n(n + n!)
XJ: ElQy) < S (3.1)
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Proof. By definition, the number of packets arriving in a time slot is at most n and the number
of packets departing in a time slot is at most n. Hence, weight of a permutation can change
by at most 2n in a time slot.

Under algorithm Algo2, at time m, let w(m) denote the schedule used and Q(m) be the

queue-size matrix. Let the corresponding MWM schedule be 7*(m) at time m, that is,

7w (m) = arg max m - Q(m).

From the above observation, for any £ < m, it is easy to see that
(D) - QD) — 7*(m)-Q(m)| < 2m(m 1), (3.2)
Due to the use of memory in Algo2, it is easy to see that
w(m)-Q(m) > w(m—1)-Q(m —1)—2n. (3.3)

Let,
M=inf{{ >0:n(m —¥¢) =7"(m —{)}.

Combining (3.2) and (3.3), we obtain
w(m)-Q(m) > 7*(m)-Q(m)—4Mn. (3.4)

Due to independent drawing of random permutation every time under Algo2, M is upper

bounded by a Geometric random variable with probability 1/n!. Hence,
E[M] < nl (3.5)
From (3.4) and (3.5), we obtain that Algo2 is (n!,1)-MWM. Hence, the statement of Theorem

4 follows from the Theorem 2 of Chapter 2. ]

3.1.2 Algo3: Derandomization of Algo?2

The algorithm Algo2 uses external randomization. Next, we consider a derandomization
of this algorithm, which we call Algo3. Before presenting the algorithm we need the concept

of a Hamiltonian walk on a P. Consider a complete graph with n! nodes, each corresponding
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to a distinct m € P. Let H(k) denote a Hamiltonian walk on this graph; that is, H (k) visits
each of the n! distinct nodes exactly once during times &k = 0,...,n!-1. We extend H(k) for
k > n! by defining H(k) = H(k mod n!). One simple algorithm for such a Hamiltonian walk
is described, for example, in Chapter 7 of Nijenhuis and Wilf [1978]. This is a very simple
algorithm that requires O(1) space and O(1) time, to generate H(k + 1) given H(k). Under
this algorithm H (k) and H(k + 1) differ in exactly two edges. Consider the following example
of this algorithm.

Example 5. Let n = 3. The algorithm generates the following Hamiltonian walk on P: H(0) =
(1,2,3)", H(1) = (1,3,2), H(2) = (3,1,2), H(3) = (3,2,1), H(4) = (2,3,1), H(5) =
(2,1,3), H(6) = H(0), and H(7) = H(1), and so on.

Now, we describe the algorithm.
Algo3:

(a) Let m(m) be the schedule used at time m.

(b) Let H(m) € P be permutation corresponding to the Hamiltonian walk on the graph

corresponding to P.

b) Let #(m + 1) = ar max m-Q(m+1).
( ) ( ) gﬂE{ﬂ(m),H(m+])} Q( )

Next, we state the properties of Algo3, very similar to that of Algo2.

Theorem 5. Algo3 is stable under any Bernoulli 1ID arrival process with admissible arrival

rate-matrix X and the average queue-size is bounded above as

n(n + n!)
%}E[QU] < S (3.6)

Proof. The proof is very similar to that of Theorem 4. Under algorithm Algo3, at time m,
let w(m) denote the schedule used and Q(m) be the queue-size matrix. Let the correspond
MWM schedule be 7*(m) at time m, that is,

" (m) = arg max 7 - Q(m).

*Here, by m = (n(1),w(2), 7(3)), we mean that i is matched to = (i), for i = 1,2, 3, under permutation .
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As observed in the proof of Theorem 4, the weight of a schedule changes by at most 2n

in successive time slots. Hence,
[ (m) - Q(€) — " (m) - Q(m)| < 2n(m —{).

Let,
M =inf{{ >0: Him —¢) = n*(m)}.

By property of Algo3,

w(m — M) -Q(m — M)

Y
=
3
\
s
S
3
\
s

v
:]*
3
Q
2
|
N
3
=

where the last inequality follows from (3.7).

Due to the use of memory in Algo3, it is easy to see that
w(m)-Q(m) > w(m—M)-Q(m— M) —2nM.
Combining (3.8) and (3.9), we obtain

r(m)-Q(m) > =*(m)-Q(m) - 4Mn.

(3.7)

(3.8)

(3.9)

(3.10)

Since H(-) covers all permutations in n! time, M < n!. Hence, from (3.10) we obtain that

Algo3 is (n!,1)-MWM. Hence, the statement of Theorem 4 follows from the Theorem 2 of

Chapter 2.

3.1.3 Delay of Algorithms Algo2 and Algo3

0

The above algorithms, Algo2 and Algo3 are extremely simple and Theorems 4 and 5 prove

their stability. But the delay induced by these algorithms are too large. We present an example

simulation study to exhibit this claim.
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Simulation Setup

We describe the simulation setup, which is used for all the simulation results presented in

the rest of the chapter.

Switch: Number of ports, n = 32. Each VOQ can store up to 10,000 packets. Excess packets
are dropped.

Input Traffic: All inputs are equally loaded on a normalized scale, and p € (0,1) denotes the
normalized load. The arrival process is Bernoulli IID. Let |k| = (K mod n). The following

load matrices are used to test the performance of algorithms.

1. Uniform: The arrival rate-matrix A is such that, A;; = p/n Vi,j. This is a very friendly
type of traffic.

2. Diagonal: The arrival rate-matrix A is such that: Aj; = 2p/3, Ajjiy 1) = p/3 Viand Aj; =0
for all other 4,5. This is a very skewed loading, in the sense that input 7 has packets

only for outputs ¢ and |i + 1|. This traffic loading tests algorithms very well.

Performance measures: \We compare the average queue-lengths induced by different algo-
rithms. The simulations are run until the estimate of the average delay reaches the relative
width of the confidence interval equal to 1% with probability > 95%. The estimation of the

confidence interval width uses the batch means approach.

Results

Figure 3.1 plots the average queue-size induced under Algo2 and MWM under Diagonal
traffic pattern. The Y-axis is the average queue-size (logarithmic scale) and the X-axis is the
load p. The figure shows that MWM has very low average queue-size even when p is near 1.
On the contrary, Algo2 has very large average queue-size even at p = 0.4 and it becomes too
large beyond p = 0.4 and hence not plotted in the figure. The figure also plots performance
of known heuristics ISLIP and iLQF for comparison. Note that though these heuristics are
known to be unstable, they perform much better than Algo2, exposing its poor performance.

For completeness, we note that all algorithms perform equally well under Uniform traffic.
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Figure 3.1: Performance of Algo2 under Diagonal traffic.

3.2 Low Delay Algorithms

The Algo2 and Algo3 suggest that achieving 100% throughput is not difficult. On the
contrary, to reduce delay, an algorithm has to do extra work. In this section, we describe
three different algorithms that respectively use parallelism, randomization and the information

in arrivals to achieve 100% throughput and low delay.

3.2.1 APSARA: Use of Parallelism

As noted in the introduction, determining the maximum weight matching essentially in-
volves a search procedure, which can take many iterations and be time-consuming. Since our
goal is to design high-performance schedulers for high speed switches, algorithms that involve
too many iterations are unattractive.

We wish to design a high-performance scheduler that only requires a single iteration. There-
fore, we must devise a fast method for finding good schedules. One method for speeding up
the scheduling process is to search the space matchings in parallel. Fortunately, the space of
matchings has a nice combinatorial structure which can be exploited for conducting efficient
searches. In particular, it is possible to query the “neighbors” of the current matching in

parallel and use the heaviest of these as the matching for the next time slot. This observation
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inspires the APSARA algorithm, which employs two ideas: (1) Use of memory, and (2) ex-
ploring neighbors in parallel, where neighbors are defined such that it is easy to compute them

using hardware parallelism.

Definition 3 (Neighbor). Given a permutation w, a permutation 7' is said to be a neighbor
of m iff there exists i1,i2 € {1,...,n}, such that the following is satisfied: (1) n(i1) = 7' (i2),
(2) w(ig) = «'(i1) and (3) w(i) = «' (i), for i # i1,i2. The set of all neighbors of 7 is denoted
N (r), whose cardinality is (7).

APSARA: The Basic Algorithm

Let w(m) be the matching determined by APSARA at time m. Let H(m++1) the matching
corresponding to the Hamiltonian walk at time m + 1. At time m + 1 APSARA does the

following:
(i) Determine N(w(m)) and H(m + 1).
(i) Let M(t+1) = N(mw(m)) U{H(m + 1)} U {r(m)}.

(iii) The schedule at time m + 1 is given by:

m(m+1)=arg max = -Q(m+1).
' eM(m+1)
APSARA requires the computation of the weight of neighbor matchings. Each such com-
putation is easy to implement since a neighbor «' differs from the matching = (m) in exactly
two edges. However, computing the weights of all (g) neighbors requires a lot of space in

hardware for large values of n.

APSARA-L: Deterministic Approximation

To reduce the number of neighbors from (%) to n, we consider the following neighbor-set.

Definition 4 (Linear-Neighbor). Given a permutation w, a permutation 7' is said to be a
linear-neighbor of w iff there there exists i € {1,...,n} such that the following is satisfied:
(1) w(i) =7'((: mod n)+1), (2) 7((i mod n)+1)=x'(i) and (3) n(j) = «'(3), for j #i.

The set of all neighbors of m is denoted N, (), whose cardinality is n.
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Denote by APSARA-L the version of the basic APSARA algorithm when neighbors are

chosen from N ().

APSARA-R(K): Randomized Approximation

Suppose hardware constraints only allow us to query K neighbors. Let N (m) denote

the set of K permutations picked uniformly at random from the set N (7). The randomized
version of APSARA algorithm, denoted by APSARA-R, works with Nk (7) to determine its
schedule. Note that, if K = (}) then APSARA-R defaults to APSARA.
Remark: Note that, APSARA (and its variants) generate all the matchings in the neighbor-
hood set oblivious to the current queue-lengths. The queue-lengths are only used to select
the heaviest matching from the neighborhood set. It is therefore possible that the matching
determined by APSARA, while being heavy, is not of maximal size. That is, there exists an
input, say 7, which has packets for an output j, but the matching chosen by algorithm, both
7 and j are connected via empty (0 weight) edges. To overcome this unnecessary idleness,
one possible way is the following: complete the matching determined by APSARA in a round-
robin order over the input-output ports that are empty. This version of the algorithm is called
MaxAPSARA.

Properties of APSARA

The APSARA algorithm and its variants are stable as stated below.

Theorem 6. The algorithms APSARA, APSARA-L and APSARA-R are all stable under
Bernoulli 11D arrival process with admissible arrival rate-matrix A. Further, the average queue-

size is bounded as

n(n + n!)
%E[Qij] < T (3.11)

Proof. All versions use the Hamiltonian walk, H(-) and are based on using memory. Therefore,

the proof of Theorem 5 implies the statement of Theorem 6. ]

Theorem 6 does not suggest why APSARA and its variants should do much better than
Algo2 or Algo3. The following property indicates why APSARA should be better.
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Theorem 7. Let w(m) denote the schedule obtained by APSARA at time m. If n(m) =

w(m — 1), that is the schedule does not change from time m — 1 to time m, then

1
n(m)-Q(m) > Smaxm-Q(m). (3.12)

Proof. Without loss of generality, let the identity permutation be the one that maximizes
- Q(m) for all m € P, that is, identity permutation is the maximum weight matching at time
m. As noted before, w(m) is the permutation chosen by APSARA and w(m) = w(m — 1).

Now, consider any 7 € {1,...,n}. By definition, 7(m) connects i to n(m)(i). Let Z; =
{i: i=n(m)(@)}. LetZy ={1,...,n} —Z;. Now, for all i € 7,

Qir(m)iy(m) = Qii(m). (3.13)
Now consider i € Zy. Since m(m) = w(m — 1), by the property of APSARA, it follows that
Qi x(m)(i) (M) + Qr-1(m)(iy i(Mm) > Qii(m). (3.14)

Now summing over ¢, from (3.13) and (3.14), it is easy to deduce that

> Qinmyi) (M) + Qu-1myi(m) > Y Qii(m). (3.15)
Since w(m) is a permutation, Z Qir(m)@iy(m) = Z Qr-1(m)@i)i(m). Further, by definition

w(m)  Q(m) = ZQM(mm(m). (3.16)

From (3.15), (3.16) and recalling that identity permutation corresponds to the maximum

weight matching at time m, the statement of the Theorem 7 follows. [

Simulation Results

We study performance of APSARA and its variants via extensive simulation study. The
simulation setup is identical to the one described in Section 3.1.3 of this chapter.

Figure 3.2 compares the average queue-sizes induced by APSARA, MWM, iSLIP (with
n iterations) and iLQF (with n iterations) under Diagonal traffic. The figure suggests that



48 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMS

APSARA and MaxAPSARA perform very competitively with MWM under all loadings. On
the other hand, both iILQF and iSLIP incur severe packet losses and large delays under heavy
loading. We also note that under low loads, APSARA deviates from MaxAPSARA. The reason
is as follows: since APSARA is not maximal, it may cause few queues to idle and at small
loads maximality is really what is important (as showed by iSLIP and iLQF's performance).
Note that, the difference is negligible — its no more than 10 packets on average. The figure
also shows that though APSARA-L has only 32 neighbors, it performs quite well compared
to APSARA, which uses (322) = 496 neighbors. Separately, the randomized variant APSARA-
R(32) does not perform as well as APSARA-L. Other study leads us to recommend the
following: when the number of allowable neighbors K < n, only then use randomized version
of APSARA-R(32).
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Figure 3.2: Performance of APSARA under Diagonal traffic.

3.2.2 LAURA: Use of Problem Structure

As shown in Section 3.1, the Algo2 provides 100% throughput. However, its delay perfor-
mance is quite poor. This is mainly because of the following reason: every time, Algo2 selects
one of the two matchings (one random and the other from previous time) in its entirety rather
than selecting heavy edges from both while satisfying matching constraints. The algorithm

LAURA is mainly based on this observation. It uses a procedure called Merge to obtain a
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heavier matching than given two matching by selecting heavier edges from both matchings.
As we shall see, the Merge procedure cleverly uses the structure of the problem, leading to
a very simple implementation. In addition, a non-uniform random sampling is used to bias
a random sample towards heavier matchings. Thus, the main features used in the design of
LAURA are: (1) use of memory, (2) non-uniform random sampling, and (3) a Merge procedure

to obtain a better matching.

LAURA Algorithm

Let w(m) be the matching used by LAURA at time m. At time m + 1 LAURA does the

following:

(a) Generate a random matching «"(m + 1) using the Random procedure.

(b) Use w(m + 1) = Merge(n"(m + 1), m(m)) as the schedule for time m + 1.

Now we describe the Random and Merge procedures.

The Random Procedure

Let F,(m) denote the minimal set of edges in the matching « carrying at least a fraction
n (0 <n <1) of its weight. We shall call n the selection factor.

Random is the following iterative procedure: Initially, all inputs and outputs are marked
as unmatched. The following steps are repeated in each of I iterations, where I is typically

log, n:

(i) Let 7 be the current iteration number. Let k& < n be the number of unmatched input-
output pairs. Out of the k! possible matchings between these unmatched input-output

pairs, a matching m;(k) is chosen uniformly at random.
(ii) If 4 < I, retain the edges corresponding to F,(m;(k)) and mark the nodes they cover as
matched. If i = I, then retain all edges of m;(k).
The Merge Procedure
Consider a switch bipartite graph with () matrix as its edge weights. Given two matchings

m(1) and 7 (2), define

S(W(l),ﬂ(2)) = {71' eP: M5 = 1 only if 7r(1)7;j =1or 71'(2)7;]' = 1}
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Figure 3.3: An example of Merge procedure.

The Merge procedure, when applied to 7(1) and 7(2), it returns a matching 7 such that

T o= argﬂes(rﬁ?))fﬂ(m{ﬁ-@}. (3.17)

The Merge finds such matching using only 2n addition and subtraction. It is described as
follows: Color the edges of 7(1) as red and the edges of 7(2) as green. Start at output node
41 and follow the red edge to an input node, say i;. From input node 4; follow the (only) green
edge to its output node, say jo. If jo = 71, stop. Else continue to trace a path of alternating
red and green edges until j; is visited again. This gives a “cycle” in the subgraph of red and
green edges.

