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Randomization and Heavy TraÆ
 Theory:New Approa
hes to the Design and Analysis ofSwit
h AlgorithmsByDevavrat ShahAbstra
tThis thesis addresses the design and analysis of implementable high-performan
e algorithmsfor high speed data networks, su
h as the Internet. Our fo
us is on designing s
hedulingalgorithms for 
rossbar swit
hes. We exhibit a natural tradeo� between implementationalsimpli
ity and goodness of performan
e for s
heduling algorithms operating in very high speedswit
hes. Our goal will be to resolve this tradeo� using novel design methods whi
h involverandomization on the one hand; and to develop new methods to analyze the performan
e ofthese algorithms on the other. Along these lines, this thesis has two main parts.The �rst part is motivated by the following 
onsiderations. The s
heduler of a high speedswit
h poses 
hallenging problems to the algorithm designer. It needs to provide a goodperforman
e even though s
heduling de
isions need to be made in a very limited time andwhile utilizing meagre 
omputational resour
es. To illustrate, a swit
h in the Internet 
oreoperates at a line rate of 10 Gbps. This implies that s
heduling de
isions need to be maderoughly every 50 ns. Compli
ated algorithms 
annot be designed to operate at this speed;only the simplest algorithms are implementable. But a simple algorithm may perform ratherpoorly, if it is not well-designed. vii



We 
hoose randomization as a 
entral tool to design simple, high-performan
e swit
hs
hedulers. This 
hoi
e a�ords us the ability to exploit several desirable features of random-ized algorithms: simpli
ity, good performan
e, robustness, and the possibility of derandomiza-tion for eventual implementation. Spe
i�
ally, we exhibit three algorithms that exhibit thesefeatures.Our se
ond 
ontribution is a new approa
h for analyzing the delay indu
ed by a swit
hs
heduling algorithm. Traditional methods, based largely on queueing and large deviationtheories, are inadequate for the purpose of analyzing the delays indu
ed by swit
h s
hedulers.We adopt a di�erent strategy based on Heavy TraÆ
 Theory whi
h advan
es our understandingof delay in the following two senses. First, it leads to the 
hara
terization of a delay-optimals
heduling algorithm. Se
ond, it helps explain some intriguing observations other resear
hershave made through simulation-based studies about the delay of s
heduling algorithms.
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Preliminaries
NotationA very useful representation of state of an n � n swit
h is an n � n real-valued matrix.Hen
e, a lot of notation used in thesis is matrix based. Let M be the set of n� n real-valuedmatri
es, and M + the subset 
onsisting of R+ -valued matri
es. Let S(x) be the subset of M
onsisting of matri
es all of whose row sums and 
olumn sums are equal to x, and write Sfor S(1), the set of doubly sto
hasti
 matri
es. A matrix � = [�ij ℄ 2 S is 
alled permutationmatrix if �ij 2 f0; 1g for all i; j. Let P be the set of n� n permutation matri
es. S
hedulein a swit
h will be represented by a permutation matrix, � 2 P. For a matrix a 2 M , writeai� =Xj aij ; a�j =Xi aij; a�� =Xi;j aij ; anda� = maxi;j fai�; a�jg; a� = mini;j faij : aij > 0g:For matri
es a; b 2 M + and fun
tion f : R ! R, leta � b =Xij aijbij;ab = �aijbij�ij 2 M ;f(a) = �f(aij)�ij 2 M :Let 
omponent-wise multipli
ation have pre
eden
e over �, so that a � b
 = a � (b
).xv



The � operation is 
ommutative. Further, the following distributive law holds.a � (b+ 
) = a � b+ a � 
:The well-known Birkho�-von Neumann's theorem states that the set of all doubly sto
has-ti
 matri
es, S, is a 
onvex set with P as the set of all possible extreme points. Further, thedimension of the set is n̂ = n2 � 2n+ 1. Hen
e, a matrix a 2 S 
an be written asa = n̂Xk=1�k�k;where �k 2 P, �k � 0 for all k and Pk �k = 1. A matrix b 2 M + is 
alled a doublysub-sto
hasti
 if all of its n row sums and n 
olumn sums are no more than 1. A doublysub-sto
hasti
 matrix 
an be upper bounded 
omponent-wise asb � b�a;where a 2 S.ConventionsIn this thesis, we assume dis
rete time pa
ketized network. All pa
kets are assumed to beof the same size. The line-rates are normalized to unit. The pa
ket sizes are 
hosen so thatone pa
ket 
an arrive in a unit time. In pra
ti
e, though the pa
kets arriving at a router are ofdi�erent size, they are internally divided into equal sized \
ell"s for the purpose of s
heduling.In an abstra
t setting, it is possible to 
onsider an m � n, m 6= n, swit
h but in pra
ti
eea
h data port of a router a
ts as an input as well as an output leading to 
onsideration of ann� n swit
h. Hen
e, in this thesis we restri
t ourselves to n� n swit
h.We will use the words s
hedule, mat
hing and permutation inter
hangeably.The Maximum Weight Mat
hing s
heduling algorithm is 
entral to the study this thesis.Though, many versions of the Maximum Weight Mat
hing algorithm are studied in this thesisdepending on the de�nition of weight fun
tion, whenever we write Maximum Weight Mat
hingor MWM without any additional quali�er, we refer to the basi
 Maximum Weight Mat
hingthat uses queue-sizes as weights. See the Se
tion 2.1 for exa
t de�nition of the basi
 MWMalgorithm. xvi



How to Read This Thesis
This thesis is about design and analysis of s
heduling algorithms for Input Queued swit
hes.The thesis is logi
ally divided into three part: (1) Introdu
tion (Chapter 1), (2) Design methodsfor swit
h algorithms (Chapter 3) and (3) Analysis methods for swit
h algorithms (Chapter2 and 4). A reader is advised to rea
h Introdu
tion �rst. The Design methods and Analysismethods 
an be read in any order. But, a reader is advised to read Chapter 2 before Chapter4. Also, if reader de
ided to read Chapter 3 before Chapter 2, she or he is advised to readstatement of Theorem 1 from Chapter 2 for better understanding of motivation for algorithmsof Chapter 3.In Chapters 2-4, we provide referen
es and proper 
redit to original 
ontributor in theSe
tion titled "Bibliographi
 Notes" at the end of the 
hapter. This is done in order topossibly provide a better 
ow.This thesis assumes a fair amount of ba
kground in Algorithms, Probability theory, Realanalysis and Combinatori
s. In addition, ba
kground in Convex Optimization, Computer Ar-
hite
ture and Router design is useful. Possible referen
e if required are as follows. Foralgorithms, a good set of referen
es are Introdu
tion to Algorithms by Cormen et al. [1990℄,Randomized Algorithms by Motwani and Raghavan [1995℄ and Data Stru
tures and NetworkAlgorithms by Tarjan [1983℄. For Probability theory, some good referen
es are Probability:Theory and Examples by Durrett [1995℄ and Probability and Measure by Billingsley [1995℄.In addition, Brownian Motion and Sto
hasti
 Cal
ulus by Karatzas and Shreve [1991℄ 
an beuseful. For Real analysis and Topology, see Introdu
tion to Topology and Modern Analysis bySimmons [1963℄ and Topology by Munkres [1999℄. For Combinatori
s, see A Course in Com-binatori
s by van Lint and Wilson [1992℄, Enumerative Combinatori
s by Stanley [1999℄ andCombinatorial Algorithms: for 
omputers and 
al
ulators by Nijenhuis and Wilf [1978℄. Foran introdu
tory text on Graph Theory, refer to Introdu
tion to Graph Theory by West [1996℄.For Convex Optimization, refer to Convex Optimization by Boyd and Vandenberghe [2004℄and Convex Analysis and Optimization by Bertsekas et al. [2003℄. For Computer Ar
hite
ture,see Computer Ar
hite
ture by Hennesy and Patterson [1986℄ and a survey arti
le Survey onRouter Design by Keshav and Sharma [1998℄ for state-of-art information on router design.xvii
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CHAPTER 1
Introdu
tion

The fo
us of this thesis is the design and analysis of implementable algorithms for prob-lems arising in high speed networks, su
h as the Internet. Our goals are two-fold: To resolvethe tradeo� between implementational simpli
ity and the goodness of performan
e of swit
hs
heduling algorithms, to develop new methods for analyzing the performan
e of these algo-rithms. Along these lines, this thesis has two main parts.The �rst part is motivated by the following 
onsiderations. A high speed network presentsthe algorithm designer with highly 
onstrained problems: the algorithms need to work at avery high speed and utilize limited 
omputational resour
es, while providing good performan
e.Consequently, only the simplest algorithms are implementable. But a simple algorithm mayperform rather poorly if it is not well-designed. This tension between implementability andhigh-performan
e is inherent to the design of 
rossbar swit
h s
heduling algorithms.To illustrate this point, let us 
onsider the s
heduler of a 
rossbar swit
h operating in the
ore of the Internet. Su
h swit
hes reside, for example, inside Cis
o Systems' GSR 12000series of Internet routers. The swit
h operates at a line-rate of 10 Gbps. This implies thatthe s
heduler needs to 
on�gure the fabri
 of the swit
h roughly on
e every 50 ns. Ea
h
on�guration allows the transfer of pa
kets (more pre
isely, parts of pa
kets) from the inputs tothe outputs. This small amount of time and the rather limited 
omputational requirements at a1



2 CHAPTER 1. INTRODUCTION
ore router make the design of implementable, high performan
e s
hedulers a very 
hallengingproblem. The situation will be aggravated in the next generation of routers whi
h will operateat line-rates of 40 Gbps and higher.Our main approa
h for designing simple, high-performan
e swit
h s
hedulers is to userandomization. The main idea of randomization is simple to state: Basing de
isions on asmall, randomly 
hosen sample is a good surrogate for basing de
isions upon the 
ompletestate. Therefore, randomized algorithms lead to the simple implementation of otherwise
ompli
ated solutions. While this general philosophy gives hope, spe
i�
 problem instan
esrequire the designer to exploit the stru
ture of the problem to 
ome up with good randomizedalgorithms. In this respe
t we shall see that exploiting the fa
t that swit
h s
heduling isequivalent to bipartite graph mat
hing is key.Clearly, the performan
e of a randomized algorithm depends 
ru
ially on the quality of thesamples and we are motivated to ask: (a) Is it possible to improve the quality of the sampleswithout in
reasing their number? (b) If yes, how well would su
h an improvement perform? Webuild on a previous design by Tassiulas [1998℄ to devise a simple tri
k for re
ursively improvingthe sample quality, whilst leaving its size �xed. This tri
k yields a signi�
ant performan
e boostwhile retaining the essential simpli
ity of randomized s
hemes and has some quite interestingtheoreti
al impli
ations. For example, we shall �nd that one of our algorithms, Serena, exploitsboth the stru
ture of mat
hings and the re
ursive tri
k mentioned above to be a very simple,high-performan
e randomized approximant of the (ideal) maximum weight mat
hing algorithm.Our se
ond 
ontribution is a new approa
h for analyzing the delay indu
ed by a swit
hs
heduling algorithm. Traditional methods, based on queueing and large deviation theories forexample, are inadequate for the purpose of analyzing delay. We adopt a di�erent strategybased on Heavy TraÆ
 Theory whi
h advan
es our understanding of delay in the followingtwo senses. First, it leads to the 
hara
terization of a delay-optimal s
heduling algorithm.Se
ond, it helps explain some intriguing observations other resear
hers have made throughsimulation-based studies about the delay of s
heduling algorithms.This thesis is 
entered around swit
hes that operate in the 
ore of the Internet and whi
hhave an Input-Queued (IQ) ar
hite
ture (for example, GSR 12000 Series Router of Cis
o[2000℄). For the sake of 
ompleteness, we will review fundamental 
on
epts from the theoryof swit
hing in this 
hapter. The rest of the 
hapter is organized as follows. Se
tion 1.1 isdevoted to a brief introdu
tion of a typi
al 
rossbar swit
h in the 
ore of the Internet. Wedes
ribe 
anoni
al 
rossbar-based swit
h ar
hite
tures and explain the 
onstraints in building



1.1. SWITCH ARCHITECTURES 3them. In Se
tion 1.2, we establish the notation that shall be used in the rest of this thesis,and de�ne the problem of s
heduling an IQ 
rossbar swit
h. We also survey the previous workon s
heduling algorithms. In Se
tion 1.3, we dis
uss in some detail our 
ontributions, and weend with an outline of the rest of the thesis in Se
tion 1.4.1.1 Swit
h Ar
hite
turesSwit
hing is an integral fun
tion of data networks. In an Internet router, pa
kets arriveat various input (ingress) ports destined for any of the output (egress) ports. Figure 1.1shows the path of a typi
al pa
ket through a router. On the arrival of a pa
ket at the router,the admission 
ontrol (AC) module de
ides whether to admit it or not. Additional poli
ingor pri
ing me
hanisms may be performed at the ingress port. If the pa
ket is admitted,the routing lookup (RL) module de
ides the output port to whi
h the pa
ket should be sentdepending on its �nal destination and routing information available in lo
ally maintained tables.Subsequently, the pa
ket may be queued before being swit
hed to the 
orresponding outputport via the swit
h fabri
. At the output port, the output s
heduler (OS
h) de
ides when totransmit the pa
ket on the egress line.
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h OS
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Figure 1.1: Path of a typi
al pa
ket through a generi
 Router.As opposed to the above pa
ket-
entri
 view of a router, Figure 1.2 presents a fun
tionalview of the router. The latter representation aggregates modules of the router dependingon the kind of information they require to pro
ess a pa
ket. Thus, the AC, RL and poli
ingmodules require only 
ontrol information from the header of the pa
ket; whereas the swit
hing



4 CHAPTER 1. INTRODUCTIONand OS
h modules perform data-dependent operations. Note that only the modules in thedata plane are a�e
ted by the size of pa
kets.Now, as the speed of a network s
ales, the router is subje
t to an in
reasing amount of
omputational strain. But whereas the e�e
t on the 
ontrol plane 
an be alleviated, say bydiving the 
ow into pa
kets of larger size, problems en
ountered by the data plane have nosu
h immediate solution. Thus, the fun
tional view 
learly identi�es those modules that arehit hardest by the s
aling of speed of the network, and whi
h need to be addressed e�e
tively.Our work will fo
us on providing eÆ
ient solutions to problems en
ountered by the data planemodules, in parti
ular, the swit
h s
heduler.PSfrag repla
ementsControl Plane
Data Plane

AC RL Poli
ing
Output S
hedulingSwit
hing

Figure 1.2: Fun
tional view of a Router.The main fun
tion of a swit
h is to transfer pa
kets from input ports to their destinedoutput ports. An n� n swit
h 
an, by de�nition, re
eive pa
kets on n inputs, and is possiblyrequired to send pa
kets out to all n outputs. A s
hemati
 diagram of a 3 � 3 swit
h isgiven in Figure 1.3. A swit
h mainly 
onsists of two parts: (i) Swit
h fabri
, whi
h transferspa
kets from input to output ports; and (ii) Bu�ers, whi
h store pa
kets that 
annot be sentout immediately. For a swit
h residing in a 
ore router, line-rates are on the order of Gbps.For example, in the 
urrent OC-192 standard, the line-rate is 10 Gbps. Soon, the line-rate isexpe
ted to in
rease to 40 Gbps when OC-768 standard is adopted. The bu�er of a swit
hmust operate at a rate that is at least twi
e the line-rate (
orresponding to a read and a writeoperation per time slot).In re
ent years, due to the rapid and ubiquitous deployment of opti
al �bers, the line-rate has in
reased at a very fast pa
e. Roughly speaking, line-rates have doubled every 12months. This should be 
ontrasted with the fa
t that memory speed is doubling every 18
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PSfrag repla
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Figure 1.3: A S
hemati
 Diagram of a 3� 3 Swit
h.months a

ording to Moore's law Hennesy and Patterson [1986℄. Currently it is barely feasibleto build a swit
h with memory fast enough to operate at the line-rate. In the future, it is likelyto be
ome extremely 
hallenging to build swit
hes that operate at line-rate. (The sour
e ofthe above information is M
Keown).Given that memory bandwidth is one of the most signi�
ant 
onstraints in building highspeed swit
hes, in what follows, the relative goodness of a swit
h ar
hite
ture shall be de
idedby its memory-bandwidth requirement.Next we dis
uss three popular swit
h ar
hite
tures, whi
h di�er essentially in the pla
ementof bu�ers.1. Output-Queued (OQ) swit
hes, where bu�ers are at the output port,2. Input-Queue (IQ) swit
hes, where bu�ers are at the input port, and3. Combined Input-Output Queued (CIOQ) swit
hes, where bu�ers are at both the inputand the output port.1.1.1 Output-Queued Swit
hFigure 1.4 shows a 3 � 3 OQ swit
h. In an OQ swit
h, arriving pa
kets are dire
tlytransfered from input to output ports and stored in the bu�ers residing at the output ports,if required. In su
h a swit
h, only the pa
kets destined for the same output will 
ontend forsharing bandwidth of the outgoing line. This is the least 
ontention of bandwidth expe
ted



6 CHAPTER 1. INTRODUCTIONin any swit
h. This makes an OQ swit
h an ideal swit
h in terms of performan
e. But anOQ swit
h requires huge memory bandwidth: in an n � n OQ swit
h, the bu�er memory isrequired to run n+1 times faster than the line-rate be
ause possibly n pa
kets arrive and onepa
ket departs from the same output port in a time slot. As dis
ussed above, the limitationon memory bandwidth makes it infeasible to build high-speed OQ swit
hes with large numberof ports.Though unbuildable, the performan
e of the OQ swit
h is ideal. Hen
e, it is used as atheoreti
al referen
e to whi
h the performan
e of other swit
hes 
an be 
ompared. A detailedexposition on this topi
 
an be obtained in the works by Prabhakar and M
Keown [1999℄,Chuang et al. [1999℄, Iyer et al. [2002℄, Iyer [2002℄, Keslassy [2004℄, Shah [2003℄, Krishnaet al. [1999℄ et
.
PSfrag repla
ementsInput Output

Figure 1.4: An example of an Output-Queued Swit
h.1.1.2 Input-Queued Swit
hFigure 1.5 shows a 3 � 3 IQ swit
h with a 
rossbar swit
h fabri
. The arriving pa
ketsare stored in the bu�ers at the input side. At ea
h input, there are separate bu�ers for ea
houtput, whi
h are 
alled Virtual Output Queues (VOQ). The 
rossbar fabri
 imposes thefollowing logi
al 
onstraints: in a time slot, ea
h input 
an transfer at most one pa
ket to anyoutput and ea
h output 
an re
eive at most one pa
ket from an input. For example, Figure1.5 shows an instan
e when input 1 is 
onne
ted to output 1, input 2 to output 2 and input3 to output 3. Due to the 
rossbar fabri
, at most one pa
ket arrive at ea
h output port in atime slot. Hen
e, bu�ers are not needed at the output ports.The 
rossbar 
onstraints require the bu�er memory to run only twi
e (one for read and



1.1. SWITCH ARCHITECTURES 7one for write) the line-rate of a swit
h of any number of ports. This low memory bandwidthrequirement makes it possible for an IQ swit
h to operate at very high speed. Though 
rossbar
onstraints are useful for low memory bandwidth, they 
reate the following s
heduling problem:in every time slot a s
heduling algorithm is required to �nd a \s
hedule" of the pa
kets whi
hform a \mat
hing" between inputs and outputs. Now, the performan
e of a swit
h dependson the s
heduling algorithm. For good performan
e, the algorithm is required to �nd a goods
hedule. Further, engineering 
onstraints require it to be simple so as to be implementable.In this thesis, we present methods for designing implementable high performan
e s
hedulingalgorithms.The IQ swit
h ar
hite
ture has been studied for more than a de
ade. It was �rst introdu
edby Karol et al. [1987℄. Later, the works of Tamir and Chi [1993℄Anderson et al. [1993℄Karolet al. [1992℄ led to the development of the theory of swit
h s
heduling. The Se
tion 1.2introdu
es the problem of s
heduling formally.
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33
Q32Figure 1.5: An example of an Input-Queued Swit
h.1.1.3 Combined Input-Output Queued Swit
hFigure 1.6 shows a 3� 3 CIOQ swit
h with a 
rossbar fabri
. A CIOQ swit
h is essentiallyan IQ swit
h with the 
rossbar fabri
 running at a rate higher than the line-rate. If the 
rossbar



8 CHAPTER 1. INTRODUCTIONfabri
 runs s times faster than the line-rate, then the CIOQ swit
h is said to have speedups. The speedup s > 1 in a CIOQ swit
h requires it to have bu�ers at both input and outputports. The bu�ers are required to operate rate s+1 times the line-rate in a CIOQ swit
h withspeedup s.The CIOQ swit
h ar
hite
ture was formally introdu
ed by Prabhakar and M
Keown [1999℄.They showed the possibility of emulating the performan
e of an OQ swit
h by a CIOQ swit
hwith a 
onstant� speedup. However, the algorithms required for this emulation are very 
omplexto implement due to the 
ommuni
ation overhead in a 
omputing s
hedule and the requirementof additional speedup.
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Figure 1.6: An example of a Combined Input-Output Swit
h.
�Speedup 4 was shown to be suÆ
ient in Prabhakar and M
Keown [1999℄. In Chuang et al. [1999℄ speedup2 was shown to be ne
essary and suÆ
ient.