Suppose the above cycle does not cover all the red and green edges. Then there exists an
output j outside this cycle. Starting from j repeat the above procedure to find another cycle.
In this fashion find all cycles of red and green edges. Suppose there are ¢ cycles, Cy, ..., Cy
at the end. Then each cycle, C;, contains two matchings: G; which has only green edges,
and R; which has only red edges. For each cycle C;, the Merge chooses R; if the sum of the

queue-size corresponding to these edges is higher than that of the G;. Else, Merge chooses
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G;. It is easy to show that the final matching as chosen above is precisely the one claimed in

(3.17). Figure 3.3 illustrates the Merge procedure.

Properties of LAURA

The following theorem is about the throughput and delay property of LAURA.

Theorem 8. The algorithm LAURA is stable under Bernoulli 11D arrival process with admissible

arrival rate-matrix \. Further, the average queue-size is bounded as

n(n + n!
S EQ, < Mt (3.18)
— 1—A
/,Ly
Proof. Consider the following two facts about LAURA: (1) The probability of LAURA choosing
maximum weight matching schedule is at least 1/n!, every time, independent of everything
else and (2) LAURA uses memory.
Now, in the proof of Theorem 4, we showed that Algo? is (n!,1)-MWM using the above

two properties. Hence, Theorem 2 of chapter 2 implies the statement of Theorem 8. ]

Simulation Results

We study the performance of LAURA via extensive simulation study. The simulation setup
is identical to the one described in Section 3.1.3 of this chapter.

We set the selection factor n = 0.5, and the number of iterations I = 5 = log, n, for
n = 32. The average queue-size induced under algorithm LAURA is compared with that of
the MWM, iSLIP, iLQF and Algo2 algorithms under Diagonal traffic. The results are shown
in Figure 3.4. The algorithms LAURA and MaxLAURA (which is maximal version of LAURA)
perform quite competitively with respect to MWM. We see that iSLIP and iLQF suffer large
packet losses at high loads. Strangely enough, although Algo2 is provably stable (as opposed

to iSLIP and iLQF), its performance in terms of average backlog is the worst.

The Impact of Merge

In this section we study the role of the Merge procedure in LAURA for obtaining good delay
performance. For this purpose, we consider the following two algorithms: Algo2 as described

in Section 3.1 and its variant using Merge, denoted by Algo4. At time m + 1, the Algo4 uses
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Figure 3.4: Performance of LAURA under Diagonal traffic.

schedule 7(m + 1) = Merge(n"(m + 1), m(m)), where w(m) is schedule used at time m and

7" (m + 1) is a matching chosen uniformly at random at time m + 1.

Figure 3.5 show the average queue lengths for these two algorithms under Diagonal traffic.
We note that both algorithms behave almost the same under Uniform traffic, and thus the
Merge procedure does not make a big difference to the performance under this traffic. When
the traffic is not Uniform, as shown in Figure 3.5, Algo4 performs much better compared to
Algo2. This shows that the use of the Merge procedure is essential for obtaining good delay

performance under non-uniform traffic.

Learning Time: Merge v/s Max

The main reason behind achieving 100% throughput for algorithms like Algo2 and Algo4 is
the finite amount of time (on average) that it takes for these algorithms to obtain a matching
whose weight is comparable to that of MWM. But the learning time can be drastically different

and it directly affects the delay performance of the underlying scheduling algorithm.

We now make a comparison of the learning time of Algo4, which uses Merge procedure,
with that Algo2, which uses Max procedure. First we present the simulation study under

different scenarios and then present analytical results to understand the observed behavior
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Figure 3.5: An illustration of impact of Merge on Performance.

under a simple model.
Comparison Algo2 and Algo4: Simulation

Simulation setting: A random weighted bipartite graph is created by choosing the weight of
each edge according to independent and identically distributed random variables with mean
1. We consider three different distributions : (a) Exponential, (b) Uniform on [0, 2], and (c)
Bimodal on {0.1,9.1} with probabilities {0.9,0.1}. Both algorithms Algo2 and Algo4 start with
the same random initial matching and subsequently they are provided with the same random
matchings. Both the algorithms run till they obtain a matching whose weight is at least a
pre-determined fraction f of the weight of MWM on the same graph. The average number
of iterations taken by an algorithm to achieve this weight is used as a measure of its learning
time. When an algorithm takes more than 10000 iterations to learn this weight, we simply

report the number of iterations as 10000.

Results: For each f € [0.1,0.9], and for each distributions, we obtain the average number
of iterations over 100 sample runs. The results are plotted in the Figure 3.6. The X-axis
is the fraction f while Y-axis the average number of iterations taken to learn the fraction
f by algorithm. “Uni" represent uniform, “Bi" represents Bimodal and “Exp” represents
Exponential. Results show that for all distributions, both algorithms manage to learn quickly

when f < 0.2. But as f grows the average number of iterations taken by Algo2 is very high
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Figure 3.6: Learning time: Algo2 v/s Algo4.

compared that of Algo4. We also note that learning time gets worse as the variance of the
edge-weight distribution increases; i.e. Uniform is easier to learn than Exponential distribution

which is easier to learn than Bimodal distribution.
Comparison of Algo2 and Algo4: Analytical Model

Analytical Model: The simulation study showed that Algo4 learns “good” matching a lot
quicker compared to Algo2 under different edge-weight distributions. It is not easy to obtain
such qualitative result analytically for any general edge-weight distribution. As our interest is in
determining learning time of algorithm for MWM, we consider a simplified model in which the
edges of MWM are assigned weight oo(a large enough value) and all other edges are assigned
weight 0. Without loss of generality we assume that the MWM is the identity matching. Thus
the edge-weight matrix of the bipartite graph has oc on n entries of the main diagonal and 0
in remaining n2 — n positions. We compare the performance of the Algo2 and Algo4 in this
context. Each time both algorithms are provided the same random matching. The MWM is
learned when all edges of the identity matching are learned by the algorithm.

Performance of Algo2: First observe that the matching retained by Algo2 at the end of time
m is the matching with the most of edges in common with the identity matching, among all
random matchings chosen till time m. An edge 7 of a matching is said to be fixed if input 2

is matched to output 7. Note that all the elements of the identity matching are fixed. The
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learning time of an algorithm in this context is simply the time taken to learn the edges of the
identity permutation. Therefore, the probability distribution of the number of fixed edges in
a randomly chosen permutation can given us the distribution of the fixed elements learnt by
Algo?2 till time m. This distribution is well-studied in the literature in various contexts. We
prove some required results about this distribution for the sake of completeness.

Let A; denote the event that i*” element is fixed in a randomly chosen permutation «".
Let P denote the probability that exactly & elements are fixed in 7. First, let us compute

Fg', the probability that no element is fixed.

Pp= Pr(O A7)

n

(@ 4 _ 3 (1)t (”) w

=1 J

= e

A
=7
where (a) is a direct application of the Inclusion-Exclusion principle. In general, for all k,

. ™) prk(y — )|
- (i) P n!

- o(5).

Hence, @}, the probability that a randomly chosen permutation has at least k fixed elements,

is given as

Qr = Y Pf

>k

- 0 (%) . (3.19)

This leads to the following Lemma.

Lemma 1. The algorithm Algo2 takes ©(k!) time to learn k fixed elements.
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Performance of Algo4: Now, we consider Algo4. We will show that the order of the learning
time for Algo4 is significantly smaller than that of Algo2. Recall that under algorithm Algo4,
matching w(m + 1) at time m + 1 is obtained by merging a random matching #«"(m + 1)
chosen at time m + 1 with 7(m) chosen at time m. The Merge procedure considers cycles
with edges alternatively belonging to w(m) and n"(m+1). This is the same as considering the
cyclic decomposition of a random permutation. Now, for each cycle Merge procedure either
picks all edges from m(m) or all edges from =" (m + 1). Hence it is important to know the
distribution of cycles in a random permutation. This distribution is well-studied. Let K (m) be
the random number of cycles induced by the cyclic decomposition of 7(m) and 7" (m + 1) and
let Cy(m),1 <1 < K(m) be the length of the I"* cycle. Let us remind ourselves that K (m)
and Cy(m),1 <1 < K(m) are IID random variables across time m. Now, it is well-known that
K (m) is sharply concentrated around its mean log, n. Though the distribution of cycle-lengths
Cj(m) is not concentrated around its mean n/log, n, for simplicity we assume the following:
there are log, n cycles each of length n/log, n. It can be shown that this assumption gives
weaker upper bound on learning time of Algo4. Next we compute the bound on iterations

taken by Algo4 to learn almost all elements of MWM in this context.

Let X (m) be the number of fixed elements in mw(m), that is elements of MWM already
learnt by m(m) by time m. We would like to lower bound the probability of the event that the
number of fixed elements will increase in 7(m + 1) given X (m). Consider the following event:
7" (m+ 1) contains a fixed element and it belongs to a cycle which does not contain any of the
X (m) fixed elements of w(m). In this case the Algo4 will pick elements of 7" (m + 1) for this
cycle. This in turn increases the number of fixed elements in w(m + 1) to at least X (m) + 1.
Hence whenever this event happens the number of fixed elements of 7(m + 1) increases. Next

we compute the probability of this event.

The probability that there are k fixed elements in 7n"(m + 1) is O(1/k!) as computed
above. The X (m) fixed elements of w(m) are distributed among log, n cycles uniformly at
random. A cycle contains n/log, n elements of #"(m + 1) and m(m) each. Consider one of

the fixed element of n"(m +1). Now, the probability that the cycle containing a fixed element
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of #"(m + 1) does not contain any of X (m) element is:

X ), ann
1- —m)> ) (3.20)

Q
~~
3

From the above discussion, on average the increase in X (m + 1) from X (m) is lower bounded

as:
E[X(m+1)—-X(m)] > Z%kp
E>1
1
= Zﬁp
k>0
~ (1= X(m)/n)" 8"
~ exp{)ligr;)}. (3.21)

Let y(s) = E[X(sn)]/n. Then, we obtain the following differential equation for large n:

The solution of this equation is given by

logn e
g™ (exp{ny(q)} - 1) = s. (3.22)
n logn
From (3.22), we obtain
X(m
logn <exp{ (m)} - 1) =m. (3.23)
logn

The (3.23) leads to the following Lemma.

Lemma 2. The algorithm Algo4 takes (2 (logn (exp{ k } — 1)) time to learn k fixed ele-

logn

ments.

Comparison of Algo2 and Algo4 Under Analytic Model: Let Ty(n) and Ty(n) denote the
average time it takes for Algo2 and Algo4 to learn n fixed elements under the above described

analytic model. Then, results of Lemma 1 and Lemma 2 imply that Ty(n) = O(n!) while
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Ty(n) = ©(log nexp(n/logn)), which yields the following Theorem.

Theorem 9. Under the simple analytical model described above, the average time it takes for

Algo2 and Algo4 for learn MWM, denoted by Ta(n) and Ty(n) respectively, are related as
To(n) = Q <T4(n)1°g2”> . (3.24)

Theorem 9 indicates the drastic difference between the learning time of the algorithms

using Merge and Max. This in turn provides credibility to the Merge procedure.

3.2.3 SERENA: Use of Arrival Information

The SERENA algorithm can be seen as a variant of LAURA in the sense that it does not
use external non-uniform random sampling procedure. Instead it uses arrival information to
obtain a new matching every time. In summary, SERENA has the following three features:
(1) use of memory, (2) use of arrival information to obtain new matching, and (3) Merge

procedure.

SENENA Algorithm

Now, we describe the algorithm. As before, let w(m) be the matching used by SERENA
at time m. Recall that A(m + 1) = [A;;(m + 1)] is the arrival matrix at time m + 1. That
is, A;j(m + 1) = 1 denotes that a packet arrived at input 7 for output j at time m + 1. The

algorithm finds schedule at time m + 1 as follows.

(a) Compute matching = (m + 1) by applying procedure Arr-Matching on arrival matrix

A(m + 1), which uses queue-size matrix Q(m + 1).

(b) The schedule at time m + 1 is w(m + 1) = Merge(n(m), 7 (m + 1)).

ARR-MATCHING Procedure

The procedure Arr-Matching obtains a matching from a given arrival matrix A = [A;;].
By definition, A is such that each of the A;. € {0,1} for all 4, that is, each input can have at
most one arrival. But, more than one packets (possibly n in the worst case) can arrive for the

same output, that is, A.; € {0,...,n} for all 7. This structure suggests one possible simple
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way to obtain good matching is as follows: (1) if there is no j such that A; > 1, then A

is a possibly sub-matching. Let 74 be this matching. Connect the inputs and outputs that

are not matched under 74 in any order. This yields the matching; (2) otherwise, there are
Jis---sJk. kb <m/2suchthat A, > 2,1 =1,...,k. Now we create 74 as follows. Initially, set
74 =[0]. Foralll=1,...,k, do the following: Set W{;‘j, =1, where

7:[ = arg ]@&XR{QUI AUI}

In the 74, thus obtained, will have some inputs and outputs such that they are not connected
(i.e. corresponding rows and columns do not have any entry equal to 1). Connect these
in an arbitrary fashion and obtain a complete matching. This completes the description of

Arr-Matching. The Figure 3.7 explains how the Arr-Matching for a particular example.

Properties of SERENA

The following theorem states the throughput and delay property of SERENA.

Theorem 10. The algorithm SERENA is stable under Bernoulli 11D arrival process with ad-

missible arrival rate-matrix \. Further, the average queue-size is bounded as
n(n+ A
Y EBQy] < nntA) (3.25)
— 1— A
i.J
n
where A = (%) .

(1A

Proof. We will show that under Bernoulli [ID traffic with admissible arrival rate-matrix A, the

o 10 ° 10
.l‘ *

10 , *
:7 - Arr-Matching ) —»

40 ° 40

30 30
o——o @ ®

Figure 3.7: An example of Arr-Matching procedure.
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algorithm SERENA is (A,1)-MWM. Then, a direct application of Theorem 2 of Chapter 2 will
imply the statement of Theorem 10.

Now, we will show that SERENA is (A,1)-MWM. If we show that the probability of SER-
ENA picking MWM as schedule at any given time is lower bounded by 1/A, then by the
arguments used in the proof of Algo2, we immediately obtain that SERENA is (A,1)-MWM.
Hence, we are left will showing that the probability of SERENA picking MWM as schedule at
any given time is lower bounded by 1/A.

Consider any time m. Let 7*(m) be the maximum weight matching at this time m. We
wish to lower bound the probability of the event that SERENA uses 7*(m) as its schedule.
Now, consider 7*(m). Let there be k,0 < k < n, input-output pairs that are matched under
7*(m) such that the edges between them have arrival rate 0. If there are none such input-
output pair then neglect them in the remainder of the discussion. Without loss of generality,
let these inputs and outputs be numbered 1,...,k. Now consider the following event: (1) no
packets arrive at inputs 1,...,k, and (2) packets arrive at inputs k+1,...,n precisely for the
outputs that are connected by «*(m). This event will imply that Arr-Matching will produce
a matching that is maximum weight matching, and hence SERENA will use maximum weight
matching as a schedule. Now the probability of (1) is at least (1 — A*)* and probability of (2)
is (As)" % Since 0 < k < n, this probability is strictly larger than (A, A*)". Thus, we showed
that SERENA uses maximum weight matching as its schedule with probability 1/A as desired.
This completes the proof of Theorem 10. ]

Simulation Results

We study the performance of SERENA via extensive simulation study. The simulation
setup is identical to the one described in Section 3.1.3 of this chapter. We compare the
performance of SERENA with the MWM, iSLIP and iLQF algorithms under the Diagonal
traffic. The results are shown in Figure 3.8. The algorithms SERENA and MaxSERENA (the
maximized version of SERENA) perform quite competitively with respect to MWM.