1.2. SCHEDULING IN IQ SWITCH 91.2 S
heduling in IQ Swit
hConsider an n � n IQ swit
h. The pa
kets arriving at input i destined for output j arestored in VOQ (i; j). The o

upan
y of VOQ (i,j) is represented by Qij. As noted before, the
rossbar fabri
 imposes the following 
onstraints: in a time slot, (i) ea
h input 
an transfer atmost one pa
ket, and (ii) ea
h output 
an re
eive at most one pa
ket. The swit
h s
hedulingproblem is to �nd a s
hedule of pa
kets satisfying the above 
onstraints.A natural and a very useful representation of an IQ swit
h is a weighted bipartite graph.A weighted bipartite graph 
orresponding to a 3� 3 IQ swit
h is shown in the Figure 1.7(a).The nodes on the left represent inputs and the nodes on the right represent outputs. Anedge between input i and output j 
orresponds to (a non-empty) queue (i; j). Edge (i,j) isassigned weight whi
h is a fun
tion of the state of the swit
h. For example, weight of the edge(i,j) 
an be queue-size Qij or a fun
tion of Qij. A mat
hing y in su
h a weighted bipartitegraph 
orresponds to a possible s
hedule in the IQ swit
h. The Figure 1.7(b) shows one ofthe possible mat
hings or s
hedules for the bipartite graph in part (a) of the �gure. Thus, as
heduling algorithm is equivalent to a mat
hing algorithm on a weighted bipartite graph.
PSfrag repla
ements
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Q32

1111 2222 3333 (a) (b)Figure 1.7: (a) Bipartite graph 
orresponding to a 3�3 swit
h. (b) A mat
hing 
orrespondingto a valid s
hedule.In the rest of the se
tion, we introdu
e notation, de�nitions and the swit
h dynami
s thatshall be used in this thesis.yA mat
hing is a 
olle
tion of edges su
h that no two edges are in
ident on the same vetrex.



10 CHAPTER 1. INTRODUCTION1.2.1 Notation, Setup, and Dynami
s of a Swit
hLet time be indexed by m. Initially, m = 0. Let the n� n integer valued matrix Q(m) =[Qij(m)℄ denote the queue-sizes of the swit
h at time m � 0. We assume that the swit
hstarts empty, i.e. Q(0) = [0℄. For reasons that will be
ome apparent later in the thesis,we 
all Qi�(m) the workload at input i; Q�j(m) the workload at output j at time m; andQ��(m) the overall workload in the swit
h. We are interested in the dynami
s of Q(�), whi
hdepends on the arrival and servi
e pro
ess. The arrival pro
ess is exogenous while the servi
epro
ess depends on the s
heduling algorithm. Next, we des
ribe the ne
essary notation andassumptions on the arrival and servi
e pro
esses.Let �A(m) = [ �Aij(m)℄ denote the 
umulative arrival pro
ess until time m, i.e. �Aij(m)denote the number of pa
kets arrived at input i for output j in the time interval [0;m℄. LetAij(m) = �Aij(m) � �Aij(m � 1) be the number of pa
kets arriving at input i for output j intime slot m. Sin
e at most one pa
ket 
an arrive at input i in a time slot, the Aij(m) are0-1 variables. Let uij(k) denote the inter-arrival time between the (k� 1)st and kth pa
ket atinput i for output j. Thus, �Aij(m) = maxf` : X̀k=1 uij(k) �mg:Similarly, �D(m) = [ �Dij(m)℄ denotes the 
umulative departure pro
ess from Q(m), and D(m)denoted the number of departures in time m. We assume that �A(0) = �D(0) = [0℄.Now, the line-rates are normalized to one, and hen
e at most one pa
ket 
an arrive atan input and at most one pa
ket 
an depart from an output in a given time slot; i.e. for allm; ` � 0 and for all i; j,�Aij(m+ `)� �Aij(m) � `; �Dij(m+ `)� �Dij(m) � `: (1.1)Additionally, we assume that the arrival pro
ess satis�es the following assumption.Assumption 1. The inter-arrival times (uij(�)) are IID random variables for all i; j. Let thearrival rate-matrix be � = [�ij℄, that is,E[ �A(1)℄ = �: (1.2)



1.2. SCHEDULING IN IQ SWITCH 11Further, whenever �ij 6= 0 (i.e. pa
kets arrive at input i for output j),E[u2ij(1)℄ < 1: (1.3)Under a Bernoulli IID arrival pro
ess, fAij(m);m � 1g are Bernoulli IID random variableswith Pr(Aij(1) = 1) = �ij. Note that, the Bernoulli IID arrival pro
ess satis�es Assumption 1as stated above. As we shall see later in the thesis, the Bernoulli IID arrival pro
ess providesus with a good understanding of the throughput and delay under various swit
h algorithms.Assumption 2. We assume that the swit
h starts empty at time 0, that is,Q(0) = [0℄: (1.4)The line-rates are one and hen
e by de�nition �i� is at most 1 for all i. Sin
e the outputline-rates are one, in order to have �nite queue sizes, ��j is required to be less than 1. Motivatedby this, we 
all an arrival rate-matrix � as admissible if it is stri
tly doubly sub-sto
hasti
, i.e.�i� < 1; ��j < 1; 8 i; j: (1.5)We say that an input (output) port i (j) is 
riti
ally loaded if �i� = 1 (��j = 1).In swit
hes, queues are served by s
hedules (or permutations). Hen
e, the servi
e pro-
ess (subsequently departure pro
ess) is 
ompletely determined by fS�(m); � 2 P;m � 0g,where S�(m) denotes the 
umulative amount of time a s
heduling algorithm 
hooses to servepermutation � in the time interval [0;m℄. Let S�(0) = 0; 8� 2 P.Now, we are ready to des
ribe the dynami
s of the swit
h. The dynami
s of a swit
hhave two 
omponents: (1) Algorithm-independent dynami
s, and (2) Algorithm-dependentdynami
s.Algorithm-independent dynami
sThe dynami
s of a swit
h are 
ompletely des
ribed by the quantities Q(�); A(�), D(�) andS(�) = (S�(�))�2P. That is, the tuple X (�) = (Q(�); A(�);D(�); S(�)) des
ribes the swit
h.These quantities are related by the following basi
 queueing equation.Q(m) = Q(0) + �A(m)� �D(m)= �A(m)� �D(m); (1.6)



12 CHAPTER 1. INTRODUCTIONsin
e Q(0) = 0 from Assumption 2. In ea
h time slot, at most one of the permutations isserved, and we are interested in non-idling swit
hes. Hen
e,X�2PS�(m) = m: (1.7)Clearly, �D(m) and fS�(�); � 2 Pg are related to ea
h other. Spe
i�
ally,�Dij(m) = X�2P mX̀=1 �ij1Qij(`)>0 (S�(`)� S�(`� 1)) ; 8 i; j: (1.8)Equivalently,�Dij(m)� �Dij(m� 1) = X�2P�ij1Qij(m)>0 (S�(m)� S�(m� 1)) ; 8 i; j: (1.9)Note that, the equations (1.6)-(1.9) hold for a swit
h with any s
heduling algorithm.Algorithm-dependent dynami
sNow we des
ribe the dynami
s of a swit
h that depends on the algorithm, unlike the aboveequations. In parti
ular, an algorithm de
ides whi
h permutations are 
hosen for servi
e, thatis, fS�(�); � 2 Pg. Here, we des
ribe the dynami
s for the following algorithms of parti
ularinterest: (1) a very well-studied algorithm 
alled the Maximum Weight Mat
hing algorithm,(2) Maximum Size Mat
hing, (3) Maximal Mat
hing, and (4) Round-Robin algorithm.(1)Maximum Weight Mat
hing. Consider the swit
h bipartite graph, as in Figure 1.7. Letthe edge (i,j) be assigned weight Qij(m) at time m. Then, the basi
 Maximum WeightMat
hing algorithm, denoted by MWM, sele
ts a s
hedule 
orresponding to the maximumweight mat
hing in the bipartite graph. Equivalently, at timem, MWM 
hooses a permutation,��(m) su
h that ��(m) = argmax�2P � �Q(m): (1.10)An equivalent 
ondition is the following.S�(m) = S�(m� 1) if � �Q(m) < max�2P � �Q(m); m 2 Z+: (1.11)



1.2. SCHEDULING IN IQ SWITCH 13Now, if edge (i,j) is given weight f(Qij(m)) for some fun
tion f : R+ ! R+ , then the 
or-responding Maximum Weight Mat
hing, denote by MWMf, satis�es the following 
onditions:S�(m) = S�(m� 1) if � � f(Q(m)) < max�2P � � f(Q(m)); m 2 Z+: (1.12)An MWMf algorithm using f(x) = x�; � 2 R+ , is denoted by MWM-�. In this thesis, we willstudy the properties of MWM-� algorithms in a great detail.(2) Maximum Size Mat
hing. The Maximum Weight Mat
hing algorithm assigns the queuesize (or a fun
tion of it) as the weight of an edge, and serves the maximum weight mat
hing.Instead, 
onsider the following weight: let the weight be 0 if the queue is empty and 1 otherwise.The MaximumWeight Mat
hing algorithm with respe
t to this weight serves the mat
hing thatmaximizes the number of pa
kets transferred. That is, the algorithm serves a maximum sizemat
hing. The Maximum Size Mat
hing (MSM) algorithm satis�es the following equations.S�(m) = S�(m� 1) if � � 1(Q(m)) < max�2P � � 1(Q(m)); m 2 Z+; (1.13)where the fun
tion 1(x) = 8<:1; if x > 0;0; otherwise:(3) Maximal Mat
hing. The use of a word maximal mat
hing is not unique to one parti
ularalgorithm, but is a 
hara
teristi
 of a large 
lass, in
luding MWM and MSM des
ribed above.Intuitively, an algorithm is 
alled maximal if the s
hedule used by algorithm is su
h that nomore pa
kets 
an be transferred in the same time slot, in addition to the pa
kets transferredby the algorithm, while obeying the mat
hing 
onstraints. Pre
isely, a Maximal Mat
hingalgorithm satis�es the following 
onditions.Qij(m) > 0) "X�2P nXk=1(S�(m)� S�(m� 1))(�ik1Qik(m)>0 + �kj1Qkj(m)>0)# > 0 (1.14)(4) Round-Robin. Let all n! permutations of P be numbered from 1; : : : ; n! in some order.Let �(l) denote the permutation numbered l a

ording to this order. The Round-Robin (RR)algorithm sele
ts the s
hedule 
orresponding to the permutation �(m mod n! + 1) at timem. Hen
e, under the RR algorithm, the swit
h obeys the following equations.S�(l)(m) = S�(l)(m� 1) + 1fl=(m mod n!+1)g; m 2 Z+: (1.15)