3.2.4 Implementation

In this section, we discuss implementation of all the three algorithms — APSARA, LAURA
and SERENA.
APSARA: All versions of APSARA involve a Hamiltonian walk. As noted in section 3.1,
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Figure 3.8: Performance of APSARA under Diagonal traffic.

finding next permutation in the Hamiltonian walk requires constant number of operations.
Moreover, we find that practically, we do not need Hamiltonian walk. All simulation results
remain unchanged when we ignore Hamiltonian walk. Thus, Hamiltonian walk is a purely
theoretical tool used in Theorems to provide stability. Thus, while the walk is extremely simple
to implement, we do not consider it either in implementation or in performance evaluation
The main feature of APSARA is that it can be implemented in a parallel architecture very
efficiently. Figure 3.9 shows a schematic for the implementation of APSARA with K modules.
As shown in the Figure 3.9, the old matching n(m) and the new arrivals, A(m + 1), are
used to compute the weights of the K neighbor matchings in parallel. Arrival information is
required to update at most n queues. Computing weight of each neighbor involves 2 additions
and 2 subtractions. The new matching, w(m + 1) is the one with highest weight among all
the K neighbors and the w(m). Computing the maximum can be done in log K time with
O(K) hardware space. The above computation can be easily pipelined as a loss of very little

performance.

LAURA: There are two tasks performed in LAURA: (1) Non-uniform random sampling and (2)
Merge procedure. Under non-uniform random sampling, I random permutations are chosen,
each of which may require O(nlogn) coin-flips (or equivalent computation). The standard
parameter setting is such that I = logyn. Hence, the operations involved in non-uniform

random sampling is O(nlogizn). Two, Merge procedure. The Merge procedure essentially
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involves n addition and n subtractions. Thus, it takes precisely 2n operation. Hence, net
amount of work in LAURA is O(n logs n) +2n. We note that, if cost of randomness is ignored
then non-uniform sampling will require computation of O(nl) = O(nlogn) operations just to
select useful edges. Though, algorithm LAURA is simple, it does not seem simple enough.
Certainly, it can be very useful algorithm given enough resources.

SERENA: The algorithm SERENA performs two main tasks: (1) Arr-Matching procedure
and (2) Merge procedure. As discussed above, the Merge procedure requires precisely n
additions and n subtractions. The Arr-Matching is required to resolve conflicts between edges
at output side. This requires at most n comparisons. The Arr-Matching is required to match
unmatched input-output nodes. This is done in any arbitrary fashion. A round-robin algorithm
(or algorithms like Wave Front Arbiter) requires O(n) operations. Thus, SERENA algorithm

is truly very simple and does not require any external randomization.

3.2.5 Simulation Under Correlated Traffic

The algorithms — APSARA, LAURA and SERENA — try to learn the weight of the MWM
schedule using different techniques. Depending on the arrival process, the rate at which
algorithms can learn the weight may change, which in turn may change their performance.
The simulation study in Section 3.2 was based on friendly, completely independent (and hence
no correlation) Bernoulli 11D arrival process. We study the change in performance of algorithms
when there is a strong correlation in arrival process. Intuitively, temporal correlation in traffic
could help an algorithm to learn quicker and achieve better performance. We verify our intuition
with simulation results.

The simulation setup is identical to the one described in Section 3.1.3 except that arrival
process is correlated. We describe the model to generate correlated arrival process. The traffic
is generated according to correlated “bursty” traffic, with burst parameter B. Let X be the
arrival rate-matrix. The cell arrival process at each input ¢ is characterized by a two-state
ON-OFF model. Every input has its own two state (ON and OFF) Markov chain. At any time
slot, input i jumps from ON to OFF state with probability (%) and jumps from OFF to ON

state with probability (ﬁ) When i is in OFF state, it does not generate any packet.
When 4 is in ON state it generates packets. Now, when i is in ON state for contiguous time
slots, it generates packets only for one output, which is chosen to be j with probability A;;/A;.

at random when 4 enters ON state from OFF state.
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Under the above simulation setup, the Figure 3.10 shows the mean queue-length of algo-
rithms of interest as a function of the average burst-size, B. Note that, B = 1 correspond to
the results of Bernoulli 11D traffic, which is plotted in Figure 3.12.

All the three proposed algorithms behave closer to the MWM as the average burst size
(i.e. the degree of correlation in the traffic) increases. Correlation can indeed help, since the
correlation among subsequent maximum weight matchings is captured by the memory retained

in the previous matching.

3.3 Chapter Summary and Discussion

The results of the previous chapter suggested that MWM (and its approximations) perform
very well. But, it is not feasible to implement the MWM or its known approximations. This
motivated us to seek implementable approximation of MWM that perform very well. In this
chapter, we present novel design approaches to obtain simple-to-implement approximation
algorithms of MWM. We exploited the following general features of the switch scheduling
problem in designing such algorithms: (i) the use of memory, (ii) the randomized weight
augmentation, (iii) the randomness and the information provided by recent arrivals, and (iv)
parallelism that naturally arise due to structure of the space of permutations.

We developed three algorithms — APSARA, LAURA and SERENA — to exploit the above-
mentioned features. We analyzed their throughput and delay properties theoretically and found
that they are all stable. An extensive simulation study demonstrated that the algorithms
approximate the performance of MWM very well. We clearly spelled out the implementation
details of these algorithms. We strongly believe that these algorithms are implementable in
the current core-routers at a very little implementation cost.

The design methods of this chapter are quite general. They can be applied for a large
class of problems in networking (and other systems setting) where the " continuity of state”
is observed.

The results of this chapter show that it is not very difficult to obtain an approximation
algorithm of the MWM in a stochastic setting, that is, when the weights of underlying bipartite
graph are changing by little every time in a stochastic manner. An interesting theoretical
question that arises from this work is as follows: what is the inherest complexity of finding
the Maximum Weight Matching exactly (not approximately) when little change happen in the
weight of bipartite graphs. Is it still O(n3) or can we do really better. We believe that when
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all the weights are distinct most of the time, then the complexity can be significantly reduce.

3.4 Bibliographic Notes

The basic randomized algorithm, Algo2 was first proposed by Tassiulas and Ephremides
[1992]. The proof of stability of Algo2 presented in this chapter, is quite different from the
proof by Tassiulas and Ephremides [1992]. The algorithms — APSARA, LAURA and SERENA
— were published by Giaccone et al. [2003]. The related work to the results of this chapter
can be found in the works by Shah et al. [2001], Giaccone et al. [2001] and Giaccone et al.
[2002].

A lot of work has been done in the past to obtain simple-to-implement high performance
scheduling algorithms and in particular approximations to MWM. Among commercially avail-
able routers, mainly variants of the three maximal type matching algorithms are implemented.
These three algorithms are iSLIP, Parallel Iterative Matching (PIM) and Wave Front Arbiter
(WFA). The iSLIP algorithm was proposed by McKeown [1995]. A detailed exposition on
iISLIP and its variants can be found in work by McKeown [1999]. The PIM algorithm was
proposed by Anderson et al. [1993]. It originated during the design of AN2 switches of former
DEC. The WFA algorithm was proposed by Tamir and Chi [1993]. These algorithms, though
very simple to implement, are rather poor in performance. For example, simulation results
presented in this chapter exposes the weakness of iSLIP algorithm.

Among other known approximations, the greedy Maximum Weight Matching algorithm,
also called iLQF was formally studied by McKeown [1995]. The iLQF algorithm is (0,0.5)-
MWM. It provides lower throughput and high delay (see simulations of this chapter). Many
other algorithms have been proposed, for example RPA was proposed by Marsan et al. [1999],
MUCS by H.Duan et al. [1997] etc. None of these algorithm compare well with the algorithm

proposed in this chapter.
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Figure 3.9: A schematic for the implementation of APSARA.

10000

1000 ¢

100 |

Mean IQ Len

wE

1 4 16 64 256 1024
Average burst size

Figure 3.10: Performance under ON/OFF traffic with input load 0.9.

65



66 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMS

10000 T T

—+— APSARA
——— LAURA
1000 | % SERENA ]
ba
100
&
-
% 10
=
1
01} 1
001 L L L L L L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Load

Figure 3.11: Comparison of APSARA, LAURA and SERENA: Diagonal traffic.
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CHAPTER 4

Fluid Models, Heavy Traffic and Delay

In the previous two chapters, we studied Maximum Weight Matching and its approxima-
tion algorithms. The Chapter 2 showed that under Bernoulli 11D arrival process, MWM and
its approximations have good throughput and delay properties. The implementation concerns
motivated design of simple approximations to MWM that have comparable performance to
MWM. The Chapter 3 presented various design methods to obtain approximation to MWM.
These methods are general enough in the sense of they can be used to design good approxi-
mation to MWM even when weight are different from queue-sizes. This naturally leads to the
following questions: (1) what are all possible weight for which MWM stable? (2) among all
such stable MWM), what weight selection minimizes the average queue-size or delay?

In this chapter, we present answers to both of the above questions. To answer the first
question, we define a general class of MWM algorithm, denoted by MWMf. The MWMf
algorithm chooses maximum weight matching as schedule, where weight of an edge (7,7) is
f(Qij) instead of queue-size @;; for some real valued function f. As a special case, when
f(x) = 2, MWMf becomes the usual MWM. We characterize the class of functions f under
which MWMfT is stable. To answer the second question, we study MWMf under the special class
of functions parametrized by @ € Ry . The function corresponding to parameter « is f(z) =

. Again, for « = 1, the algorithm corresponds to MWM. The algorithm corresponding

67
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to parameter « is denoted by MWM-«. We characterize an optimal algorithm among all
possible scheduling algorithm (not only among MWMT algorithms) as the limiting algorithm,
MWM-0*, which is obtained as a« — 07. The MWM-0" is a Maximum Weighted Maximum
Size Matching. That is, among all Maximum Size Matchings, it serves the one that has
maximum weight (weight is logarithm of queue-size). We also find that the usual MWM is
not optimal and thus contradicting the long standing folk-lore in the switching community
about the optimality of MWM. We use similar methods to resolve the Conjecture 1 stated in
Chapter 1.

To obtain the above claimed answers we use fluid model technique and heavy traffic analysis
of switches. We first present useful definition and notation for this chapter in Section 4.1.
We present formal fluid model of a switch in Section 4.2. Then, we use the fluid model to
prove stability MWMTf class of algorithms. In Section 4.3 we study fluid models of switch
under MWMT algorithm when switch is loaded critically, that is, one or more of n inputs and n
outputs are loaded to its capacity. This section requires us to prove combinatorial properties
of MWMT algorithms in order to characterize the space of fixed points of critical fluid model.
The results of 4.3 are of particular interest as they are essential in obtain the behavior of
system under heavy traffic. In Section 4.4, we introduce the set up of heavy traffic scaling
for a switch. We define and characterize the “state space collapse” space of a switch using
results of Section 4.3. Using the state space collapse characterization of MWMT algorithm
and in particular MWM-q, we obtain the optimality of MWM-07 under heavy traffic in Section
4.5 Further, we present explanation for Conjecture 1. Finally, Section 4.6 presents discussion,

scope of the method developed in this chapter and chapter summary.

4.1 Preliminaries

The MWM algorithm chooses schedule 7*(m) as a schedule at time m, where 7*(m) is

such that it satisfies

w(m) = argmax{m Q(m)}. (4.1)

Equivalently, (4.1) can be interpreted in terms of cumulative service vector (S;(m))rep as

follows:

Sp(m) >0 = o-Q(m)<m-Q(m), YVoebP. (4.2)
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Now we define a generalized Maximum Weight Matching algorithm. Consider any function
f: Ry — Ry. Then, MWMTf algorithm chooses the schedule so that the following is always

satisfied:
Sz(m) >0 = o- f(Q(m)) <m- f(Q(m)), VoeP, (4.3)

where recall that f(Q(m)) = (f(Qij(m)))i;. Thus, at time m MWMTf chooses a maximum
weight matching as the schedule with weight of edge (7,7) as f(Q;j(m)). In this chapter, we

consider functions f that satisfy the following condition.

Condition 1. The function f : Ry — Ry is a strictly increasing continuous function with

f(0) = 0. Further, for any (x1,...,2,) and (yi,...,yn) in R}
S F@) =D flyi) implies Y f(6m:) > > f(0yi), ¥V 6> 0. (4.4)

Some examples of function that satisfy condition 1 are f(z) = 22, f(z) = logz etc. A

special sub-class of MWMTf algorithms of our interest are the class of algorithms parametrized
by @ € Ry and denoted by MWM-« algorithms. An MWM-« uses f(z) = z® as its weight

function.

4.2  Fluid Model and Stability of MWMf

In this section we first introduce the fluid model of a switch. We described what we mean
by fluid model of a switch. For the ease of understanding, the formal description of fluid model
associated with the switch is presented first. Then, we provide justification. Finally, we use

fluid model to prove the stability of MWMf algorithm.

421 Fluid Model of a Switch

As described in chapter 1, the dynamics of a switch can be described completely by the
tuple X(m) = (A(m), D(m),Q(m),S(m)), m € Z,. The fluid scaling of switch is de-
veloped essentially to study the behavior of system at the “rate” level. Under the fluid

scaling, instead of looking at X(m), the focus is in studying the behavior of the tuple
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2(t) = (a(t), d(t), q(t), s(t)), ¢ € Ry, where

z(t) = lim , (4.5)

where

X(t) = (1=t + [t)X([]) + (¢ = ) x([t] +1).

Note that, as defined above, x(t) represents one of possibly many limit points. One does
not require existence of a unique fixed point, as generally one proves properties for all limit

points.

From Assumption 1, inter-arrival times are [ID. Hence by Strong Law of Large Numbers

(or ergodic theorem) for IID variable,

1 -
lim —A(m) = A, with probability 1. (4.6)

m—oo m

This in turn implies that, with probability 1,

alt) = M. (4.7)

Now, we are ready to describe the dynamics of the switch and the corresponding fluid
model equations. The fluid model equations are essentially the equations that govern the
evolution of quantities of z(¢). Though, these fluid model equations are intuitively clear, the
formal justification is not straightforward. The formal justification is given later. Similar to the
treatment in Chapter 1, we consider the dynamics of a switch in two separate components:

(i) Algorithm-independent dynamics, and (ii) Algorithm-dependent dynamics.

Algorithm-independent Dynamics

The quantities Q(-), A(-) and D(-) are related by the following basic queueing equation.

Q(m) = Q(0)+ A(m) — D(m)
= A(m) — D(m), (4.8)
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since Q(0) = 0 from Assumption 2. In each time slot, at most one of the permutation is

served and we are interested in non-idling switches. Hence,

ZSﬂ(m) = m. (4.9)

neP
Clearly, D(m) and {S;, m € P} are related to each other. Specifically,
Dij(m) = > ¥ mijlg,w0(S<(f) — Sx(¢ 1)), Vi, j. (4.10)
TeP £=1

Equivalently,

Dv](m) - D?y(m - 1) = Zﬂ—ile,;j(m)>0 (Sﬂ'(m) - Sw(m - 1)) . Vi, g (411)
m€eP

Next, we describe the corresponding dynamics of fluid scaled switch. The basic fluid
quantities (q(#),d(t), a(t), s(t)) are absolutely and hence differentiable almost everywhere w.r.t.
the Lebesgue measure. We will talk about fluid model equations as the differentiable £. The

equations analogous to (4.8)-(4.10) are the following.

g(t) = M —d(t), (4.12)
D sat) =t (4.13)
welP
dij(t) = D Ly, )>08n(t). (4.14)
weP

We define additional notation, which will be useful in further exposition. The n x n matrix of

instantaneous service rates, o(t), is

o(t) = Y min(t). (4.15)

TeP

Then the equations (4.12) and (4.14) can be re-written as follows:

) >\ij — (I,;j(t) if Qij > 0
Qij(t) = n (416)
(Aij —045(t))"  otherwise
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The above equations can be written in the following compact form.

() = (A — o(t)) 7Y, (4.17)

Algorithm-dependent Dynamics

The above are the basic equations which govern a switch, regardless of the scheduling al-
gorithm. For a specific scheduling algorithm there may be additional equations. The algorithm
decides which permutations are chosen for service, that is, {S;(:),7 € P}. We describe the
dynamics for MWMT algorithm. Under the MWMT algorithm, the equation (4.3) is satisfied,

which is the following.