14 CHAPTER 1. INTRODUCTION1.2.2 Performan
e MeasuresThe performan
e of a s
heduling algorithm is measured in terms of throughput and averagepa
ket delay. Intuitively, throughput is the rate at whi
h the swit
h 
an transfer data frominputs to outputs. As dis
ussed above, any rate � that 
an be transferred by swit
h has to beadmissible. Next, we de�ne the notion of stability or 100% throughput.De�nition 1 (Stable Algorithm). A s
heduling algorithm is 
alled rate-stable (equivalently,it is said to deliver 100% throughput) if under any arrival pro
ess satisfying Assumption 1 andadmissible rate-matrix �, the departure pro
ess is su
h thatlimm!1 D(m)m = �; with probability 1:A rate-stable algorithm is 
alled strongly stable iflim supm!1E[Qij(m)℄ <1; 8i; j:The delay of a pa
ket is the time spent by the pa
ket in the swit
h until it departs. ByLittle's Law, average delay is related to average queue-size for a stable system. Hen
e, in thisthesis, we may use the words average delay and average queue-size inter
hangeably.1.2.3 Previous work on S
heduling AlgorithmsInput-Queued swit
h s
heduling algorithms have been very well studied in the last de
adeor so. A lot of resear
h has been done by people in industry and a
ademi
s to obtain imple-mentable s
heduling algorithms with good performan
e guarantees. To evaluate the perfor-man
e of s
heduling algorithms, a great deal of theory has been developed. Unfortunately, notmu
h su

ess has been a
hieved either in terms of designing good implementable algorithmsor in developing theory to analyze the delay of s
heduling algorithms.Previous work on Design of AlgorithmsThe initial work on the design of s
heduling algorithms fo
used on obtaining stable s
hedul-ing algorithms. M
Keown et al. [1996℄ showed that under a Bernoulli IID arrival pro
ess, Max-imum Weight Mat
hing (with queue-size as weight) is stable. A similar result in the 
ontextof Radio-hop networks was obtained by Tassiulas and Ephremides [1992℄. Re
ent results by



1.2. SCHEDULING IN IQ SWITCH 15Prabhakar and M
Keown [1999℄, Chuang et al. [1999℄ and Krishna et al. [1999℄ proposedalgorithms for CIOQ swit
hes to emulate the performan
e of an OQ swit
h with speedupbetween 2 and 4. These algorithms are stable and permit the use of sophisti
ated me
hanismsfor supporting quality-of-servi
e (QoS).However, the above algorithms are too 
ompli
ated to implement. For example, the bestknown algorithm to �nd a Maximum Weight Mat
hing requires O(n3) operations in the worst
ase Edmonds and Karp [1972℄. That is, for a 30-port swit
h, it will require 27000 operations.Thus, a swit
h operating at 10Gbps, with pa
ket size of 50 bytes, will be required to do thismany operations roughly every 5-10ns. This is infeasible under 
urrent te
hnology. Further,due to the ba
k-tra
king nature of the routine involved in su
h an algorithm, it is not suitablefor pipelining. Similar reasons hold for other well-known algorithms.Implementation 
onsiderations have therefore led to the proposal of a number of pra
ti
ables
heduling algorithms. A very su

essful algorithm, 
alled iSLIP, was proposed by M
Keown[1995℄ and M
Keown [1999℄. The iSLIP algorithm is a maximal mat
hing algorithm withthe possibility of distributed implementation. Due to the simpli
ity of iSLIP, its variants areimplemented in some 
ommer
ially available routers. The iSLIP algorithm, though very simpleto implement, performs poorly. To improve the performan
e while retaining simpli
ity a numberof other algorithms have been proposed; notably iLQF by M
Keown [1995℄, RPA by Marsanet al. [1999℄, MUCS by H.Duan et al. [1997℄, Parallel Iterative Mat
hing by Anderson et al.[1993℄ and Wave Front Arbiter by Tamir and Chi [1993℄. However, these algorithms performpoorly 
ompared to MWM when the input traÆ
 is non-uniform: they indu
e very large delaysand their throughput 
an be less than 100%.More re
ently, some parti
ularly simple-to-implement s
heduling algorithms have been pro-posed by Chang et al. [2001℄ and by Iyer [2002℄ and proven to be stable. But these algorithmsrequire multiple swit
h fabri
s. Essentially they redu
e the 
omplexity of the s
heduling al-gorithm by additional (expensive) resour
es. Nevertheless, these algorithms demonstrate asigni�
ant point: delivering 100% throughput does not 
ompli
ate the s
heduling problem.On the other hand, in order to keep delays small, it seems ne
essary to �nd very good mat
h-ings; and �nding good mat
hings is generally very hard, requiring 
omplex algorithms.Previous work on Analysis of AlgorithmsA signi�
ant amount of resear
h has been done to develop methods for analyzing the per-forman
e of algorithms. A great amount of su

ess has been a
hieved in developing methods



16 CHAPTER 1. INTRODUCTIONfor throughput analysis, but delay analysis methods are still la
king.Throughput analysis methods are mainly based on Lyapunov fun
tion theory and 
uidmodel te
hniques. The method of using Lyapunov fun
tions is quite an
ient. In the 
on-text of swit
hing, it was �rst used by Tassiulas and Ephremides [1992℄ and M
Keown et al.[1996℄ to prove the stability of the Maximum Weight Mat
hing algorithm under Bernoulli IIDarrival pro
esses. Subsequently, it has been utilized very heavily. For example, in Tassiulas[1998℄Keslassy and M
Keown [2001a℄Gia

one et al. [2003℄Marsan et al. [2003℄.The 
uid model te
hnique is one of the signi�
ant development of the 1990s for throughputanalysis of sto
hasti
 networks. Dai and Prabhakar [2000℄ were the �rst ones to apply the 
uidmodel te
hnique in the 
ontext of swit
h s
heduling algorithms. They proved rate-stability ofthe MWM algorithm and showed that any maximal mat
hing is stable for a CIOQ swit
h atspeedup 2 or more. This method is quite general and has been used extensively. For example,in Shah [2001℄.The de�nition of throughput assumes availability of in�nite size bu�ers. In pra
ti
e, routershave �nite size bu�ers. Hen
e, sometimes throughput fails to 
apture the notion of "pra
ti
al
apa
ity". To explain this, we present an example. Consider two algorithms, Algo2 and iSLIP.A detailed des
ription of the Algo2 
an be found in Se
tion 3.1 of Chapter 3. The Algo2provides 100% throughput (i.e. stable) while iSLIP algorithm is believed to be unstable fornon-uniform traÆ
. Now for a parti
ular non-uniform traÆ
 pattern (
alled Diagonal traÆ
pattern), we �nd the simulation results as shown in Figure1.8. The Figure 1.8 plots averagequeue-length versus the normalized load for various algorithms. The performan
e under theMWM algorithm is plotted as a referen
e. The �gure suggests that at load 0:5 (i.e. at 50%loading) the performan
e of iSLIP is vastly better than Algo2. In parti
ular, at the load of 0:5the average queue-size under iSLIP is less than 10 while the average queue-size under Algo2 isso large that 
an not be plotted in the �gure (i.e. a lot larger than 10000). Thus, if a routerhas bu�er size equal to 1000, then the e�e
tive throughput a
hieved at load 0:5 under iSLIPis at least is 99% of arriving traÆ
 while the Algo2 will 
ertainly lose a signi�
ant fra
tion ofthe throughput. Thus, iSLIP seems mu
h better algorithm than Algo2 for parti
ular situationexplained above.The above example motivates the ne
essity of studying queue-size or delay indu
ed by analgorithm. Unlike throughput analysis methods, delay analysis methods are not well developed.The main reason is the inherent diÆ
ulty in analyzing delay in 
omplex systems like swit
hes.However, some interesting approa
hes for analysing the delay of a swit
h algorithm have been
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Figure 1.8: Comparison of Algo2 and iSLIP.developed, whi
h we now des
ribe.Prabhakar and M
Keown [1999℄ introdu
ed the notion of Output Queued swit
h emulation.This allows for the evaluation of the delay of an algorithm as it is relatively easy to expli
itlyevaluate delay of an OQ swit
h for a large 
lass of arrival pro
ess. Unfortunately, OQ emulationis a rare property and hen
e this strategy is not very useful in general.Leonardi et al. [2001℄ obtained delay bounds for the Maximum Weight Mat
hing algorithmfor Bernoulli IID arrival pro
ess. Unfortunately, their method, as presented, does not seem toapply well to general algorithms.Summary of Previous WorkThe previous work 
an be summarized with the help of Figure 1.9. This �gure plots theknown algorithms and ar
hite
tures with respe
t to implementability and performan
e. TheOQ swit
h as well as the CIOQ swit
h (emulating an OQ swit
h) are ideal in performan
e butpra
ti
ally infeasible to implement in a high speed swit
h. The iSLIP algorithm and its variantsare very good in terms of implementation but very poor in performan
e. Algorithms based onMaximum Weight Mat
hing provide Stati
al guarantees but still remain unimplementable.The questions that remain open are: (i) what is an implementable algorithm that is good inperforman
e? (A in Figure 1.9); and (ii) what is an ideal s
heduling algorithm for an IQ swit
h



18 CHAPTER 1. INTRODUCTIONin terms of throughput and delay? (B in Figure 1.9).
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Figure 1.9: Summary of previous results: performan
e v/s implementability.1.3 ContributionsThis thesis has two main 
ontributions: �rst, we develop new design methods for imple-mentable algorithms with performan
e guarantees; se
ond, we develop a new analysis method,based on Heavy TraÆ
 theory, to study the delay of algorithms.1.3.1 Design MethodsWe exploit three design te
hniques to obtain simple-to-implement high performan
e s
hedul-ing algorithms: (1) Randomization with Memory, (2) Use of arrival information and (3) Par-allelism.For more than a de
ade, randomization has been used in many problems to design simplealgorithms (see Motwani and Raghavan [1995℄). The basi
 idea behind randomized algorithms



1.3. CONTRIBUTIONS 19is as follows: the de
ision is based on a few randomly 
hosen samples instead of the wholestate. In many appli
ations, 
lever 
hoi
e of few random samples gives ex
ellent performan
e.Unfortunately, in the 
ontext of swit
h s
heduling, randomization alone does not help inobtaining a good s
heduling algorithm. Observe though that the state (i.e. queue-sizes) ofa swit
h 
hanges very little between su

essive time slots. Hen
e a heavy s
hedule remainsheavy (with respe
t to queue-size as weight) in the su

essive time slots. Thus, the use ofinformation from the past, or memory, is very useful. We use randomization and memoryalong with the stru
ture of mat
hings to obtain the high performan
e algorithm LAURA.In swit
hes, the goal of a s
heduling algorithm is to keep the delay or queue-sizes small.To do so, the algorithm should serve longer queues with higher priority. The queues to whi
harrivals happen often are more likely to be longer. Hen
e, looking at the queues that areexposed by arrivals leads to a way to dis
over good s
hedules. The algorithm SERENA isbased on this idea.Finally, the stru
ture of permutations allows for the parallelism in dis
overing good s
hedulefrom a previous s
hedule. We use this idea to obtain the algorithm APSARA.The algorithms implemented in the 
urrent routers (for example Cis
o [2000℄) have poorperforman
e. Hen
e, in order to guarantee high performan
e, an ISP over provisions thenetwork in terms of routers. We believe that by employing the algorithms proposed in thisthesis (espe
ially APSARA and SERENA), the performan
e of routers will improve signi�
antly.Hen
e, the ISP using these new routers will require a lot fewer routers in order to guaranteethe same level of performan
e. Consequently, the 
ost of operating a 
ore-network will redu
edrasti
ally.1.3.2 Analysis MethodsPerhaps the most important 
ontribution of this thesis is the delay analysis method basedon the Heavy TraÆ
 Theory.The Heavy TraÆ
 theory has been well developed over the past two to three de
ades.As the name suggests, roughly speaking under heavy traÆ
 s
aling the system is loaded
riti
ally. In this regime, for many networking systems, a phenomenon 
alled \state spa
e
ollapse" o

urs. This means that the state of the system under heavy traÆ
 lives in asmaller dimensional spa
e 
ompared to the original spa
e. Stolyar [2004℄ studied the statespa
e 
ollapse property of MWM algorithms under the spe
ial 
ase of heavy traÆ
 in whi
honly one logi
al resour
e (i.e. one input port or one output port) is saturated while the rest