Sr(m +1) = Sx(m) if w- f(Q(m)) < r;lggp-f(Q(m))a me Zy. (4.18)

The corresponding fluid model equation is given by

$; =0 if m f(q) <maxp- f(q). (4.19)
peP

4.2.2 Justification of Fluid Model

In this section, we present justification of fluid model equations (4.12)-(4.14) and (4.19).
We first introduce some definitions and notations. We want to study the limiting quantity

x(t), where

z(t) = lim - (4.20)

where
X(t) =1 —t+ [t)X([t]) + (¢ — [£])X([t] +1).

Equivalently, we wish to study lim,_, x"(t) where, for r € R,
z"(t) = X(rt)/r.

In particular, we wish to study z(¢) over a time interval [0, 7], where T' € R, a finite constant.
Each 2" (t) has associated probability measure p" (). Our interest is in studying the limiting

measure p(-) obtained as the limit of u"(+) as r — oo. Basic questions are: what is the space
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on which p"(-) is defined? are limit points of 1" (-) probability measures? if yes, can we obtain
their characterization 7 Answering these questions is equivalent to showing that the limits of
x"(+) satisfy fluid model equations.

Now we proceed towards studying limits of u" (). The space of u"(-) is the set of all values
taken by z"(t) as r — oo over a finite time [0,7]. For this we need following definition. A
sequence of functions {f", r € Ry} where f" : [0,7] — Ry, is said to converge uniformly on

compact intervals (u.o.c.) to a function f : [0,7] — Ry if

lim ‘fr 7f‘T = Oa

r—00

where the |f" — f|r is the sup-norm defined as

/" = flr = sup |f7() = f(2)].

0<t<T
Next, we note the following properties of X(-), z"(-) which prove their Lipschitz continuity.

1. At most one packet can arrive at an input in a time slot. Hence, for all ¢,

|Aij(m +£) — Ajj(m)| < £, VYm, L = laj;(t+5) —aj;(1)] < s, VE,s. (4.21)

2. At most one packet can depart from an input (as well as output) in a given time slot.

Hence, for all 4,7

|Dij(m +£) — Dij(m)| < £, Vm, £ = |d;(t+s) —dj;(t)] < s, Vt,s. (4.22)
3. Everytime one of the matching is scheduled to transfer unit packet. Thus, for all # € P
Sp(m +£) — Sz(m)| <L, Ym,l = |si(t+s)—s(t)] <s, Vi,s. (4.23)

4. From (4.21) and (4.22), we obtain that for all 4, 7,
|Qij(m +£) — Qij(m)| < ¢, Ym, L = |q;7-(t +s) — qirj(t)\ <s, Vt,s. (4.24)

From (4.21)-(4.24), we obtain that X(-),z"(-) are 4-tuple of Lipschitz continuous functions

on [0,7T]. Thus, the probability measure p”(-) is on the space of Lipschitz functions. Now, we
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claim the following Lemma.
Lemma 3. For any sequence ri T oo, the sequence of measures u* is tight.

Proof. The support set of measure u”, for any r € Ry, is a 4-tuple of functions which are (i)
Lipschitz continuous and hence equicontinous, (ii) uniformly bounded and (iii) with compact
domain [0,7] and image contained in R%, for some finite integer d. Hence, Arzela-Ascolli's
Theorem implies that the closure of the support is compact on the space of functions (with
domain [0,7] and range Ri) endowed with topology induced by metric of sup-norm. This
in turn implies that for any sequence r; 1T oo, the sequence of measures u"* is tight. This

completes the proof of Lemma 3. ]

From Lemma 3 and Prohorov's Theorem, we obtain that for any sequence of tight measures
u"k on a metric space, there exists a convergent subsequence p'*i such that "% — u; here
1 is a probability measure with the same support. Next we study the measure u. In particular,
we show that p concentrates all of its mass on solution of fluid model equations. As before,

we divide the treatment in algorithm independent and algorithm dependent parts.

Algorithm-independent fluid model

We will show that
p ( {z(-) satisfies equations (4.12)-(4.14)} ) = 1.

Recall that inter-arrival times are [ID (Assumption 1) and hence as shown in (4.7) with prob-
ability 1,

lim a"(t) = At. (4.25)

Since p'*i = p,

From (4.25) and switch dynamics implies, with probability 1,

lim ¢"(t) +d"(t) = At (4.26)

T—00
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Hence, q(t),d(t) satisfy (4.26) with probability 1, under g. This in turn implies that, z(-)
satisfies (4.12) with probability 1 under u. The equation (4.13) is satisfied trivially since all

algorithms under consideration are non-idling. The only remaining equation is (4.14).

Fix 4,7. We need to show that, under g, with probability 1, when g;;(t,w) > 0,

dij(t) =Y mijén(t).

TeP

By continuity of g;;(-), there exists a § > 0, such that a = miny ¢y ;14 qi5(t") > 0 if g;;(t) > 0.

Then for any large enough 7, we have
g (t') > a/2 for ¢ €[t,t+4] and rya/2> 1.

Thus,
qij(rkjt') >1 for t'e€ [Tkjt, Tk, (t + 5)]

Thus, for interval [ry;t, g, (t + 0)], the queue g;;(-) is non-empty. Hence in this interval,

departure from g;;(-) matches the amount of service it was given, that is,

dij(’l“k].t + 1) — dij(’l“k].t) = Z Tij (Sﬂ(’l“kjt + 1) — Sﬂ—('f'kjt)) . (427)
neP

By definition, ry,d; " () = dij(ry,). Hence, from (4.27) we obtain,

d:;7 (t + Tkj) — d:;7 (t) _ Z - (Sﬂ'(t + I/Tk]-) - Sﬂ(t)> (4 28)
= ij . ’

1/Tkj 7cP 1/’)"]9],

Now by letting 5 — oo, we obtain

dij(t) =Y mijdn(t).

TeP

Thus, z(-) satisfies (4.14) with probability 1 under u. Hence, we have shown that under
i, (4.12)-(4.14) are satisfied with probability 1.
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Algorithm-dependent fluid model

Next, we justify algorithm dependent fluid equations (4.19) for MWMf algorithm. For
MWMT algorithm, the switch obeys the following equations.

Se(m+1) = S,(m) if 7 f(Qm) < maxp- F(Q(m)). m € 2. (4.29)

Consider any r and ¢. By definition, ¢"(t) = Q(rt)/r. Hence, from the Condition 1 we
obtain

m- f(Q(rt)) <maxp- f(Q(rt)) = - f(q'(t)) <maxp-[f(q"(t)). (4.30)

pEP pEP

Now consider a time ¢ and the sequence {ry;}. From (4.29) and (4.30), we obtain

S (1) =™ (1) 0w f(q™) <maxp- f(g), e Ry, (4.31)
pE
Diving both sides of equation on the left in (4.31) by 4, and letting j — oo, gives the desired

equation as follows.

$»=0 if 7 f(g) <maxp- f(q).
peP

We conclude the following result.

Lemma 4. Given ¢ > 0 and T, for r large enough there exists a solution of fluid model
equations, x(-), such that

Pr(|z"(-) —z(")|r > €) < e.

4.2.3 Stability of MWMf

Now, we will use fluid model to prove stability of MWMT algorithm. In order to use fluid

model equations to prove stability, we first define notion of weak stability of fluid model.

Definition 5 (Weak Stability). The fluid model of a switch operating under a scheduling
algorithm is said to be weakly stable if for every solution of fluid model equations x(-) is such
that q(t) = [0] for all t > 0, whenever q(0) = [0].

The following theorem relates notion of weak stability with the rate-stability of algorithm.

Theorem 11. A switch operating under scheduling algorithm is rate-stable if the corresponding

fluid model is weakly stable.
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Proof. Assume that fluid model is weakly stable. Hence, given ¢(0) = [0], ¢(¢) = [0] for all
t > 0. This means that for all the solutions of fluid model equations, we have corresponding
d(t) = At from equation (4.12) for all £ > 0. Thus, there is a unique solution to fluid model
equation, given by (q(t),d(t), a(t)) = ([0], At, At) for all ¢ > 0.

Now consider the case when ¢ = 1, that is, d(1) = A. Now by Lemma 4, uniqueness of

fluid model solutions and recalling the definition of fluid scaling, we obtain that,

im 20— g

r—oo r
= A\ (4.32)

with probability 1. Restricting r to integers, we obtain that the departure process also has rate
A over discrete time, that is, the switch is rate-stable. This completes the proof of Theorem
11. ]

Now we use the Theorem 11 to prove stability of MWMTf. For this, we need to show that

fluid model is weakly stable. For this purpose, we first define the following Lyapunov function:
x
L) = F@)- 1) = Y Flay) where Pla)= [ f()dy. (4.33)
ij y=0

Though, L depends on the function f, we do not explicitly mention f in its notation. The
definition of L will be clear from the context. Now, consider the following Lemma which shows

that L is indeed a Lyapunov function of MWMf algorithm.

Lemma 5. For a switch operating under the MWMT algorithm with admissible arrival rate-

matrix X, for any fluid model solution q(t) # [0], & L(q(t)) < 0.

Proof. Recall that ¢(t) is absolutely continuous, and note that L(-) is continuous; thus the
derivative exists wherever the derivative d/dt q(t) exists, which is almost everywhere. At such

t, let
w*(f(q(t)) = max - f(q(t)).

TeP
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Now consider the following.

SL@H) = Sl O - o)l
= f(q(t)) - (A= (f(f since f(z) =0 whenever z =0 (4.34)
< cume| — ()
=1
= Zakf —w*(f(q(t))) from equation (4.19) (4.35)
< (1= A)w(f(a(t))- (4.36)

The (a) follows from the fact that admissible doubly stochastic rate-matrix A can be bounded
component-wise as A < \* ZZ; a7y, where o, € Ry, >, oy = 1. Now since g(t) # [0],
w*(f(q(t))) > 0. For admissible X, A* < 1. Hence from (4.36) we obtain £L(q(t)) < 0. This

completes the proof of Lemma 5. O

Next, consider the following Lemma which will be useful to prove weak stability of fluid

model equations under MWMf.

Lemma 6. Let f : Ry — Ry be an absolutely continuous function with f(0) = 0. Assume
that % (t) < 0 for almost every t (w.r.t. Lebesgue measure) such that f(t) > 0 and f is
differentiable at t. Then, f(t) = 0 for almost every t > 0.

Proof. For almost every t > 0, f2(t) — = 2f0 di s)ds < 0, since f(s ) “f(s) <0
a.e. in [0,¢]. Now f(0) =0 and f(t) >0 |mply that f(t) = 0 for almost every t.

Now we state the result about rate-stability of MWMT algorithm.

Theorem 12. Under any arrival process satisfying Assumption 1 with admissible rate-matrix

A, the switch operating under MWMT algorithm is rate-stable.

Proof. From Theorem 11, it is sufficient to prove weak stability of fluid model equations in
order to prove rate-stability of the switch operating under MWMf. Lemmas 5 and 6 imply
that L(q(t)) = 0 for almost every ¢ if ¢(0) = 0. By definition of L(-), this immediately implies
that ¢(t) = 0 for almost every ¢ when ¢(0) = 0. That is, the switch is weakly stable under
MWMf algorithm. This completes the proof of Theorem 12. O
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4.3 Equilibrium Analysis of Fluid Model

In the previous section, we obtained fluid model corresponding to a switch operating under
MWMT algorithm. We used the fluid model solutions to prove rate stability of MWMTf algo-
rithms under arrival process when rate-matrix is admissible. Now, we study the fluid model

solutions when some of the ports are critically loaded, that is,
Hi « No=1}U{j : A; =1} >1

In particular, we are interested in characterizing invariant state of fluid model equations, for-

mally defined as follows.

Definition 6 (Invariant State.). Consider a switch operating under an algorithm A with arrival
rate matrix \. We call a state p € M, as an invariant if the following holds for all fluid model

solutions of such a switch:
q(t) =p = q(s)=p, Vs>1.

Recall that when X is admissible, i.e. A* < 1, the invariant state is ¢(#) = [0] as shown
in Theorem 12. In this section, when one or more ports of switch are critically loaded, we
seek to obtain (i) characterization of invariant states of fluid model equations of a switch, and
(ii) time taken for the convergence to invariant states, starting from any initial state. In this
section, we obtain answers to both (i) and (ii) under MWMf algorithm. We find that a state
g is an invariant state if and only if it is the solution to a certain optimization problem whose

the input data the set of workloads ¢;. and q.; of the initial state.

4.3.1 Preliminary Results about Matchings

Recall that the Birkhoff-von Neumann theorem says that the set of doubly stochastic
matrices S forms a convex set, with the permutation matrices IP as extreme points. Thus any

doubly stochastic matrix a can be written as

a = Z%w where each v, >0 and Z'yﬂ =1.
nelP ™

Furthermore, if the entries of a are all rational, then the v, may be chosen to be rational.
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Many of our results concern maximum weight matchings. Given a weight matrix ¢ € M *,
let M(q) be the set of maximum weight matchings, and let M (q) be the matrix which indicates

which entries are involved in a maximum weight matching:

1 if m; =1 for some m € M(q)
M(Q)ij =
0 otherwise

The set M(q) exhibits an important closure property:
Lemma 7. Let m € P, and suppose M (q)i; = 1 whenever mj; = 1. Then m € M(q).

Proof. Define the matrix a by

a:Zp.

pEM(q)
It is easy to see that a — w has non-negative entries, and that its row and column sums are all

equal, so by the Birkhoff-von Neuman decomposition

a=Tm+ Z%p
peP
where each v, > 0 and }_ v, = [M(q) — 1].
Let m be the weight of a maximum weight matching. By construction of a, ¢-a = | M(q)|m.
On the other hand, by maximality, it must be that ¢- 7 < m and ¢ (a — w) < |M(q) — 1|m.
If either of these inequalities are strict we get that |[M(q)|m < |M(q)|m, a contradiction.
Hence ¢- ™ =m, and so m € M(q). O

Let X be doubly sub-stochastic. It can be augmented to form a doubly stochastic matrix

A+ «, where the matrix « satisfies
Qi > 0 if X.<1 and )\.j < 1.

We will call such an « the matrix of arrival rates that is complementary to A. (One way
to obtain such an « is to start with a;; = € for the entries specified above, where ¢ =
n~tmin;(1 — A\;.) Aminj(1 — X;), and then to add the ‘deficit’ amount of load according to

the transport algorithm.)

*Here g denotes any positive weight matrix and not necessarily the queue-size matrix.
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Lemma 8. For given X, let q,r € M be such that q;; = r;; = 0 whenever \;; = 0. Let,
ri. > Q. if Ai.=1 and T4 > q-5 if >‘-j = 1, v 7,7

Then there exists a doubly stochastic matrix o € S, a positive matrix e € M., and a duration
t > 0 such that
r=q+tA—o)+e. (4.37)

Suppose that in addition
ri. 2 q. and rj>q; Vi,

Then for any augmentation A\* of X, there exist o, t and € as above such that

r=q+t\" —0)+e (4.38)

Proof. We will first prove (4.37). The proof of (4.38) is very similar.

Let p = A—0d(r—gq) for sufficiently small § > 0. We will show that p is doubly sub-stochastic

matrix with non-negative entries.

First, we'll show that all entries of p are non-negative, that is, p;; > 0. Now, if X;; > 0,
then by choosing 0 small enough, p;; can be made positive; else if A;; = 0 then trivially by

constraints on g, 7, we obtain p;; = 0. Thus, p € M, .

Next, we show that p is doubly stochastic, that is, p;. <1, p.; <1, Vi,j.. Consider p;.:
either A;. < 1, in which case p;. < 1 for sufficiently small §; or A;. = 1, in which case r;. > ¢;.

and p;. < 1. Similarly, p; <1, V 5.

Now, p is doubly sub-stochastic non-negative matrix. Hence, there exists an augmentation

of p, i.e. there exists a doubly stochastic matrix ¢ for which p < o component-wise. Then
g+6'A=-0)<q+d'A-p) =1

This proves (4.37).