20 CHAPTER 1. INTRODUCTIONare underloaded. The result obtained by Stolyar [2004℄ strongly depends on the fa
t that onlyone logi
al resour
e is saturated. The te
hniques do not extend to the 
ase when multipleresour
es are saturated.In this thesis, we study the swit
hes under heavy traÆ
 when one or more ports aresaturated. When all ports are saturated, we �nd that the state spa
e 
ollapse region isdi�erent for di�erent algorithms, unlike the results of Stolyar [2004℄, who �nds the same statespa
e 
ollapse for all algorithms. Our results build on the re
ent work by Bramson [1998℄ andWilliams [1998℄ in the heavy traÆ
 theory.The state spa
e 
ollapse 
hara
terization of algorithms extends our understanding of theperforman
e of algorithms. First, we use this 
hara
terization to �nd an optimal algorithmin terms of throughput and average delay. In parti
ular, we show that the formal limit ofMWM-� algorithm as � ! 0+ is an optimal algorithm. As explained in Chapter 4, this is aMaximum Size Mat
hing algorithm whi
h breaks ties among multiple maximum size mat
hingby sele
ting the maximum weighted maximum size mat
hing.Next, we use this te
hnique to demonstrate that the MWM (i.e. MWM-1) algorithm isnot optimal. Thus, we show that the long-standing folk-lore in the swit
hing 
ommunity aboutthe optimality of MWM is false.Finally, we use these results to explain the following intriguing 
onje
ture made by Keslassyand M
Keown [2001a℄ based on empiri
al observations.Conje
ture 1. For � 2 R+ , the average delay of the MWM-� algorithm de
reases as �de
reases.It 
an be shown that all MWM-� algorithms are stable for � 2 R+ , using the traditionalmethod based on 
uid model (see Se
tion 4.2 of Chapter 4). But, traditional methods fordelay analysis are not useful in explaining the delay behavior of algorithms as 
laimed by theConje
ture 1. Again, we use the state spa
e 
ollapse 
hara
terization of MWM-� algorithmsto explain the observed monotoni
ity in the delay behavior of the MWM-� algorithms.Our methods are general and we believe that they 
an be easily extended to other s
hedulingproblems where a s
heduling de
ision 
orresponds to an extreme point of a 
losed and bounded
onvex set in Rd , for some �nite d.



1.4. ORGANIZATION OF THESIS 211.4 Organization of ThesisThe rest of the thesis is organized as follows. In Chapter 2, we prove the throughput anddelay properties of MWM and its approximations under Bernoulli IID traÆ
. We develop amethod based on Lyapunov fun
tions to obtain the delay bounds.In Chapter 3, we present various implementable high-performan
e s
heduling algorithms.We prove their performan
e guarantees and dis
uss implementation details.Chapter 4 studies a 
lass of swit
h algorithms under heavy traÆ
 s
aling. In order to obtainthe state spa
e 
ollapse property of algorithms, we �rst study the algorithms under 
uid s
aling.This allows us to obtain two types of results: �rst, the rate-stability of algorithms; se
ond,the 
hara
terization of the state spa
e 
ollapse spa
e. Using the state spa
e 
ollapse spa
e,we obtain a 
hara
terization of a delay optimal s
heduling algorithm and o�er an explanationfor the Conje
ture 1.Finally, in Chapter 5 we present the 
on
lusions of the thesis and dis
uss future resear
hdire
tions.
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CHAPTER 2
Maximum Weight Mat
hing

The Maximum Weight Mat
hing(MWM) algorithm has been very well studied in the 
on-text of IQ swit
h s
heduling. One of the main reason for the popularity of MWM is the naturalasso
iation of the swit
h s
heduling problem with bipartite mat
hing problem.The MWM and its approximation algorithms are 
entral to the study of this thesis. Hen
e,this 
hapter is dedi
ated to the study of properties of MWM and its approximation algorithms.In Se
tion 2.1, we brie
y re
all the de�nition and known algorithms to �nd MWM. We statethroughput and delay properties of MWM. We use method based on Lyapunov fun
tions toderive these properties of MWM. The ex
ellent performan
e of MWM raises the followingquestion: do approximate MWM algorithms have good properties? In Se
tion 2.2, we addressthis question. We introdu
e a 
lass of approximate MWM algorithms whi
h we denote by(�,�)-MWM with approximation parameters � 2 Z+; � 2 (0; 1℄. This notion of (�,�)-MWM is motivated by the theory of approximation algorithms. Again, we use Lyapunovfun
tions based methods to analyze throughput and delay properties of these algorithms. We�nd the following intuitively pleasing 
on
lusion: a good approximate MWM algorithm alsoapproximates the performan
e of MWM very well in terms of throughput and delay.We dis
uss the strength and weakness of the results of this 
hapter in Se
tion 2.3. Someof the results that are presented in this se
tion are known. As noted earlier in the Preliminaries,23



24 CHAPTER 2. MAXIMUM WEIGHT MATCHINGthe ba
kground, related work and 
itations are presented in the bibliographi
 notes (Se
tion2.4). We note that, the results of this 
hapter will be useful throughout this thesis in various
ontexts.2.1 The Basi
 MWMConsider an n�n swit
h operating under the MWM algorithm. Let the arrival pro
ess beBernoulli IID with admissible arrival rate-matrix �. In this 
hapter, we only 
onsider BernoulliIID arrival pro
ess. General arrival pro
esses are 
onsidered in Chapter 4.Next, we re
all de�nition of MWM. Let � = [�ij ℄ 2 P be one of n! possible s
hedulesa s
heduling algorithm 
an 
hoose. De�ne weight of the s
hedule � at time m, denoted byw�(m), as w�(m) = Q(m) � � =Xij �ijQij(m): (2.1)The MWM algorithm s
hedules pa
kets a

ording the s
hedule with the maximum weight.That is, MWM 
hooses a s
hedule ��(m) at time m, where��(m) = argmaxfw�(m) : � 2 Pg:If there are multiple s
hedules with the highest weight, then MWM breaks tie arbitrarily. Aswe shall see later in this thesis, a 
lass of Maximum Weight Mat
hing algorithms is obtainedby 
hanging the de�nition of weight. In this 
hapter, we fo
us only on the weight as de�nedin (2.1). We shall dis
uss how our results of this 
hapter 
hange when weight fun
tions di�erin se
tion 2.3.We brie
y note that, �nding a MWM s
hedule is well-known algorithmi
ally. There areknown polynomial time (in n) algorithms that �nd MWM (independent of weight). Thesealgorithms are 
lassi�ed as network-
ow type algorithms. See Se
tion 2.4 for detailed refer-en
es.2.1.1 Properties of MWMNow, we state the results about throughput and delay property of the MWM.



2.1. THE BASIC MWM 25Theorem 1. Consider a swit
h operating under MWM algorithm. Let the arrival pro
ess beBernoulli IID with admissible arrival rate-matrix �. Then, the swit
h is strongly stable. Further,the average queue-size is bounded above asXij E[Qij ℄ � n21� �� : (2.2)Proof. We �rst prove the strong stability of the swit
h under MWM algorithm. To do so, weuse the quadrati
 Lyapunov fun
tion, whose value at time m is given as follows.L(Q(m)) = Q(m) �Q(m) =Xij Q2ij(m): (2.3)The results of Kumar and Meyn [1995℄ suggest that to prove strong stability, that is,lim supm!1E[Qij(m)℄ <1;8i; j;it is suÆ
ient to show that for all time m,E[L(Q(m+ 1))� L(Q(m))jQ(m)℄ � ��kQ(m)k1 +B; (2.4)where � and B are positive 
onstants. We note that, the same 
on
lusion also follows by theFoster's Criteria (see books by Asmussen [1987℄ and Meyn and Tweedie [1993a℄ and works byMeyn and Tweedie [1993b℄ and Meyn and Tweedie [1993
℄ for a detailed exposition on theuse of Foster's Criteria).Now we prove (2.4). Consider the following.L(Q(m+ 1))� L(Q(m)) = Xi;j [Q2ij(m+ 1)�Q2ij(m)℄= Xi;j [Qij(m+ 1)�Qij(m)℄[Qij(m+ 1) +Qij(m)℄:Let ��(m) be the s
hedule used by MWM at time m, D(m) be the indu
ed departures at timem and A(m+ 1) be the arrivals to queues at time m+ 1.Qij(m+ 1) = Qij(m) +Aij(m+ 1)�Dij(m); (2.5)Dij(m) = ��ij(m)1fQij (m)>0g: (2.6)



26 CHAPTER 2. MAXIMUM WEIGHT MATCHINGFrom (2.6), we obtain,L(Q(m+ 1)) � L(Q(m)) = Xi;j 2Qij(m) (Aij(m+ 1)�Dij(m))+ Xi;j (Aij(m+ 1)�Dij(m))2: (2.7)Now, in a time slot, at most n pa
kets arrive and n pa
kets depart as well as (Aij(m) �Dij(m)) 2 f�1; 0; 1g. Hen
e,Xi;j (Aij(m+ 1)�Dij(m))2 � 2n: (2.8)Also, (2.6) implies that Qij(m)Dij(m) = Qij(m)��ij(m): (2.9)From (2.7),(2.8) and (2.9), we obtainL(Q(m+ 1)) � L(Q(m)) � Xi;j 2Qij(m) �Aij(m+ 1)� ��ij(m)�+ 2n: (2.10)Taking 
onditional expe
tation with respe
t to Q(m) in (2.10), we obtainE [L(Q(m+ 1))� L(Q(m))jQ(m)℄ � 2Xij Qij(m) �E �Aij(m+ 1)� ��ij(m)jQ(m)��+ 2n= 2Xij Qij(m)[�ij � ��ij(m)℄ + 2n= 2(Q(m) � ��Q(m) � ��(m)) + 2n: (2.11)We used the fa
t that arrival pro
ess is Bernoulli IID to obtain (2.11).Now the arrival rate-matrix � is doubly sub-sto
hasti
. Hen
e, we 
an upper bound �
omponent-wise as � � ��0� n2Xk=1�k�k1A ; (2.12)where for all k, �k 2 P, �k 2 R+ and Pk �k = 1.