The proof of (4.38) is similar, with p = AT — §(r — ¢). It makes use of the fact that
;=0 implies A;; = 0. O
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4.3.2 The Basic Maximum Weight Matching

We will start with some analysis of the equilibrium states of the basic Maximum Weight
Matching algorithm, MWM-1. We will only give partial results, because this algorithm is fully
described in section 4.3.3 as a special case of the generalized MWMT algorithm. Nonetheless,
it is useful to build up some intuition by working with a special case—we have found that
the results described in this section are intuitively appealing, even though they are in some
sense restrictive. Additionally, the results of this section highlight some of the interesting
combinatorial characterization of invariant state of the MWM-1 algorithm. In the rest of the
paper, whenever we use MWM, we mean MWM-1 unless specified.

Consider a single server serving many queues. The server decides which queue to serve
every time. Under a work conserving policy when the arrival rate is no more than the service
rate, the net work does not increase. Further, under the longest queue first policy, the size
of the longest queue does not increase when arrivals and services are deterministic (i.e. on
fluid scale). Based on this, in the context of a switch, one would expect the weight of
maximum weight matching to be non-increasing under admissible deterministic arrivals. Next,
we present an example (prompted by discussions with Frank Kelly and Mark Walters) that
contradicts this expectation. This should caution us against making any strong claims about
optimality of MWM algorithm.

Example 6. Let the matrix of arrival rates be

(where blank entries are to be read as 0). Suppose that at some point in time the system

reaches the state
6 11 11 11 11

1 9
qg=1 11 9
11 9
11 9
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The weight of the maximum-weight matching here is m(q) = 49. There are four matchings
which have this weight. One can show that the MWM algorithm will serve these four, in equal

proportion in this example, giving service matrix

1 1 11 4 -1 -1 -1 -1
. 1 3 -1 1
= _ d N—o=—1| —
o 2 1 3 an o 20 1 1
1 3 —1 1
1 3 -1 1

which will be applied until the system reaches the state

10 10 10 10 10
10 10
r=1 10 10
10 10
10 10

The maximum-weight matching here is m(r) = 50. In other words, under the operation of
MWM, the weight of the maximum-weight matching has increased.
One can also show that, once the system has reached state r, it will remain in that state

thereafter.

The key idea in this section is of invariant states. Consider a switch with doubly sub-

stochastic arrival rates \.

Theorem 13. Suppose A > 0 in each component. If q is an invariant state then it is the

unique solution to the linear program MWM?*-LP(q), which is to

minimize m(r) = WAXT -7 OVerT € M,
(S

such that r;. >q;. if ;. =1, and
r.j > q-j If)\] =1
Conversely, if g solves MWM*-LP(q) then it is an invariant state.

(This restriction on X is necessary. Example 6 is a case where some component of X is

equal to zero, and the system does not minimize the maximum weight matching. In cases
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like this, the results that follow are not appropriate. Section 4.3.3 deals with this in a more
sophisticated way.)

The intuition behind the result is as follows. The MWM algorithm only offers service to
matchings which have maximum weight. If this includes only some of the queues, then those
queues have more service than arrivals, so they decrease, which pulls down m(q). This explains
the objective function. If some row i has A;. = 1 then the total service rate for that row is
equal to the total arrival rate, so g;., the workload at input 4, can never decrease, it can only
increase (but, subject to this, the workload can be rearranged among the queues in row 7).
Otherwise the total service rate is greater than the total arrival rate, which means that the
workload can also decrease. This explains the constraints.

In proving the theorem, it is helpful to use a more explicit characterization of invariant

states.
Definition 7 (MWM™-endstate.). We say that q is an MWM*-endstate if

1. Every queue is involved in some maximum weight matching, i.e. M(q);; =1 for all i, j,
ie. M(q) =P.

2. If \i. <1andX; <1 then g;; = 0.
Lemma 9. /f X\ > 0, then q is an invariant state if and only if q is an MWNM™-endstate.

Proof. The Theorem 15 relates invariant state and endstate in the context of general MWMf
algorithm. Taking f(x) = =, and restricting to the case of A > 0, Theorem 15 immediately

implies the Lemma. U
Now we are ready to prove the Theorem 13.

Proof of Theorem 13. Lemma 10 shows that if ¢ solves MWM*-LP(r) then q satisfies both
requirements of an endstate. Hence Lemma 9 implies the converse of Theorem 13, i.e. if ¢
is a solution of MWM*-LP(r) for some r, then ¢ is an invariant state. Next, we proceed to
prove that if ¢ is an invariant state then it satisfies MWM*-LP(q).

Now suppose ¢ is an endstate and consider MWM™*-LP(q). First, a solution exists, since
the objective is a continuous function, and we can take the domain to be contained in the
bounded set {r : r;; < m(q)}.
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Now let r be any solution to MWM*-LP(q), r # ¢. By Lemma 11 given below, r;. > ¢;.

and r.; > ¢ for all 4 and j. Hence by Lemma 8 we can write
r=q+t\t —o)+e¢

for some doubly stochastic o, where ¢t > 0 and either A™ # o or € > 0 in some component.

If At # o, then by Lemma 12 there is some matching 7 with 7- (AT —a) > 0, which implies
that w-r > - ¢. By assumption, g is an endstate, and so all matchings (and matching = in
particular) have maximum weight for ¢, thus m(r) > m(q), which contradicts the optimality
of r. Otherwise AT = ¢ and ¢ > 0 in some component, in which case it is easy to see that
m(r) > m(q), the same contradiction.

Thus r = q. Therefore ¢ is the unique solution to MWM™-LP(q). ]

Lemma 10. Suppose q solves MWM*-LP(r) for some r. Then all matchings are maximum

weight matchings for q; furthermore, if ;. <1 and X\.; <1 then g;; = 0.

Proof. Suppose that not all matchings are maximum weight matchings for ¢. By Lemma 7,
there is some queue which is not part of any maximum weight matching. Without loss of

generality, suppose it is qi1, i.e. suppose M(q)11 = 0. Define the matrix

e(n—1) | —¢ —€

—£

e(n—1)"1

and let
q =(q+0)"

Since all the row and column sums of § are equal to 0, ¢’ is feasible for MWM*-LP(r). We
will now argue that m(q') is strictly less than m(q), contradicting the optimality of q.
Consider any m which is a maximum weight matching for ¢. Suppose that m;; = m; = 1,
i.e. that = matches input port ¢ to output port 1, and input port 1 to output port j. By
assumption, gi1 is not part of any maximum weight matching, so 2 # 1 and j # 1. Therefore
7 must comprise g;; from the first column, ¢;; from the first row, and n — 2 queues from the

remaining rows and columns. We will argue below that at least one of ¢;; and ¢, is strictly
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positive. If this is so, (and if ¢ is sufficiently small), we find that

£
7rq'§7rq+(n72)mf€

<m-q.

(The inequality comes from the fact that one of g;; and ¢i1; may be 0.) Therefore m(q') <
m(q).

It remains to show that at least one of ¢;; and ¢y is strictly positive. Suppose not. Consider
the matching p which is like m except that p;1 = p;; = 1 and p;; = p1; = 0. In words, p is like
7 except that it maps input 1 to output 1, and input ¢ to output 5. The weight of matching
pis

p-q=m-q— (Qi1+Q1j) + (QI1+Qij) > T q.
(The inequality comes from the fact that the two queues g;; and ¢1; are both 0.) Therefore
g11 is part of a maximum weight matching, which contradicts our premise. Thus it cannot be
that both the queues are 0.

Now, we will show that if A;. <1 and A; <1 then g;; = 0. Suppose not. Let q' be like g,
but with q;j = 0. Then ¢ is feasible for MWM*-LP(r), and since no queues have increased,
m(q") <m(q). If m(q¢") < m(q) then ¢ is not optimal, a contradiction. If m(q’) = m(q), then
q' also solves MWM™-LP(r), so by the above all matchings in ¢’ have maximal weight. And
yet there is some matching 7 (any matching involving g;; will do) for which 7 - ¢" < m(q'), a

contradiction. Thus ¢;; = 0. ]

Note that we can choose the matrix §, which leads to a decrease in the maximum weight,
as a function of only ¢. Now, if we knew A, we could choose a service matrix o such that
A — o < 4, and hence achieve a strict decrease in m(q) (unless ¢ is already an endstate). This
means that m(q) is a Lyapunov function for some scheduling algorithm (though probably not

for any online scheduling algorithm).

Lemma 11. Let q be an endstate, and let r solve MWM*-LP(q). Thenri. > q;. and r.j > q.;
for all i and j (not just for the critically loaded ports).

Proof. Without loss of generality, assume there are critical ports. By assumption ¢ is an

endstate, and by Lemma 10 r is too. The two requirements of an endstate imply that any
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endstate s must be of the form

rT1+yr - oty | Y1 N

. 1 +Yr '+ T T YR | YR YR
'fI/'l .« e ',I"C

T P ‘/EC 0

We have arranged the rows and columns so that the first R input ports and the first C output
ports are critical. To see that it must have this form, consider a permutation « for which
mij = Tk = 1 where input port ¢ and output port j are both subcritical, and consider also the
permutation p which is like © but with p;; = p; = 1 instead of m;; = m; = 1. Since s is an

endstate, s;; = 0, and both p and 7 are maximum weight matchings, hence
Sij + Sgi = Skl = Sil + Skj-
By considering various possibilities for £ and [ we arrive at the above general form for s.

Let the terms in this representative matrix be x¢,... and y,... for r, and uq,... and

v1,... forq. Let z =xz1 + -+ + z¢c etc.

Suppose the result of the lemma is false. Then (without loss of generality) v > 2. What

does this mean for y?

First, write down the equations which come from the fact that r is feasible for MWM™-
LP(q):

(n—R)x + (Rx+ Cy) > (n — R)u + (Ru + Cv)
(n—C)y+ (Rz+ Cy) > (n — C)v+ (Ru+ Cv)

Rearranging, we obtain

Rx + Cy > Ru+ Cv

Rr+ny>Ru+nv — y>wv
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and hence

(n—C)y+ (Rz+ Cy) > (n — C)v+ (Ru+ Cv)

R R

Zfr—l-mh > Z?L-FTLW.

1=1 1=1

Thus there is some i < R for which
T+ ny; > u+ nw; (4.39)

and in particular
yi >n Yu—x) 4+ v; >0, (4.40)

Consider a new state ' which is like r except that

Yi=yi ¢

for ¢ > 0 sufficiently small. By (4.39) and (4.40), r’ is feasible for MWM*-LP(q). Certainly
m(r') < m(r), since e > 0; but by optimality of =, m(r') > m(r); hence m(r') = m(r), so
r' is optimal. Since 7' is optimal, by Lemma 10 all matchings in ' have maximum weight.
However there is some matching = (any matching for which m; (c+1) = 1 will do) which had

maximum weight for r, but for which
m-r' <m-r=m(r)=mr).

This contradicts the fact that all matchings in 7/ have maximum weight. So it cannot be that
u>x.
Applying the same argument to columns, it cannot be that » > y. This completes the

proof. O

Lemma 12. Let € € S(0). If ¢ is not identically zero, there exists some permutation 7 such
that w-€ > 0.

Proof. Suppose not. Then w-¢ <0 for all «.
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Suppose that w-e = 0 for all 7. Since e € S(0), it has a Birkhoff-von Neuman decomposition

6:nyﬂ7r where nyﬂzo.
m ™

Therefore
5-622%77-520,

which contradicts the assumption that e is not identically zero.

Therefore - ¢ < 0 for some w. Now consider the family of permutations =% defined

by 7¥(i) = w(i) + £ mod n. Certainly 7 = 7*

. and it is easy to see that the matrix 7 =
7%+ ...+ 7% ! is identically equal to 1. Thus 7-¢ = 0. Since 7#°- e < 0 by assumption, it

must be that 7% - & > 0 for some k. O

433 MWMf

In this section we will prove results about critically loaded fluid model solutions of the
MWMTf algorithm. We will exhibit a Lyapunov function for the system state, and we will
characterize invariant states as the solution to an optimization problem whose objective is the
Lyapunov function.

First recall some notation. The weight function f is strictly increasing real valued function
with f(0) = 0, satisfying Condition 1. Let ¢ € M, be a state of the system. Let M(f(q)) be
the set of maximum weight matches on f(g), and let M (f(q)) be the matrix which indicates
which queues are involved in some maximum weight matching. Let A be the doubly sub-

stochastic matrix of arrival rates. Let m(f(q)) be weight of the maximum weight matching,

m(f(q)) = max - f(q).

TeP

Let o be a complementary arrival matrix, that is, a matrix « € M, such that AT = XA+« is
doubly stochastic, and furthermore «;; > 0 whenever A;. V A; < 1. It must be that «;; = 0
whenever A;. = 1 or A; = 1. For MWMTf algorithm we again use the following Lyapunov

function.

L(g)=F(q)-1= ZF((]”) where F(z) = /Tof(y) dy. (4.41)
i Jy=

Though, L depends on the function f, we do not explicitly mention f in its notation. The
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definition of L will be clear from the context. Define the convex optimization problem MWMf-
CP(q) to be

minimize L(r) over r € My
such that r;,. > ¢q;. if A =1
r;>qj fA;=1
’I“,jj:O If)\U:O
Note that the objective function is strictly convex as f(-) is strictly increasing function on R, .

Define
A o
B(q) ={reM; : r; < q., Vij}

It is easy to see that we can take the domain of r to be contained B(q) for the purpose of
optimization. By definition, B(q) is bounded and hence the optimization problem has a unique
solution. Thus, optimization problem MWMf-CP(q) can be seen as a map from ¢ € M, to
ML, . This leads to the following definition of Lifting Map.

Definition 8 (Lifting Map). The lifting map Af : M, — M., maps q to the unique solution
of optimization problem MWMTf-CP(q), denoted by Af(q).

Next, we state the characterization of invariant state under MWMTf algorithm and its

relation to the Lyapunov function L.

Theorem 14. For a switch operating under the MWMTF algorithm,
(a) For any fluid model solution q(t), & L(q(t)) <0,
(b) q is an invariant state if and only if it solves MWMFf-CP(q), and

(b) q(t) is an invariant state if and only if% L(q(t)) = 0.

Proof. We present the proof of the (a) first, followed by (b) and (c).
Proof of (a): & L(q(t)) < 0. Recall that g(t) is absolutely continuous, and note that L(:) is

continuous; thus the derivative exists wherever the derivative d/dt q(t) exists, which is almost
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everywhere. At such points,

q) - (A —o) since f(z) = 0 whenever z =0
since A < AT (4.42)

= = =
N—
—
>
+
\
Q
N—

q) - AT —m(f(q)) by the fluid model equation (4.19)

=Y . f(q)-m—m(f(q)) by decomposition of A*

<m(f(q)) — m(f(q)) since m(f(q)) is maximum weight (4.43)
0

Proof of (b): q invariant < q solves MWMTf-CP(q).

(<) Suppose that g solves MWMf-CP(q). Let ¢(t) be any fluid model solution with ¢(0) = q.
Now d/dt L(q(t)) <0 by (a). Now, we claim that g(t) is a feasible solution to MWMf-CP(q)
for all t. If this is so then d/dt L(q(t)) = 0 by optimality of ¢, and each ¢(#) is also an optimal
solution. But the optimum is unique. Hence ¢(t) = ¢ for all ¢, i.e. ¢ is invariant.

We still need to verify that ¢(¢) is feasible for all ¢. According to the fluid equations,
. #)=0
i(t) = (A= o () 7O

If X\;, =1 then
¢i.(t) > Ni. — 0i.(t) = 0.

Thus, ¢;.(t) > ¢:.(0); similarly for g.;(¢). Also, if A;; = 0 then
Gij(t) <0
and so (as ¢;; = 0) g;;(t) = 0. Thus ¢(t) is a feasible solution to MWMf-CP(q).

(=) Now suppose that ¢ is an invariant state. Let ¢(0) = ¢. Then, d/dt L(q(t)) = 0. Hence
the (4.42) and (4.43) must be equalities, which implies that

fl@)- A =m(f(q)).

Now let » be any feasible solution to MWMTf-CP(q) and suppose r # ¢q. By Lemma 8, we can
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write

r=1"4+¢e where ' =q+t(A— o).

where o is doubly stochastic, ¢ > 0 and € > 0; and either A # o or ¢ > 0 in some component.

Consider the family of states
s(u) =q+u(A—o0), wuel0t

giving s(0) = g and s(t) = r'. It is the case that

— flg)-o by (4.33)
f(q@)) —m(f(q)) by decomposing o into permutations

Now, L(q(u)) is strictly convex as a function of u, so if A # o then L(r') = L(q(t)) >
L(q(0)) = L(g), and since L is increasing, L(r) = L(r' +¢) > L(q). Otherwise A = ¢ and
e > 0 in some component, so again L(r) = L(r' +¢) > L(q). We have shown that if r # ¢
then m(f(r)) > m(f(q)), i.e. that ¢ solves MWMf-CP(q).

Proof of (c): q(t) is not invariant < & L(q(t)) < 0.

(<) This is equivalent to the statement that if ¢(¢) is invariant then % L(t) = 0, which is true
by definition of invariant state.

(=) This is equivalent to the statement that ¢ 2 q(t) is not invariant and the derivative is
equal to zero. As we argued above, f(q)- A =m(f(q)) and hence ¢ solves MWMf-CP(q). As
we argued in (a), if ¢ solves MWM{f-CP(q) then it is an invariant state. This completes the
proof of (c).

Thus, we have proved (a)-(c) as claimed above. ]

Next we present an alternative characterization of invariant states. We define MWMf-

endstate as follows.
Definition 9 (MWMf-endstate.). A state q is an MWMf-endstate if

1. M(f(q))ij =1 if Xij >0,
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2. M(f(q))ij =1 ifboth \;. <1 and \; <1,
3. g;; =0 if both A <1 and X; < 1.

Note that, for A > 0 in all components and f(z) = z, the MWMf-endstate is the same
as MWM*-endstate as defined in the previous section. Next, we state the result that relates

MWMf-endstate and an invariant state of MWMf algorithm.

Theorem 15. A state q is an MWMf-endstate if and only if it is an invariant state for MWMf

algorithm.

Proof. From Theorem 14, ¢ is invariant if and only if for ¢(t) = g, % L(q(t)) = 0. Hence
from (4.42) and (4.43), ¢ is invariant if and only if f(q) - A = m(f(q)). Hence it is sufficient
to prove that ¢ is an MWNMf-endstate if and only if f(q) - A =m(f(q)).

q is an MWMf-endstate = f(q) - A = m(f(q)). First write

where as before o is complementary matrix and AT is doubly stochastic, meaning that it has
a decomposition

AT = Z%ﬂr where Y7, = 1 and each , > 0.
meP

By property (3) of MWMf-endstate and the property of « that a;; > 0 if and only if A;, <1
and X < 1 yields f(g) -« = 0. Hence, we are only required to show f(q) - At = m(f(q)) in
order to prove that ¢ is invariant.

Consider At If )\j'] > 0 then there are two possibilities:
1. Nj= Af’] > 0 then by property (1) of an MWMf-endstate, M (f(q))i; = 1.
2. i < >\7+] then «;; > 0 in which case M(f(q))i; = 1 by property (2) of MWMf-endstate.

Thus, A5 > 0 implies M (f(q))i; = 1. Now in the decomposition of A*, if 4 > 0 then A, > 0
whenever m;; = 1 and so by the above M(g);; = 1. Thus, if v, > 0 then = € M(f(q)) by
Lemma 7, i.e. f(q)-7=m(f(q)). Therefore

Fl@) - AT ="y f(q) -7 =m(f(q)).

TeP

Thus, if ¢ is an MWMf-endstate then f(q) - A = m(f(q)).
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q is not an MWMf-endstate = f(q) - A < m(f(q)). If ¢ is not an MWMf-endstate then one
of the three properties of MVWMf-endstate must fail.

1. If property (1) of MWMf-endstate fails, then M(f(q))i; = 0 and X;; > 0 for some i, 5.
Thus >\7+] > 0, and so in the decomposition of A* there must be some © ¢ M(f(q))
with 7, > 0. Since this 7 is not a maximum weight matching, f(q) -7 < m(f(q)), and

SO

Fla)- X< f(q)- A <m(f(q)).

2. If property (2) of MWMf-endstate fails, then M (f(g))i; = 0 and «;; > 0 for some i, 5.

Thus, )\j'j > 0 with the same consequences as above.

3. If property (3) of MWMf-endstate fails, then ¢;; > 0 and «a;; > 0 for some i,j. Thus
f(q)-a>0. Also f(q)- AT < m(f(q)), from the decomposition of A™ and the fact that
f(q) - ™ < m(f(q)) for all . Hence

fla) - A<m(f(q)) — flq)-a <m(f(q))

From above, if ¢ is not an MWMf-endstate then f(q) - A < m(f(q)). O

The last result of this section concerns the speed of convergence. Its relevance will not

become clear until we come to prove a heavy traffic limit theorem. First some notation. Define
D(q) ={r e My : L(r) < L(q)}.

Note that if q(0) = ¢, then by Theorem 14(a), ¢(t) € D(q). Given ¢(0) = g, Theorem 14
implies that ¢(¢) converges to an invariant state. Let 1 € M, denote the matrix with all
entries 1. Then D(1) is a closed and bounded (and hence compact) set in M. Consider the

following definitions:
I={qeD1): Al(q) =4},

and
I(0)={qeD1):3IreTst |r—q|<d}

Note that both Z and Z(§) N D(1) are closed and bounded set. Further, Z as well as Z(§)

are strictly contained inside D(1) for small enough ¢. Now consider a function g : Ml — R,
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where

g9(q) = m(f(q)) — flq) - X\

Note that, given f and A, g is a function on My and g(q) = —% L(q(t)) for q(t) = q. Further,
g(q) > 0 for ¢ € Z(6)°ND(1) from Theorem 14. Now g is a function and hence it achieves
infimum inside the closed and bounded set Z(6)“ND(1), which is strictly positive. Let n(d) > 0
be this infimum of g. Finally, define

T(e) = inf{t > 0: q(0) € D(1); q(t) — A (q(t)) < €}.
Now we state the following result.

Lemma 13. For any given e > 0, there exists a 6(e) > 0 such that

(4.44)

Proof. Recall definition Af(-). The A(-) is uniformly on a bounded set D(1). Hence, for any
€ > 0, there exists 0 < §(e) < § such that for g1, ¢2 € D(1),

lor — @l <d(0) = A7 (@) - A (@)] < 5.
Consider any ¢ € Z(d(€)). From definition, there exists an r» € Z such that
lgn =7l < d(e) = [|A (q1) - AT(r)]| < e/2. (4.45)
But A/(r) =1 and §(€) < § by definition. Hence,
lgn — Al (@)l] < e (4.46)

The (4.46) implies that T'(¢, ¢) is bounded above by the time it takes for ¢(t) to reach Z(d(e))
given ¢(0) = q. Now if ¢ € Z(d(e)) then trivially (4.44) is satisfies. If ¢ ¢ Z(d(¢)), then for all
t such that q(¢) ¢ Z(d(e)),

d

- Lla(1) = —g(a(t)) < —n(5(e)).

Since L(q(t)) < L(q) < L(1), we obtain the (4.45). O
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4.4 Heavy Traffic and State Space Collapse

In this section state our result of State Space Collapse of IQ Switch operating under
MWMf algorithm under Heavy Traffic regime. We first define the Heavy Traffic scaling and

some required notations.

4.4.1 Heavy Traffic Scaling

Consider a sequence of I1Q switch systems, indexed by r € Ry, satisfying Assumptions 1

and 2. The arrival rate matrix of r** system, A", is

1
o= M- -, (4.47)
T

where ® € ML, is a fixed constant matrix. The (4.47) suggests that,

lim A" = A,
r—00

Additionally, A is such that one or more of 2n ports (inputs and outputs) are critically loaded,
i.e.

{i s M=11U{ : A, =1} # 0. (4.48)

Let X"(m), m € Z, be the tuple describing dynamics of the r*" system. Under Heavy Traffic

scaling, our interest is in studying the following scaled quantity.

i) = XT(T’“Z”, LER,, (4.49)

where, as before, for any t € Ry,
AT(H) = (1=t 4+ [T (1)) + (& = [£)A7([£] +1).
Let z"(-) denote the fluid scaled quantity of r*" system, as defined in (4.20). Then

i) = a"(rt). (4.50)



4.4. HEAVY TRAFFIC AND STATE SPACE COLLAPSE 97

In the above notation, we ignore particular randomness w. When required we will use notation
" (t, w).

For a matrix ¢ € ML, define workload vector w(q) as

w(g) = [q1. ... An-1). 91 -+ 4 (n—1) q.]-

Essentially, the components of w(g) to n — 1 row-sum, n. — 1 column-sum and net sum for
the n x m matrix ¢. Intuitively, if g is a queue-size matrix for a switch, then the components
of the work-load vector are: work at each of the n — 1 input ports, work at each of the n — 1
output ports and the total work in the switch.

Now we obtain characterization of the State Space Collapse under MWMTf algorithm. The

following theorem makes the precise statement.

Theorem 16. Consider a family of IQ switch systems, indexed by r € Ry, satisfying Assump-
tion 1-2, equation (4.48) and operating under the MWMTf scheduling algorithm satisfying
Condition 1. Let £"(-), r € Ry be defined as in (4.49). Then for any finite T > 0,

" (-) = AT (G ()7
g ()T V1

— 0, in probability asr — oo. (4.51)

Here, | - |7 denotes sup-norm of a function defined on [0,T].

The Theorem 16 motivates the following definition of State Space Collapse space of
MWMf algorithms.

Definition 10 (State Space Collapse Space). Consider a switch of size n operating under
MWMTF algorithm under X\ such that all input and output ports are critically loaded. We call
q € M. an invariant state iff ¢ = Al (q). Corresponding to an invariant state q, the workload
vector w(q) = [q1.,-- - qn-13G.1,---,qn—1;q.], is called feasible workload vector. The space
of all feasible workload (C Rﬁ_""l) is called the State Space Collapse Space of MWMTf algorithm
and it is denoted by SSC(n, MWMF).

Theorem 16, as stated above, obtains weak state space collapse (see Bramson [1998]
for definition) for all MWMF algorithm. The state space collapse is called weak, because the
1" (-) — AT(G"(-))|7 goes to 0 on the scale of (|¢"(-)|7 V 1). Hence, unless shown otherwise,
if |g"(-)|7 grow to oo, then it is not possible to conclude from Theorem 16 that the state of

the limiting ¢"(-) lives in the state space collapse space. As we shall see later, this property
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becomes crucial in obtaining delay optimal algorithm. Motivated by this, we state the following
result for MWM-a algorithms.

Theorem 17. Consider a family of IQ switch systems, indexed by r € Ry. Let the arrival
process be Bernoulli 11D in addition to satisfying Assumption 1-2 and equation (4.48). Further,
the operates under MWM-« scheduling algorithm for « € Ry.. Let z"(-), r € Ry be defined
as in (4.49). Then for any finite T > 0,

q'() - A@()| = 0, inprobability asr — oc. (4.52)

4.42 Proof of Theorem 16 on Weak State Space Collapse

To prove Theorem 16, we first establish relation between heavy traffic scaling of system
and fluid scaling of system. Then we use results of section 4.2 about the equilibrium behavior

of critically loaded fluid model equations to obtain the state space collapse characterization.

Heavy Traffic and Fluid Models. \WWe wish to study the limiting process Z(-) over some finite
time interval [0,T]. For the r'* system (r € Ry ), the heavy traffic scaled version Z"(-) is

related to the fluid scaled version z"(-) as
" (t) = 2" (rt).

Hence to study the z"(-) on interval [0,T], we define the following scaled system: for m =
0,...,[rT]
"™ (t) = (a""(2), d"(t), ¢ (2), sV (E)),

where

A" (tzp g +rm) — A" (rm)

) = i (4.53)
I - D" (t2r.m +:;n)DT(Tm) (4.54)
oy = S +;«rkisr(rm> (4.55)
sy = LEmtrm) (4.56)

Zr,m
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and
Zrm = |Q"(rm)|Vr. (4.57)

To study the z"(-) over finite interval [0, 7], that is, to study the original system X(-) over
time interval [0, 72T, we study z™™(-) over a finite interval [0, L], L. > 1, for all m < [rT] as
this range covers the whole interval [0,72T]. The 2"™(-) is scaled like fluid scaling. We wish
to show that any limit point of z"™(-) as r 1 oo obeys fluid model equations (4.12)-(4.14)
and (4.19). Now since A" — X and for every € Ry, r*" system satisfies Assumption 1, we
obtain

lim o™ (t) = At, almost surely. (4.58)

T—00

Given (4.58) and noting that z,,, > r, it is easy to check that z™™(:) satisfies equations
(4.29)-(4.31). This leads to the result similar to Lemma 4.

Lemma 14. Given ¢ > (0 and L, for large enough r there exists a solution of fluid model

equations, x™(-), such that
Pr(jz"(-) = z™(-)|7 > €) <.
Next we state useful properties of ™™ (-) as follows.

Lemma 15. Given e > 0, L and T, for any m < rT let " (-) be one of the limit of z"™(-).
Then for large enough r and T'(e) < t < L,

Pr(jg"™(t) — AT (¢"™ (1)) > 3¢) < e (4.59)
Further, under Assumption 2,
Pr(lg"() = A ™)L > 3e) < e (4.60)

Proof. We first prove (4.59). From continuity of Af, for € > 0 there exists §(¢) > 0 such
that for any ¢1,q2 < L x 1,

a1 — a2l <O(e) = A (@) — D (a2) < e (4.61)
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From Lemma 14, for r large enough there exists a solution to fluid model equations, ¢"(-),
so that
Pr(l¢"™(-) — ¢"(-,w)|r, > min{e,d(e)}) < e (4.62)
Now, by definition ¢"™(0) < 1 and hence ¢ (0) < 1. Hence by Lemma 13, for t > T'(e),
g™ (1) - A (@) < e (4.63)
From (4.62) and (4.63) we obtain that for ¢ > T'(e),
Pr(lg"™(t) = AT (g™ (1)) > 2¢) < e (4.64)

Combining (4.61), (4.62) and (4.64), we can obtain (4.59).
Next, we prove (4.60). From Assumption 2, the system starts empty, that is, ¢"*(0) =
AT(g™(0)) = 0. Hence, from (4.59) we trivially obtain (4.60).
O

Towards The Completion of Proof. Now, we use properties of ™™ (-) to study Z"(-) and obtain
the proof of Theorem 16. We first state the following Lemma which is a direct consequence

of Lemma 15.

Lemma 16. Fixe >0, L and T. Forr € Ry and m < |rt], define y, ,, = 2., /7. Then, for

large enough r

Pr(|g"(t) — A (1)) > Beyrm) < € (4.65)
for
yr,mT(e) +m <t< Lyy m +m
T T

Further, under Assumption 2,
Pr(lg"(-) = AT G ()17 > Byroe) < € (4.66)

where L = Ly, o/r.
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Proof. The proof follows from Lemma 15. From definition

m I, (tyrm+m
q""(t) = q (y ) (4.67)

Yrm r

The Condition 1 regarding weight function f(-) and the structure of the optimization problem
AT (-) implies

Al(ag) = aAlq, forany aeRy. (4.68)

Now the statement of Lemma 16 follows from (4.67), (4.68) and Lemma 15. [

Next, we use Lipschitz property of ¢""™(-) to obtain a bound on the rate at which y, ,,, can

increase.

Lemma 17. Forr € Ry and m < |rT|
Yrmtl < 2Ypm. (4.69)
Proof. From definition (see (4.57)),

Yrom = Zr,m/'r > 1.
By the property of a switch that at most one arrival can happen to a queue in a given time
slot, we obtain the following.