2.1. THE BASIC MWM 27Also, by property of MWM,Q(m) � � � Q(m) � ��(m); 8� 2 P: (2.13)From (2.11),(2.12) and (2.13), we obtainE[L(Q(m+ 1)) � L(Q(m))jQ(m)℄ � �2(1� ��)(Q(m) � ��(m)) + 2n: (2.14)Now the weight of �� is at least as large as the average weight of a mat
hing when it is
hosen uniformly at random from P. When a mat
hing is 
hosen uniformly at random, edge(i,j) belong to mat
hing with probability 1=n. Hen
e average weight of randomly 
hosenmat
hing is Q(m) � (1=n)ij = 1nXi;j Qij(m) = 1nkQ(m)k1;where kak1 =Pij aij for a 2 M + . Now, we obtainQ(m) � ��(m) � 1nkQ(m)k1: (2.15)From (2.14) and (2.15) we obtainE[L(Q(m+ 1))� L(Q(m))jQ(m)℄ � �2(1� ��)n kQ(m)k1 + 2n: (2.16)Thus, (2.16) satis�es the desired 
ondition (2.4). This 
ompletes the proof of strong stabilityof MWM algorithm.Now, we prove the 
laimed bound on the average queue-size. Consider the following.E[L(Q(m+ 1))℄ = E fE[L(Q(m+ 1)) � L(Q(m))jQ(m)℄g +E[L(Q(m))℄� �2(1� ��)n E[kQ(m)k1℄ + 2n+E[L(Q(m))℄: (2.17)Here, the (2.17) follows from (2.16).Now teles
opi
 summation of (2.17) from m = 0 to m = T � 1 and re
alling that swit
hstarts empty, we obtainE[L(Q(T ))℄ � �2(1� ��)n T�1Xm=0E[kQ(m)k1℄ + 2n: (2.18)



28 CHAPTER 2. MAXIMUM WEIGHT MATCHINGNote that, by de�nition E[L(Q(T ))℄ � 0: (2.19)Further, sin
e swit
h is strongly stable under MWM and Q(m) forms an irredu
ible, aperiodi
Markov 
hain, it is ergodi
 and 
onverges to equilibrium distribution. Hen
e,limT!1 1T T�1Xm=0E[kQ(m)k1℄ = E[kQ(1)k1℄; (2.20)where Q(1) is the queue-size random variable distributed a

ording to its stationary (equilib-rium) distribution.From (2.18),(2.19) and (2.20) we obtain that the stationary average queue-size is boundedabove as Xi;j E[Qij ℄ � n21� �� : (2.21)This 
ompletes the proof of Theorem 1.A straightforward 
orollary of the Theorem 1 is as follows.Corollary 1. Consider a swit
h operating under MWM algorithm. Let the arrival pro
essbe Bernoulli with admissible arrival rate-matrix �. Then, the net stationary average delay isbounded above as E[D℄ � n2���(1� ��) : (2.22)Proof. By Little's Law, for any stable system, the average queue-size, E[Q℄, and averagedelay, E[D℄, are related as E[D℄�� = E[Q℄; (2.23)where �� is the arrival rate to the system. Now, when the whole swit
h, when 
onsidered asone system, the net queue-size is kQ(m)k1 at time m and the net arrival rate is ��� =Pi;j �ij.Hen
e, by Theorem 1 and (2.23), we obtain the statement of Corollary 1.



2.2. APPROXIMATE MWM ALGORITHMS 292.2 Approximate MWM AlgorithmsIn this se
tion, we 
onsider a 
lass of approximate MWM algorithms. First, we de�nethese algorithms.De�nition 2 ((�,�)-MWM). Let � 2 Z+ and � 2 (0; 1℄. Consider an algorithm A and letqueue-size of swit
h under this algorithm be Q(m) at time m. Let �A(m) denote the s
heduleused by algorithm A at time m. Now, de�ne�(m) = max�2P f(Q(m) � �)� �(Q(m) � �A)g: (2.24)Then algorithm A is 
alled (�,�)-MWM if (�(m),Q(m)) is jointly stationary and ergodi
 aswell as limsupm!1E[�(m)℄ � � <1.The above de�nition of (�,�)-MWM algorithm in
ludes a very wide 
lass of approximationalgorithms. Before stating properties of these algorithms, we present few examples of su
halgorithms that arise naturally.2.2.1 Examples of (�,�)-MWMWe present two examples of su
h approximation algorithms. There are many other ap-proximations that naturally arise, either due to simpli�
ation of MWM algorithm or due tostru
ture of the problem. In parti
ular, all the algorithms presented in the Chapter 3 belongto this 
lass.Example 1. Consider a bat
h MWM algorithm. Suppose due to the slow logi
 of a swit
h,MWM algorithm 
an 
ompute s
hedule every K times slots. Thus, algorithm uses queue-sizewhi
h may be at most K time slots old to 
ompute new s
hedule. Further, the same s
heduleis used for K time slots. Now sin
e at most one arrival 
an o

ur to ea
h input and at mostone arrival 
an happen to ea
h output, the weight of a mat
hing or s
hedule 
hange at mostby KN in K time slots. Further, the queue-size matrix used to 
ompute a new mat
hing 
analso be di�erent from a
tual queue-size matrix by KN pa
kets. Hen
e, the weight of s
heduleused by bat
h MWM is at most 2KN less than the weight of MWM. That is, bat
h MWM is(2KN ,1)-MWM.Example 2. Consider a well-known greedy maximum weight mat
hing algorithm. The algo-rithm �nds s
hedule as follows:



30 CHAPTER 2. MAXIMUM WEIGHT MATCHING1. Sort all n2 queue-sizes in de
reasing order.2. Pi
k the largest queue-size and mat
h 
orresponding input-output pair.3. Remove all edges in
ident on this input-output pair.4. Repeat steps 1-3 till no more inputs-outputs are left unmat
hed.It is well known that the weight of greedy maximum weight mat
hing algorithm is at leasthalf the weight of maximum weight mat
hing s
hedule for the same queue-size. Thus, greedymaximum weight mat
hing is (0,0:5)-MWM algorithm.2.2.2 Properties of (�,�)-MWMWe state the following theorem 
hara
terizing the throughput and average queue-size of(�,�)-MWM algorithms.Theorem 2. Consider a swit
h operating under a (�,�)-MWM algorithm. Let the arrivalpro
ess be Bernoulli with admissible arrival rate-matrix �. Then, the swit
h is strongly stableif �� < �. Further, when �� < �, the stationary average queue-size is bounded above asXij E[Qij ℄ � n(n+ �)�� �� : (2.25)Proof. The proof is very similar to that of Theorem 1. Let the (�,�)-MWM algorithm under
onsideration be denoted by A. As in proof of Theorem 1, we �rst prove the strong stability ofalgorithm A and then obtain bound on average queue-size. Now, re
all the quadrati
 Lyapunovfun
tion, whose value at time m isL(Q(m)) = Q(m) �Q(m) =Xij Q2ij(m): (2.26)To prove the strong stability under Bernoulli IID arrival pro
ess with rate-matrix � su
h that�� < �, we will show that under these 
onditions, for all time m,E[L(Q(m + 1)) � L(Q(m))jQ(m)℄ � ��kQ(m)k1 +B; (2.27)where � and B are positive 
onstants.



2.2. APPROXIMATE MWM ALGORITHMS 31Following the arguments of the proof of Theorem 1, similar to (2.11), we obtainE [L(Q(m+ 1)) � L(Q(m))jQ(m)℄ � 2(Q(m) � ��Q(m) � �A(m)) + 2n; (2.28)where �A(m) is the s
hedule used by algorithm A at time m.By de�nition of (�,�)-MWM, A has the property thatE[�(m)℄ � �; (2.29)where �(m) = �max�2P (Q(m) � �)�Q(m) � �A(m): (2.30)Now the arrival rate-matrix � is su
h that �� < �. As before, we 
an upper bound �
omponent-wise as � � ��0� n2Xk=1�k�k1A ; (2.31)where for all k, �k 2 P, �k 2 R+ and Pk �k = 1.From (2.28)-(2.31) leads to the following.E [L(Q(m+ 1)) � L(Q(m))jQ(m)℄ � �2(�� ��)max�2P (Q(m) � �) + 2� + 2n:(2.32)We have used stationarity of �(m) in the above inequality.Using inequality (2.15) along with (2.32), we 
on
ludeE[L(Q(m+ 1)) � L(Q(m))jQ(m)℄ � �2(�� ��)n kQ(m)k1 + 2(n+ �): (2.33)Thus, (2.33) satis�es the desired 
ondition (2.27). This 
ompletes the proof of strong stabilityof (�,�)-MWM algorithm whenever �� < �.Now, we prove the 
laimed bound on the average queue-size. Similar to arguments ofTheorem 1 (i.e. (2.17)-(2.20)) yield the following bound on stationary queue-size.Xi;j E[Qij ℄ � n(n+ �)�� �� : (2.34)



32 CHAPTER 2. MAXIMUM WEIGHT MATCHINGThis 
ompletes the proof of Theorem 2.Similar to Corollary 1, we obtain the following Corollary. We skip the proof as it is exa
tlythe same as Corollary 1.Corollary 2. Consider a swit
h operating under (�,�)-MWM algorithm. Let the arrival pro
essbe Bernoulli with admissible arrival rate-matrix � su
h that �� < �. Then, the net stationaryaverage delay is bounded above as E[D℄ � n(n+ �)���(�� ��) : (2.35)2.3 Chapter Summary and Dis
ussionIn this 
hapter, we studied the throughput and delay property of s
heduling algorithmsbased on MWM algorithm under Bernoulli IID arrival pro
ess. We �rst stated the knownstability result about MWM. We obtained bound on the average delay for MWM. Motivatedby the de�nition of approximation algorithms, we de�ne (�; �)-MWM algorithms. We 
hara
-terized their throughput region and obtained bounds on average delay. The main tool that weutilized to analyze throughput and delay of algorithms is based on the asso
iated Lyapunovfun
tion. The method developed in this 
hapter, espe
ially to bound average delay, is quitegeneral in its s
ope of appli
ation. Though, it requires further work to obtain sharper bounds.Next, we explain the s
ope of the method and dis
uss its weakness.The method is quite general. Given a stable algorithm for whi
h a Lyapunov fun
tion isknown, the above method gives the bound on average \dis
rete derivative" of the Lyapunovfun
tion as long as the algorithm is MWM with respe
t to the weight that is equal to the\dis
rete derivative" of Lyapunov fun
tion. This in turn 
an possibly lead to bounds on averagedelay. We explain this via the following example.Example 3. Consider MWM-2 algorithm where weight of edge (i,j) in swit
h bipartite graphis Q2ij(m) at time m. Equivalently, MWM-2 
hooses ��2(m) as s
hedule at time m, where��2 = argmaxfXi;j Q2ij�ij : � 2 Pg:For this algorithm, 
onsider the following 
ubi
 Lyapunov fun
tion, whose value at time m is



2.3. CHAPTER SUMMARY AND DISCUSSION 33given as L(Q(m)) = Xi;j Q3ij(m): (2.36)Consider the dis
rete derivative of this 
ubi
 Lyapunov fun
tion. After substitution and sim-pli�
ation (similar to that in the proofs of Theorems 1 and 2), we obtainL(Q(m+ 1)) � L(Q(m)) = Xi;j 3Q2ij(m)Æij(m) + 3Qij(m)Æ2ij(m) + Æ3ij(m); (2.37)where Æij(m) = Aij(m + 1) � Dij(m). Considering two 
ases: (i) Q� = maxi;j Qij > 2�n�and (ii) Q� = maxij Qij > 2�n� , for any � > 1 and � = (1 � ��). Now sin
e MWM-2
hooses s
hedule that maximizes the weight, where weight is quadrati
 queue-size, we obtainthe following 
rude bound on (2.37).L(Q(m+ 1)) � L(Q(m)) � 1fQ�> 2�n2� g0��3�(1� 1=�)n Xi;j Q2ij(m)1A+ 12�n3=�+ 2n� 0��3�(1� 1=�)n Xi;j Q2ij(m)1A+ 12�n3=�+ 2n: (2.38)This in turn will lead to the following bound on stationary queue-size.Xi;j E[Q2ij ℄ � 4�n3 + 2n=3(1� ��)(1� 1=�) : (2.39)Certainly, (2.39) 
an imply bound on Pi;j E[Qij ℄. Moreover, the bound (2.39) itself is inter-esting.The weakness of this method is the same as the strength: its too general. Due to itsgenerality, it provides weaker bounds. To expose the weakness, we obtain a dire
t bound ona trivial Random algorithm. This bound turns out to be better than that of Theorem 1 !Certainly, we believe the MWM is better than Random algorithm.Example 4. The Random algorithm does the following: every time, pi
k a mat
hing � uni-formly at random from all n! mat
hing of P and use it as the s
hedule. Under Bernoulli IIDuniform traÆ
, the arrival rates are su
h that, �ij = ��n ;8i; j. Under Random algorithm, the



34 CHAPTER 2. MAXIMUM WEIGHT MATCHINGprobability that queue (i,j), is servi
ed at any time is 1=n independent of every time. Thus,ea
h queue Qij(m) has Bernoulli IID arrival pro
ess of rate ��=n and Bernoulli IID servi
epro
ess of rate 1=n. The average queue-size of su
h a queue is a well-known queuing fa
t,whi
h is as follows. E[Q℄ = ��(n� 1)n(1� ��) : (2.40)Summing over all n2 queues, we obtain,Xi;j E[Qij ℄ = n(n� 1)��1� �� : (2.41)A straightforward 
omparison of bounds from Theorem 1 and (2.41) shows that (2.41) issmaller. We strongly believe that Random is not better than MWM. Thus, exposes weaknessof our method.The main out
ome of this 
hapter is the following: MWM and its approximations have verygood throughput and delay property. This makes them very attra
tive s
heduling algorithmsfor the purpose of implementation. Unfortunately, due to the implementation 
on
erns, MWMor its known approximations are not not feasible to implement. In the next 
hapter, we willpresent new design te
hniques to obtain simple-to-implement approximations of MWM.2.4 Bibliographi
 NotesThe problem of �nding MWM 
an be posed as a Linear program. Hen
e, for example,Simplex Algorithm 
an be used to �nd MWM Dantzig [1963℄. However, it may not �nd MWMs
heduling in polynomial time (in n). In 1970s and 1980s, a lot of interesting work was done inthe �eld of Combinatorial algorithms to �nd good algorithm for MWM. Notably, an algorithmbased on the results of Edmonds and Karp �nds MWM in O(n3) time (see works by Edmonds[1965℄ and Edmonds and Karp [1972℄). This algorithm along with many other related network
ow algorithms 
an be found in monograph by Tarjan [1983℄.The result about stability of MWM under Bernoulli IID traÆ
 was �rst established byM
Keown et al. [1996℄. The results of Tassiulas and Ephremides [1992℄ in the 
ontext of Radiohop networks imply these results. Both of these results used quadrati
 Lyapunov fun
tion inorder to a
hieve throughput results.



2.4. BIBLIOGRAPHIC NOTES 35The de�nition of (�,�)-MWM is motivated from the 
lassi
al notion of 
ompetitive ra-tio for online algorithm whi
h was �rst introdu
ed by Sleator and Tarjan [1985℄. Our main
ontributions in this Chapter are the method for obtaining bound on average delay and thestudy of (�,�)-MWM. These results are primarily based on work by Shah and Kopikare [2002℄.Initial results on obtaining delay bounds for MWM was done by Leonardi et al. [2001℄ usingsomewhat di�erent method. Though, their results are qualitatively very similar, their methoddoes not extend as well as our method. Another appli
ation of the method of this 
hapter 
anbe found in work by Shah [2003℄.Histori
ally, obtaining bounds on delay or queue-size for 
omplex queuing system has been
entral to the study of sto
hasti
 networks. There are known results in past that utilizedLyapunov fun
tion to obtain bounds on delay. For example, see works by Hajek [1982℄, Kumarand Kumar [1994℄.
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CHAPTER 3
Implementable High-Performan
e Algorithms

This 
hapter presents simple-to-implement and high-performan
e s
heduling algorithms forIQ swit
hes. The results of Chapter 2 show that Maximum Weight Mat
hing has maximalthroughput and low pa
ket delay. This makes MWM a very attra
tive algorithm. However,MWM is not implementable for the following reasons: the best known algorithm to �ndMaximum Weight Mat
hing requires O(n3) operations in the worst 
ase. For example, for a30 port swit
h, it will require 27000 operations. Thus, a swit
h operating at 10Gbps, withpa
ket size of 50 bytes will be required to do so many operations roughly every 5-10ns. This isinfeasible under 
urrent te
hnology. Further, due ba
k-tra
king type routine involved in su
halgorithm, it is not suitable for pipelining. Similar to MWM, other known good algorithmsare very diÆ
ult to implement. This leads us to the following questions: is it possible for analgorithm to 
ompete with the throughput and delay performan
e of MWM and yet be simpleto implement? if yes, what feature of the s
heduling problem should be exploited?In this 
hapter, we answer the above questions in aÆrmative by exploiting the followingfeatures: (1) Randomization: in a variety of situations where the s
alability of deterministi
algorithms is poor, randomized algorithms are easier to implement and provide a surprisinglygood performan
e. (2) Using memory: the state of the swit
h, that is queue-lengths, 
hangevery little during su

essive time slots. Hen
e, a heavy mat
hing will 
ontinue to be heavy over37



38 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSa few time slots, suggesting that 
arrying some information, or retaining memory, between it-erations should help simplify the implementation while maintaining a high level of performan
e.(3) Using arrivals: sin
e the in
rease in queue-lengths is entirely due to arrivals, knowledge ofre
ent arrivals 
an be useful in �nding a heavy mat
hing. (4) Hardware parallelism: �ndingheavy mat
hings essentially involves a sear
h pro
edure, requiring a 
omparison of the weightof several mat
hings. The natural stru
ture on the spa
e of mat
hings allows use of parallelismin hardware to 
ondu
t this sear
h eÆ
iently.The rest of the 
hapter presents algorithms exploiting the above observations and novelmethods to analyze their performan
e. The Se
tion 3.1 dis
usses use of randomization andmemory to obtain a very simple stable algorithm. We show that randomization alone is notuseful to obtain stable algorithm. But, 
ombining randomization with memory yields a stablealgorithm. A derandomization of this algorithm is also stable. Though, these simple algorithmsare stable, they have very poor average delay 
ompared to MWM. To improve delay, we presentalgorithms LAURA, SERENA and APSARA in Se
tion 3.2. We study throughput and delayproperties of these algorithms theoreti
ally and via extensive simulation study. Our resultsshow that all of these algorithms perform very 
ompetitively with respe
t to MWM. In Se
tion3.3, we dis
uss implementation details of these algorithms. Finally, we present bibliographi
notes related to this 
hapter in Se
tion 3.4.3.1 Stable Randomized AlgorithmsRandomized algorithms are parti
ularly simple to implement be
ause they work on a fewrandomly 
hosen samples rather than on the whole state spa
e. The MWM �nds, fromamongst the n! possible permutations of P, that permutation whose weight is the highest. Anobvious randomization of MWM yields the following algorithm, whi
h we denote by Algo1: Atea
h time m, let the permutation used by Algo1 be the heaviest of d (d > 1) permutations
hosen uniformly at random from P.For simpli
ity, we want to have small d. Unfortunately, the following theorem shows thatAlgo1 is not stable, even when d = �(n).Theorem 3. For any d � 
n, where 
 > 0, Algo1 is not stable.Proof. Consider the queue at input i for output j. This queue is served, that is, input i ismat
hed to output j at time m, only if input i is mat
hed to output j by at least one of the



3.1. STABLE RANDOMIZED ALGORITHMS 39d randomly 
hosen permutations or mat
hings. Consider the following.pij = Pr(i is mat
hed to j in one of the d random s)= 1� Pr(i is not mat
hed to j in any of the d random mat
hings)= 1� Pr(i is not mat
hed to j in one random mat
hing)d= 1��1� 1n�d� 1��1� 1n�
n for d � 
n! 1� e�
:Therefore, the servi
e rate available for pa
kets from input i to output j is at most 1�e�
 < 1.And, as soon as �ij > 1� e�
, we have that the swit
h is unstable under Algo1.Remark: Note that the above theorem has a mu
h stronger impli
ation: Any s
hedulingalgorithm that only uses d = O(n) random mat
hings 
annot a
hieve 100% throughput.Further, there is no assumption about the distribution of the pa
ket arrival pro
ess, only arate assumption. This adds strength to the next algorithm, Algo2, due to Tassiulas [1998℄.3.1.1 Algo2: Randomized Algorithm with MemoryThe Algo2 uses randomization with memory. It is des
ribed as follows.Algo2:(a) Let �(m) be the s
hedule used at time m.(b) At time m+1 
hoose a mat
hing �r(m+1) uniformly at random from the set of all n!possible mat
hings.(
) Let �(m+ 1) = arg max�2f�(m);�r(m+1)g � �Q(m+ 1).The following theorem states that Algo2 is stable.Theorem 4. Algo2 is stable under any Bernoulli IID arrival pro
ess with admissible arrivalrate-matrix � and the average queue-size is bounded above asXij E[Qij ℄ � n(n+ n!)1� �� : (3.1)