"(rm+r
yr,m—l—l — le

IN

(4.70)

IN
DN
<

=

5
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For a given ¢t € [0,T] and r € R, define m,(¢) as follows:

L
m<t<M}_ (@.71)

m,(t) = arg min{ " "

m>0

Next we obtain an estimate on m,.(t).

r

Lemma 18. Fixe > 0,L, andT and § < 1. Then for large enough r and t € [M‘yT’O,T},

5Lyr,mr (t)

rt —my(t) > 5

(4.72)

Proof. Fort € [Mrﬂ, %} by definition m, () = 0, which satisfies (4.72). For t > Ly, o/,
it follows that m,(¢) > 1. By definition of m,(t), we obtain

rt — (mr(t) - 1) > Lyr,mr(t)f]' (473)
From Lemma 17,
Yr,m, (1) < 2yr,mr(t)71- (474)

From (4.73) and (4.74), we obtain

Lyr,mr (t)

rt —m,(t) > 5

(4.75)
This completes the proof of Lemma 18. O

Now we are ready to complete the proof of Theorem 16.

Proof. (Theorem 16.) Let T be given. Then for any € > 0, choose L satisfying

2T
L2
J
From Lemma 18 and given that L > 27:5(5) for all t € [M'Z““,T},
0L
rtom(t) > el
> T(E)Yr.m, (1)- (4.76)
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From definition
"NVl > ypm, Vm. (4.77)
From (4.76),(4.77) and Lemma 16 and we obtain
Pr(|q"(8) = AT (G (1)) > 3e(ld" () r V1)) < e (4.78)

for t € [0Ly,o/r,T]. Further, when Assumption 2 holds, by Lemma 16 the (4.78) holds for
te [0, Lyr““] Now, [0, Ly, o/r]U[d Ly, /7, T] = [0,T]. This completes the proof of Theorem
16.

O

4.43 Proof of Theorem 17: on Strong State Space Collapse

Now, we prove Theorem 17 using some results of Chapter 2 and Theorem 16. Now,
in order to prove Theorem 17, given the result of Theorem 16, we only need to show that
lim, o |G"(-)]7 = O(1) in probability. For ease of exposition, we present arguments for a = 1.

Exactly the same arguments will work for any positive finite & € R, .

Consider the case when a = 1. Consider r** system for some large r. Lets go back to
original time-scale from heavy traffic scaling. Consider time interval [0, [r2T]]. The arrival
rate to the system is A(r) = A — 1®. Hence, the maximal net load is A*(r) = 1 — ©(1/r).
Let the Q"(m) denote the queue-size matrix at time m € [0, [r?T]]. To show, [§"(-)|r is
O(1), it is sufficient to show that the maximum queue-size attained in the interval [0, [r2T1] is
O(r) (see definition (4.49)). Hence, next we show that under Bernoulli 11D traffic with arrival
rate-matrix A(r) such that A*(r) = 1 —0©(1/r), the maximum queue-size at any queue is O(r)
with probability 1 — o(1) (where probability scaling is in terms of r).

Recall proof of Theorem 1 of Chapter 2. The proof used quadratic Lyapunov function,
L(Q(m)) =3, 127(m) (Here, we drop reference to r in the notation Q" (m) so as to avoid
possible confusion between exponent 2 and index r.) The inequality (2.16) is reproduced here
as follows.

(1=

BILQ(m +1)) = L(Q(m))|@(m)] < —2———[Q(m)ll + 2n. (4.79)
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Let Y(m) = L(Q(m)). Now, by non-negativity of each of @Q;;(m),

0.5

> Qim) > [ Qhm)| . (4.80)
i,j i,j

Now, (4.79), (4.80), (1 — X*(r)) = ©(1/r) and notation Y (m) = L(Q(m)), give us the

following.

E[Y(m+1)] < E[Y f—\/ ) + 2n. (4.81)

Now, ignoring the addition term in (4.81), essentially Y (m) is a positive super-martingale (for
technical completeness, one can define precise super-martingale as X (m) =Y (m) 1y (m)>ontr2) +
20121y (;n)<anir2y). Hence, by Dubin’s inequality(see Chapter 4, Durrett [1995]) for upcross-
ing of interval [100n*r?, K100n*r?] (applied to super-martingale) starting from Y (0) = 0, gives
us that the number of upcrossing is at least 1 with probability at most 1/K. That is, given

€ > 0, the maximum value of Y (m) over interval [0, [72T] is no more than M with
probability at least 1 — e. That s,

Pr (0<T£n<a[§2ﬂ Y(m) = O(r2)> > 1-—¢ (4.82)

for any e > 0. By definition, Y'(m) =3, ; fj(m). From the well-known relation between /5
and £; norm, n°Y (m) > 37, - Qij(m). Hence, we obtain that

> 1- 4.83
ol ma, ZQ” (] > 1-¢ (4.83)
This in turn implies that,

Pr(|g"()lr =0(1)) > 1-e (4.84)

This completes the proof of Theorem 17 for &« = 2. The main ingredient used in this proof is
the Lyapunov drift equation to obtain super martingale. Such Lyapunov drift is available for

all MWM-a by design. Hence, using arguments as above, Theorem 17 can be proved for all

aeR;.



4.5. INFERRING PERFORMANCE VIA STATE SPACE COLLAPSE 105

4.5 Inferring Performance via State Space Collapse

The Theorem 16 suggests that under heavy traffic scaling, the scaled version of the system
is always in an MWMf endstate. That is, given input and output workload, the queue-sizes
are determined by the Lifting Map, A/(-). Thus, in order to determine state of the switch, it is
sufficient to track the input and output workload vectors. This simplicity in the description of
the system opens up the possibility of making more refined statement about the performance of
algorithm. To explain this subtle issue, we review some of the well known techniques and their
failure to study performance of scheduling algorithm. Then, we will use the state space collapse
property of MWM-« algorithm to obtain the characterization of a delay optimal algorithm (at
the heavy traffic scale). We find that MWM-a, as a — 0%, is an optimal algorithm. We
obtain description of this algorithm at the actual time scale and find it very similar to the
Longest Port First algorithm proposed by Mekkittikul and McKeown [1998]. We also find that
MWM-1 algorithm is not optimal. Finally, we use the state space collapse characterization to

provide an explanation of Conjecture 1 of Chapter 1.

45.1 Failure of Known Methods

A large body of literature has been developed for more than past 40 years to understand
performance of queueing systems or networks in a stochastic setting. The motivation of
analyzing networks in most generality has led to a beautiful development of stochastic networks
theory. The tools developed in stochastic networks theory have been successful in many
situations to analyze performance of system in terms of throughput (e.g. fluid model technique,
Lyapunov function theory, etc.) and delay (e.g. queueing theory, theory of large deviations,
etc.).

For the switch system, traditional methods like Lyapunov function theory and fluid model
technique have been successful as shown in this thesis in the chapters 2, 3 and 4 till now.
Thus, as far as throughput performance of algorithms is concerned, traditional approaches
have been extremely successful.

The delay analysis of switch is not well understood. We obtained bounds on average delay in
chapter 2 with the help of Lyapunov functions for Bernoulli [ID arrival process. Unfortunately,
as shown in section 2.3 of chapter 2, these bounds are not tight. Hence, they do not allow
comparison of algorithms based on delay performance nor allow characterization of optimal

algorithm.
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A standard queueing theory approach is useful to analyze delay of a queue when both arrival
and service distributions are known. In the case of switch, arrival process is external and hence
well known. But, the service distribution for any queue strongly depends on the scheduling
algorithm and the decision of scheduling algorithm depends on the whole system. This makes
it impossible to characterize the service distribution induced by the algorithm. Hence, standard

approach does not work to analyze queueing delay.

In the context of ATM networks, theory of Large Deviations has been extremely successful
(see books by Dembo and Zeitouni [1998] for theory of Large Deviations and book by Ganesh
et al. [2004] for its application to the queueing systems). The main reason for the success
was the possibility of decoupling large systems into small system. For example, in case of an
n port Output Queued switch, the system can be seen as made of n independent single FIFO
queues with deterministic service rate. Hence, such system can be analyzed. For Input Queued

switch, due to dependencies induced by algorithm, such decomposition is not possible.

In stochastic networks, the tool of stochastic coupling has been very well exploited to
compare performance of two systems. Such results do not characterize exact performance but
provide relative behavior. Though the results are weaker than exact performance characteri-
zation, they can be possibly useful in context of switch due to their generality of application.
However, obtaining such coupling arguments in the context of switch requires one to study
the structure of the system in a great detail. We find it very difficult to apply directly on the
actual system.

Instead, in the subsequent sections, we apply a modified stochastic coupling to characterize
optimal algorithm as well as compare performance of algorithms by looking at the system in
the heavy traffic scale. The system in heavy traffic are easy for this purpose is purely because
of their state space collapse property or equivalently possibility of describing the complete state

of the system only via input-output workload vectors.

452 An Optimal Algorithm

In this section, we characterize an optimal algorithm at the heavy traffic scale. For this
purpose, we will focus on studying state space collapse of MWM-a algorithms. We assume

that all input and output ports are critically loaded. That is,

)\i.:)\.jzl, 1§7,7§n
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For simplicity of notation, in the rest of the section, we use ¢(¢) in place of ¢(t). Now, we

define an optimal algorithm at the heavy traffic scale.

Definition 11 (Optimal Algorithm). An algorithm A is called optimal at heavy traffic scale
if under identical arrivals the scaled workload vector w(q(t)) is component-wise no more than

the scale workload vector of any other algorithm.
Next, we state the following characterization of an optimal algorithm.

Theorem 18. The limiting algorithm lim,_,o, MWNM-« is an optimal scheduling algorithm in

the sense of Definition 11 for any n X n switch.

To prove the Theorem 18, we will require some Lemmas. Let the limiting algorithm
lim, 0, MWM-a be denoted by A*.

We recall some notations before presenting next few Lemmas. In the context of n x n
switch, let ¢ € M. be the queue-size and w(q) € RZ""' be corresponding workload vectore,

where

wop—1(q) = q..,
wi(q) = ¢, 1 <i<mn, and
Wign—1 = ¢q.j, 1 <7 <mn.
Now, we state the Lemma about State Space Collapse characterization of A*.
Lemma 19. For any n x n switch, the state space collapse space of algorithm A* is a complete
space, that is,

SSC(n, A*) = {w=(wy,...,wop_1) € Ri"il cow; >0, Vi) (4.85)

Proof. We prove this by contradiction. Suppose the statement of Lemma is not true. That
is, there exists a workload vector w = (wq, ..., wq,_1) satisfying conditions of (4.85) which is

not feasible as defined in Definition 10. That is, for any matrix ¢ € MatriceP with w = w(q)

q # A (w(q)),

where A" () denotes the lifting map of algorithm of A*. As shown before, there exists a
solution to the convex optimization problem ¢* = A" (w) (for ease of understanding, treat

A* as an MWM-« algorithm with a fixed but very small a.)
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Now, w(g*) # w. In particular, it must be larger than w in at least two of the components
(one row and one column). Without loss of generality, let w(q*); > wi,w) > w, and
w(q*); > w; otherwise. Now it must be the case that ¢*11 = 0. If not, then we can reduce ¢,
either till it becomes 0 or w} = wy or w; = w,. Thus, ¢7; = 0. Now due to w being positive
in all components, there exists 4,7 such that gj;,¢"71 > 0. Without loss of generality, let
1 =7 = 2. Now, since ¢* satisfies the convex optimization problem, A*-CP(g¢*) corresponding
to the MWM-01-CP(-), by Theorem 15 it must be the case that the weight of all matchings
are equal.

[0
Under algorithm A*, the weight of entry (4, 5) is limq_q, (q;) . Now for very small «,
(6;)" =~ 1+ alogg. (4.86)

Thus, for @« — 04, essentially the weight is 1 if entry is non-zero and zero otherwise. Now
consider two matchings: 7 and 7 where n(k) = k,Vk, while #(1) = 2; 7(2) = 1; @(k) =
k,k > 3. Then, it is easy to see that the weight of = is strictly smaller than the weight of &
since ¢7; = 0 while ¢i9, ¢35, > 0. This is a contradiction.

Thus, the original assumption of w(q*) # w is false. That is, w is a feasible workload

vector under algorithm A*. This completes the proof of Lemma 19. ]

As an immidate corollary of Lemma 19, we obtain the following (which we state as a

Lemma).

Lemma 20. Under A* algorithm, let q be an invariant state. Then,
gi; >0 & g¢.>0andq;>0. (4.87)

Proof.
(=) This is a straightforward implication: if g;; > 0 then ¢;.,q.; > 0.

(<) This follows using very similar arguments as used to prove Lemma 19. ]

Lemma 21. Let g be such that all input workloads and output workloads are non-zero, that

s,
q. > 0, Vi qg; > 0, Vi (4.88)

Then, under A* all input and output workloads are served at unit rate.
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Proof. From Lemma 20, under (4.88), all entries are strictly positive. Hence, whatever match-
ing A* chooses to serve, its never going to idle. Hence, by the property of matching, each

input is served at unit rate as well as each output is served at unit rate. O

Lemma 22. Under heavy traffic scaling, for any scheduling algorithm, the limiting queue-sizes

are such that all input and output workloads are non-zero with probability 1.

Proof. Consider any input . Under heavy traffic scaling, the limiting arrival process has rate
1. Under any scheduling algorithm, the net service rate is at most 1. Thus, workload at input
i, ;. can be lower bounded by that of an -/D/1 queue with deterministic service of rate 1. The
well known results in queueing theory imply that the queue-size of such a queue under heavy
traffic scaling (equivalently, when arrival rate is 1) becomes a reflected Brownian motion. For
such reflected Brownian motion, the set of time when it is 0 is measure 0. That is, with
probability 1, the queue-size of such a queue is non-zero. That is, the workload at input 7 is
non-zero with probability 1.

The similar argument applies for all output workload. This completes the proof of Lemma
22. U

Proof of Theorem 18. Consider an m x n switch under heavy traffic scaling. By Lemma 22,
under any algorithm the input and output workloads are non-zero with probability 1. Given
the switch constraints, no algorithm can serve input workload or output workload at rate more
than 1. In particular, from Lemma 21, A* serves all input and output workloads at rate 1 with
probability 1. Hence, the input and output workload are minimal under A* algorithm at all the

time under heavy traffic scaling. This completes the proof of Theorem 18. ]

453 MWM-1 is Not Optimal

This section is dedicated to the following theorem, stating that MWM-1 is not optimal.
Theorem 19. The algorithm MWM (i.e. MWM-1) is not optimal.

To prove the Theorem 19, we need the following state space collapse characterization of
MWM-1.
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Lemma 23. For any n x n switch,

SSC(n,MWM-1) = {w € Ra_"fl Dw A Wigp—1 > Won—1 , 1<i,j<n—1;
1
(n — Dwop—1 . )
Tﬂ > Zwk+n,1 —w;, 1 <1 <n—-1;
k=1
—1
(n — 1)’11)2 | < .
Tn >I;'wk_wj+n]al <7j<n-1
wy < wop—1, 1 <k <2n— 1} (4.89)

Proof. Let w € RE™ ' be a workload vector for a n x n switch. For its feasibility under

MWM-1, there must exists a n x n positive matrix ¢ € M, such that
A%q)=q andfor 1 <i<n—1 ¢ =wi ¢;=Witn-1,q. = Wop1-

This implies that given net-work ws,, 1, for any feasible w, the corresponding invariant ¢ > (0).
Thus, to characterize SSC(n,MWM-1), we need to characterize g in terms of w and obtain
the conditions for it being a positive matrix.

Given w, from Theorem 15, if A > 0 component-wise, the invariant state has the prop-
erty that all matchings are of equal weight. Given workload vector w, the weight of each
matching will be wy,_1/n. Now, a simple computation will lead to the following positivity

characterization

Wan—1 ..

Since ¢ is an invariant state corresponding to the workload vector w, it must be that w(q) = w.
Hence, by definition ¢;. = w; and ¢; = wjip,1 for 1 < 4,5 < n —1; go. = way 1 —
ZZ;} wy, and q., = Wop_1 — ZZ;} wgyn_1. Now, replacing these in (4.90) essentially gives
the characterization of SSC(n,MWM-1) as described in (4.89).

This completes the proof of Lemma 23. O

Proof of Theorem 19. The Lemma 23 suggests that the SSC(n,MWM-1) is a strictly smaller
sub-space of R%r""l. There exists arrival process such that under algorithm A*, the workload
vector can take value outside of SSC(n,MWM-1). The MWM-1 algorithm, in such conditions
will retain its workload vector inside SSC(n,MWM-1) by idling on some port. Thus, losing
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performance. This proves that MWM-1 algorithm will not be optimal as defined in Definition
11. This completes the proof of 19. ]

454 An Explanation of Conjecture 1

In this section, we offer an explanation for the Conjecture 1. In order to do so, we study
the state space collapse space of MWM-« algorithms. We first state result comparing the
state space collapse space of MWM-a algorithms for 2 x 2 switches. We strongly believe that

the following result hold in general for any n x n switch.

Lemma 24. For o1, 09 € RF: if oy < a9 then
SSC(2. MWM-a3) C SSC(2, MWM-a). (4.91)

Proof. Let w = (wy,wy,ws) € Ri be a workload vector for a 2 x 2 switch. For its feasibility

under MWM-q, there must exists a 2 x 2 positive matrix ¢ € M. such that
A%(q) =q and q1. = w1, g1 = wa,q.. = w3.

This implies that given net-work ws, for any feasible w, wy,ws < w3 and the corresponding
invariant ¢ > (0). Now ¢ > (0) further constraints the possible values wy, w9 can take, given
wsg. Hence to characterize SSC(2, MWM-a), we need to first characterize ¢ in terms of w and
obtain the conditions for it being positive matrix.

Given w, from Theorem 15, if A > 0 component-wise, the invariant state has the property

th

that both matchings are of equal weight, where weight is o'” power of queue-size. Given

workload vector w, the input workloads are wy. = wy and wo. = w3z —w; while output workloads

are w.; = w9 and w.o = w3 — wo. This leads to the following positivity characterization
>0 & wwg+ (wl+w) > (4.92)
qij > w;. + W w;. 4w > ws3. )

Thus, inequalities on the right hand side of (4.92) characterize the SSC(2, MWM-«). Now,

consider the following known analysis result.

Lemma 25. For any z,y € Ry and any 6 > 1,

(x" + y€> Y (4.93)
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Now consider 0 < a1 < ag. Then, for any a,b € R,
(a%2 +b22)1/%2 < (a1 4 por)t/e (4.94)

The (4.94) follows from Lemma 25 by taking z = a®* and y = b**. From (4.92) and (4.94),

it is easy to conclude that
SSC(2, MWM-as) C SSC(2, MWM-ay).

This completes the proof of the Lemma 24. O

The Lemma 24 suggests that as « increases the state space collapse space decreases. Now
the state of the system (i.e. workload vector) roams inside the state space collapse space.
Every time it hits the boundary, the switch algorithm selects matching so that the state of the
system remains inside the state space collapse space by idling on some port. This intuitively
means that given the same arrival process, the switch is more likely to idle for smaller state
space collapse space. Hence, from the result of Lemma 24, the switch performance should
become worse as « increases under the MWM -« algorithm. This offers an intuitive explanation
to the Conjecture 1 for a 2 x 2 switch. Next, we make this intuition rigorous.

Ideally, we would like to obtain the result of the following type: the workload of algorithm
MWM-qa; is dominated by the workload of MWM-as algorithm for a; < as under heavy traffic
scaling. Suppose the following was true: the feasibility of all input workloads only depended
on the value of other input workloads (similarly for output workload). Then, using statement
of Lemma 24, obtaining the ideal result is a straightforward coupling.

Unfortunately, as shown in Lemma 24, the state space collapse characterization is such
that feasibility of an input workload depends on other input as well as output workloads.
Hence, obtaining a coupling is very hard. Hence, in order to compare algorithms, we consider
a specific arrival process with arbitrary starting position. We describe the setup next.

Consider a 2 x 2 switch. Let the arrival process be determistic with rate A such that all

ports are critically loaded and A;; > 0. For 2 x 2 switch, such a A can be written as
A=am + (1 —a)me, a € (0,1),

where my serves queues (1,1) and (2,2) while w9 serves queues (1,2) and (2,1). Let the initial

state of the switch be any w € Rﬁ_. Now, let the switch be operating under algorithm MWMf.
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If w € SSC(2,MWMF) then the intial switch-state g is such that ¢ = Af(q) and w(q) = ¢. If
w ¢ SSC(2,MWMf), then ¢ is the solution to the following optimization problem.

. /
min maxTm -
q’EM+ TP f(q )

such that  w(q') = w.

Now, we state the following theorem comparing MWM-« algorithms.

Theorem 20. Under the setup described above, the workload vector under algorithm MWM-
o Is component-wise dominated by the workload vector under algorithm MWM-ay for 0 <

a1 < (.

Proof. For ease of exposition, the proof if presented for «; = 1 and as = 2. The arguments
can be easily extended for any 0 < a7 < .
Consider a w € RY. From Lemma 24, there are three possibilities:
(1) w € SSC(2,MWM-1) and w € SSC(2,MWM-2).
(2) w € SSC(2,MWM-1) and w ¢ SSC(2,MWM-2).
(3) w ¢ SSC(2,MWM-1) and w ¢ SSC(2,MWM-2).

In what follows, we consider the situation where w; < wy < ws/2. All other (total 8)
situations can be reduced to this by renumbering input/output and changing input/output
definition. Let u(t) and v(t) denote the workloads at time ¢ under algorithms MWM-1 and
MWM-2 respectively, with u(0) = v(0) = w. Recall that both receive arrivals at deterministic
rate A =am + (1 — a)m,a € (0,1).

Case (1). In this case, the switch starts in the invariant state for both MWM-1 and MWM-2.
Hence, by Theorem 14, it remains in the same state forever, that is, u(t) = v(t) = w for all
t>0.

Case (2). In this case, the switch starts in the invariant state for MWM-1 and hence u(t) = w
for all £ > 0. On the contrary, for MWM-2, the switch starts in non-invariant state. As per
above setup, the intial switch state q corresponding to w is such that it has a unigue maximum
weight matching. Due to wqy < wy < ws3/2, m will be the maximum weight matching and
corresponding initial state has ¢q;; = 0. Now, MWM-2 will serve 7 at unit rate till both
matchings become of equal weight. During this time, (i) MWM-2 idles at g;; for (1 — a)
fraction of the time since A = am; + (1 — a)mwe, (ii)) MWM-2 increases v (t),v2(t) at rate
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(1 —a), and (iii)) MWM-2 increases v3(t) at rate 1 —a. Now, on reaching invariant state, the
MWM-2 retains this invariant state from then on. Thus, under this case, u(t) < v(¢) for all
t>0.

Case (3). In this case, both algorithms start with initial state that is non-invariant. Both
algorithms have 7; as unique maximum weight matching in this initial state and both algorithms
serve mp at unit rate till they reach invariant state. During this time, both algorithms (i)
idle at g1 for (1 — a) fraction of the time since A = am; + (1 — a)mg, (ii) they increase
uy(t), us(t),v1(t), vo(t) at rate (1 — a), and (iii) increases us(t),v3(t) at rate 1 —a. Thus,
given u(0) = v(0) = w, both algorithms change their workload wu(t), v(t) in the same direction.
Now, by Lemma 24,

SSC(2,MWM-2) cC SSC(2,MWM-1).

Hence, it must be the case that wu(t) reaches SSC(2,MWM-1) quicker than w(¢) reaching
SSC(2,MWM-2). Let Ty be the time when wu(t) reaches SSC(2,MWM-1). Then, we obtain
that, u(t) = v(t), t <Ty, and u(t) <wv(t), t>T.

Thus, as shown in cases (1), (2) and (3), u(t) < wv(t), for all ¢ > 0 under any initial
workload w € ]Ri. This completes the proof of Theorem 20. O

4.6 Chapter Summary and Discussion

This chapter was dedicated to the study of throughput and delay property of generalized
Maximum Weight Matching algorithm, denoted by MWMf(.

We obtained characterization of all stable weight functions f. We used fluid model tech-
niques and Lyapunov functions theory to analyze throughput of MWMf algorithms. The
throughput results suggest that a large class of algorithms provide optimal throughput.

This naturally led us to the following question:which, among all of these throughput op-
timal MWMY, is a delay optimal algorithm?. The traditional methods failed in answering this
question. In search of an answer to the above question, we studied the IQ switch under heavy
traffic scaling. We obtained the state space collapse property for MWMf algorithm via fixed
points of equilibrium fluid model equations. As an aside, we note that the results on equilibrium
fluid model equations revealed interesting properties of these matching algorithms.

Interestingly, the state space characterization of MWM-0* algorithm allowed us to prove
its optimality. Now, the description of MWM-a algorithm for all & > 0 remains the same

for the system operating at the heavy traffic scale (or fluid scale) and the discrete scale.
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The approximation (4.86) suggests that, MWM-0T must do the following: among all possible
maximum size matching, choose the maximum weight (weight is logarithm of queue-size)
maximum size matching. Now, at discrete scale, the queue-sizes are always integer. Further,
if queue-sizes are assumed to be bounded above by some constant, then there exists a small
enough « such that the above description becomes exact.

This also reminds us of the Longest Port First (LPF) algorithm propose by Mekkittikul
and McKeown [1998]. The LPF algorithm chooses the Maximum Weighted Maximum Size
Matching where weight of an edge (4,7) is the sum of the workload at input 4 and output j.
Based on this, we believe that the Longest Port First algorithm is an optimal algorithm. The
difficulty in proving this statement is of the technical form: the description of LPF is not easy
for fluid model analysis as it involves modeling Maximum Size Matching.

In addition to identifying the optimal algorithm, we used the method to demonstrate that
the usual Maximum Weight Matching algorithm is not optimal. This falsified one of the
long standing folk-fore in the switching community. We also used the methods to provide
explanation to the observation of by Keslassy and McKeown [2001a] noted as Conjecture 1
in the beginning of the thesis.

We believe that the method of this chapter are quite general. In particular, we believe
that methods can be extended to a large class of scheduling problems where " MWM-type”
algorithms are throughput optimal algorithms. For example, framework of Radio-hop network
used by Tassiulas and Ephremides [1992]. In general, the results of this chapter leads to the
following intuitive understanding of optimality of algorithms: an optimal algorithm is the one

that has maximal state space collapse space so as the idling in the system is minimized.

4.7 Bibliographic Notes

A part of results of Section 4.2 are published by Shah [2001]. The results of the Sections
4.3, 4.4 and 4.5 are part of a preprint by Shah and Wischik. These results motivated by
companion papers by Bramson [1998] and Williams [1998].

The fluid model for a switch was first developed by Dai and Prabhakar [2000]. They used
the fluid model to analyze throughput of MWM and Maximal Matching algorithms. Fluid
model technique has been very well developed and used in various context. See noted by
Dai [1999] for a detailed exposition on this subject. The work by Stolyar [2004] studied a

input queued type switch under heavy traffic. This work restricts the number of port that are
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critically loaded to one. This, in turn, obtains one-dimensional state space collapse space for
all algorithms and hence can not differentiate performance of MWMTf algorithms for different
weight functions.

The state space collapse phenomenon was first observed by Whitt [1971]. A series of
results were obtained on heavy traffic analysis of basic queueing systems in the early 1970s,
notably by Iglehart and Whitt [1970a], Iglehart and Whitt [1970b], Iglehart and Whitt [1971].
This led to a wonderful development of theory of heavy traffic for complex queueing systems.
For example, works by Harrison [1988], Harrison [1995], Harrison and Williams [1992] and
Reimann [1984]. A good reference for the early development of the heavy traffic theory is the
book by Harrison [1985]. The results of Bramson [1998] and Williams [1998] have provided
a standard technique to obtain state space collapse characterization of systems under heavy
traffic scaling. They pioneered the use of equilibrium fluid model to obtain the state space

collapse property.



CHAPTER 5

Conclusions and Future Work

This thesis was about desing and analysis of scheduling algorithms for the 1Q switches.
The memory bandwidth requirement is becoming a major bottleneck in designing high-speed
switches. Due to low memory bandwidth requirement, the IQ switch architecture is currently
very popular for designing high speed switches. But, IQ switches require good scheduling algo-
rithm in order to provide good performance. Implementation concerns make simple algorithms
desirable. But if algorithm is too simple, it may perform rather poorly. Thus, one is required
to resolve the tension between implementability and performance of scheduling algorithm.

Motivated by this challenge, one part of this thesis (Chapter 3) provided a suite of simple
to implement high performance scheduling algorithms — APSARA, LAURA and SERENA.
These algorithms were based on novel design ideas like (i) use of information from past, (ii)
use of arrival information, (iii) exploiting problem structure (Merge procedure) and (iv) use
of parallelism for search in the space of matchings; along with the well-known technique of
randomization. We proved that the proposed algorithms provide 100% throughput and have
low delay. Our simulations showed that they perform very competitively relative to known
good algorithm, MWM. We discussed the implementation details of this algorithm and find
that algorithms like APSARA and SERENA are implementable in current switches in core-

routers.

117
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The second part of this thesis presented novel analysis methods for scheduling algorithms.
In Chapter 2, we analyzed throughput and delay property of MWM and its approximations using
a method based on Lyapunov functions. These methods, though applicable to Bernoulli 1ID
traffic only, provide a great insight and useful bounds on performance of algorithms. Motivated
by the consideration of general distributions for arrival process, in the Section 4.2 of Chapter
4, we used fluid models to analyze throughput of algorithms. In particular, we showed that
a large class of MWM-type algorithms have optimal throughput. But, they have different
delay property. Though, theoretical studies have mainly focused on analyzing throughput of
algorithms, delay or queue-size is a very important metric. In practice, routers have finite
buffers. Hence, it is possible that among two algorithms, an algorithm with theoretically
higher throughput (when buffer-size is infinite) may provide lower throughput compared to
the other algorithm in the presence of finite buffer! For example, see Figure 3.1 of Chapter 3
and compare performance of stable Algo2 with un-stable iSLIP algorithm at load p = 0.5 and
buffer-size of 1000.

This motivated us to study the following question: what is a delay optimal algorithm?,
and can we compare performance of algorithms in terms of delay? Traditional methods were
not useful in answering these questions. We developed a new approach based on heavy traffic
theory to obtain characterization of a delay optimal algorithm. We found that the folk-
lore of Maximum Weight Matching being optimal is false. Further, our results provided an
explanation to an intriguing empirical observation made by Keslassy and McKeown [2001b]
about monotonicity in the delay property of MWM-« algorithms. Separately, our results on

heavy traffic analysis of switches are of interest in their own right.

5.1 Future Work

This thesis brings us to a point from which we can follow two seemingly different paths: (i)
Implementation of algorithms in actual switches, and (ii) Use and further development of

analytic methods of this thesis.

5.1.1 Implementation

Algorithms described in these thesis are very good in performance, verified using theory

and via simulations. The claim, which we made repeatedly in this thesis, that still remains
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to be verified is about their implementability. We briefly discuss possible application of these
algorithms.

The main feature of APSARA algorithm is the possibility of parallel implementation. It
is very well suited for switches with very large number of ports, since in such a situation
designing centralized scheduler is almost impossible. A possible application of this algorithm
can be scheduling in switches for large storage-area networks.

Among SERENA and LAURA algorithms, due to simplicity, we recommend SERENA for
the purpose of implementation. For simple implementation of Merge procedure, some form
of centralized co-ordination is necessary. This makes SERENA particularly well suited for very

high speed switches with fewer ports.

5.1.2 Analytic Method

Though this thesis discusses the design and analysis methods in the context of switch
scheduling, we believe that they are quite general.

For example, the heavy traffic analysis of scheduling algorithm for 1Q switch should be
applicable to a large class of scheduling problems, including the setup of Radio hop introduced
by Tassiulas and Ephremides [1992]. The use of State Space Collapse for characterizing delay
optimal algorithm in the context of switch scheduling is based on a general philosophy. We
strongly believe that it should be useful in many other contexts.

The next natural question is: can we use the state space collapse characterization of
switches to obtain an estimation of queue-size distribution?

The design methods of the thesis are quite general. For example, the idea of using arrival
information in algorithm SERENA can be interpreted by a computer scientist working on online
algorithms as “track the adversary.” This idea can prove to be very powerful in the context

applications like networking where system state changes very slowly.
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