40 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSProof. By de�nition, the number of pa
kets arriving in a time slot is at most n and the numberof pa
kets departing in a time slot is at most n. Hen
e, weight of a permutation 
an 
hangeby at most 2n in a time slot.Under algorithm Algo2, at time m, let �(m) denote the s
hedule used and Q(m) be thequeue-size matrix. Let the 
orresponding MWM s
hedule be ��(m) at time m, that is,��(m) = argmax�2P � �Q(m):From the above observation, for any ` � m, it is easy to see thatj��(`) �Q(`)� ��(m) �Q(m)j � 2n(m� `): (3.2)Due to the use of memory in Algo2, it is easy to see that�(m) �Q(m) � �(m� 1) �Q(m� 1)� 2n: (3.3)Let, M = inff` � 0 : �(m� `) = ��(m� `)g:Combining (3.2) and (3.3), we obtain�(m) �Q(m) � ��(m) �Q(m)� 4Mn: (3.4)Due to independent drawing of random permutation every time under Algo2, M is upperbounded by a Geometri
 random variable with probability 1=n!. Hen
e,E[M ℄ � n!: (3.5)From (3.4) and (3.5), we obtain that Algo2 is (n!,1)-MWM. Hen
e, the statement of Theorem4 follows from the Theorem 2 of Chapter 2.3.1.2 Algo3: Derandomization of Algo2The algorithm Algo2 uses external randomization. Next, we 
onsider a derandomizationof this algorithm, whi
h we 
all Algo3. Before presenting the algorithm we need the 
on
eptof a Hamiltonian walk on a P. Consider a 
omplete graph with n! nodes, ea
h 
orresponding



3.1. STABLE RANDOMIZED ALGORITHMS 41to a distin
t � 2 P. Let H(k) denote a Hamiltonian walk on this graph; that is, H(k) visitsea
h of the n! distin
t nodes exa
tly on
e during times k = 0; : : : ; n!�1. We extend H(k) fork � n! by de�ning H(k) = H(k mod n!). One simple algorithm for su
h a Hamiltonian walkis des
ribed, for example, in Chapter 7 of Nijenhuis and Wilf [1978℄. This is a very simplealgorithm that requires O(1) spa
e and O(1) time, to generate H(k + 1) given H(k). Underthis algorithm H(k) and H(k+1) di�er in exa
tly two edges. Consider the following exampleof this algorithm.Example 5. Let n = 3. The algorithm generates the following Hamiltonian walk on P: H(0) =(1; 2; 3)�; H(1) = (1; 3; 2); H(2) = (3; 1; 2); H(3) = (3; 2; 1); H(4) = (2; 3; 1); H(5) =(2; 1; 3), H(6) = H(0), and H(7) = H(1), and so on.Now, we des
ribe the algorithm.Algo3:(a) Let �(m) be the s
hedule used at time m.(b) Let H(m) 2 P be permutation 
orresponding to the Hamiltonian walk on the graph
orresponding to P.(b) Let �(m+ 1) = arg max�2f�(m);H(m+1)g � �Q(m+ 1).Next, we state the properties of Algo3, very similar to that of Algo2.Theorem 5. Algo3 is stable under any Bernoulli IID arrival pro
ess with admissible arrivalrate-matrix � and the average queue-size is bounded above asXij E[Qij ℄ � n(n+ n!)1� �� : (3.6)Proof. The proof is very similar to that of Theorem 4. Under algorithm Algo3, at time m,let �(m) denote the s
hedule used and Q(m) be the queue-size matrix. Let the 
orrespondMWM s
hedule be ��(m) at time m, that is,��(m) = argmax�2P � �Q(m):�Here, by � = (�(1); �(2); �(3)), we mean that i is mat
hed to �(i), for i = 1; 2; 3, under permutation �.



42 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSAs observed in the proof of Theorem 4, the weight of a s
hedule 
hanges by at most 2nin su

essive time slots. Hen
e,j��(m) �Q(`)� ��(m) �Q(m)j � 2n(m� `): (3.7)Let, M = inff` � 0 : H(m� `) = ��(m)g:By property of Algo3,�(m�M) �Q(m�M) � H(m�M) �Q(m�M)= ��(m) �Q(m�M)� ��(m) �Q(m)� 2nM; (3.8)where the last inequality follows from (3.7).Due to the use of memory in Algo3, it is easy to see that�(m) �Q(m) � �(m�M) �Q(m�M)� 2nM: (3.9)Combining (3.8) and (3.9), we obtain�(m) �Q(m) � ��(m) �Q(m)� 4Mn: (3.10)Sin
e H(�) 
overs all permutations in n! time, M � n!. Hen
e, from (3.10) we obtain thatAlgo3 is (n!,1)-MWM. Hen
e, the statement of Theorem 4 follows from the Theorem 2 ofChapter 2.
3.1.3 Delay of Algorithms Algo2 and Algo3The above algorithms, Algo2 and Algo3 are extremely simple and Theorems 4 and 5 provetheir stability. But the delay indu
ed by these algorithms are too large. We present an examplesimulation study to exhibit this 
laim.



3.1. STABLE RANDOMIZED ALGORITHMS 43Simulation SetupWe des
ribe the simulation setup, whi
h is used for all the simulation results presented inthe rest of the 
hapter.Swit
h: Number of ports, n = 32. Ea
h VOQ 
an store up to 10,000 pa
kets. Ex
ess pa
ketsare dropped.Input TraÆ
: All inputs are equally loaded on a normalized s
ale, and � 2 (0; 1) denotes thenormalized load. The arrival pro
ess is Bernoulli IID. Let jkj = (k mod n). The followingload matri
es are used to test the performan
e of algorithms.1. Uniform: The arrival rate-matrix � is su
h that, �ij = �=n 8i; j. This is a very friendlytype of traÆ
.2. Diagonal: The arrival rate-matrix � is su
h that: �ii = 2�=3, �iji+1j = �=3 8i and �ij = 0for all other i; j. This is a very skewed loading, in the sense that input i has pa
ketsonly for outputs i and ji+ 1j. This traÆ
 loading tests algorithms very well.Performan
e measures: We 
ompare the average queue-lengths indu
ed by di�erent algo-rithms. The simulations are run until the estimate of the average delay rea
hes the relativewidth of the 
on�den
e interval equal to 1% with probability � 95%. The estimation of the
on�den
e interval width uses the bat
h means approa
h.ResultsFigure 3.1 plots the average queue-size indu
ed under Algo2 and MWM under DiagonaltraÆ
 pattern. The Y-axis is the average queue-size (logarithmi
 s
ale) and the X-axis is theload �. The �gure shows that MWM has very low average queue-size even when � is near 1.On the 
ontrary, Algo2 has very large average queue-size even at � = 0:4 and it be
omes toolarge beyond � = 0:4 and hen
e not plotted in the �gure. The �gure also plots performan
eof known heuristi
s iSLIP and iLQF for 
omparison. Note that though these heuristi
s areknown to be unstable, they perform mu
h better than Algo2, exposing its poor performan
e.For 
ompleteness, we note that all algorithms perform equally well under Uniform traÆ
.
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Figure 3.1: Performan
e of Algo2 under Diagonal traÆ
.3.2 Low Delay AlgorithmsThe Algo2 and Algo3 suggest that a
hieving 100% throughput is not diÆ
ult. On the
ontrary, to redu
e delay, an algorithm has to do extra work. In this se
tion, we des
ribethree di�erent algorithms that respe
tively use parallelism, randomization and the informationin arrivals to a
hieve 100% throughput and low delay.3.2.1 APSARA: Use of ParallelismAs noted in the introdu
tion, determining the maximum weight mat
hing essentially in-volves a sear
h pro
edure, whi
h 
an take many iterations and be time-
onsuming. Sin
e ourgoal is to design high-performan
e s
hedulers for high speed swit
hes, algorithms that involvetoo many iterations are unattra
tive.We wish to design a high-performan
e s
heduler that only requires a single iteration. There-fore, we must devise a fast method for �nding good s
hedules. One method for speeding upthe s
heduling pro
ess is to sear
h the spa
e mat
hings in parallel. Fortunately, the spa
e ofmat
hings has a ni
e 
ombinatorial stru
ture whi
h 
an be exploited for 
ondu
ting eÆ
ientsear
hes. In parti
ular, it is possible to query the \neighbors" of the 
urrent mat
hing inparallel and use the heaviest of these as the mat
hing for the next time slot. This observation



3.2. LOW DELAY ALGORITHMS 45inspires the APSARA algorithm, whi
h employs two ideas: (1) Use of memory, and (2) ex-ploring neighbors in parallel, where neighbors are de�ned su
h that it is easy to 
ompute themusing hardware parallelism.De�nition 3 (Neighbor). Given a permutation �, a permutation �0 is said to be a neighborof � i� there exists i1; i2 2 f1; : : : ; ng, su
h that the following is satis�ed: (1) �(i1) = �0(i2),(2) �(i2) = �0(i1) and (3) �(i) = �0(i), for i 6= i1; i2. The set of all neighbors of � is denotedN (�), whose 
ardinality is �n2�.APSARA: The Basi
 AlgorithmLet �(m) be the mat
hing determined by APSARA at time m. Let H(m+1) the mat
hing
orresponding to the Hamiltonian walk at time m + 1. At time m + 1 APSARA does thefollowing:(i) Determine N (�(m)) and H(m+ 1).(ii) Let M(t+ 1) = N (�(m)) [ fH(m+ 1)g [ f�(m)g.(iii) The s
hedule at time m+ 1 is given by:�(m+ 1) = arg max�02M(m+1)�0 �Q(m+ 1):APSARA requires the 
omputation of the weight of neighbor mat
hings. Ea
h su
h 
om-putation is easy to implement sin
e a neighbor �0 di�ers from the mat
hing �(m) in exa
tlytwo edges. However, 
omputing the weights of all �n2� neighbors requires a lot of spa
e inhardware for large values of n.APSARA-L: Deterministi
 ApproximationTo redu
e the number of neighbors from �n2� to n, we 
onsider the following neighbor-set.De�nition 4 (Linear-Neighbor). Given a permutation �, a permutation �0 is said to be alinear-neighbor of � i� there there exists i 2 f1; : : : ; ng su
h that the following is satis�ed:(1) �(i) = �0((i mod n) + 1), (2) �((i mod n) + 1) = �0(i) and (3) �(j) = �0(j), for j 6= i.The set of all neighbors of � is denoted NL(�), whose 
ardinality is n.



46 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSDenote by APSARA-L the version of the basi
 APSARA algorithm when neighbors are
hosen from NL(�).APSARA-R(K): Randomized ApproximationSuppose hardware 
onstraints only allow us to query K neighbors. Let NK(�) denotethe set of K permutations pi
ked uniformly at random from the set N (�). The randomizedversion of APSARA algorithm, denoted by APSARA-R, works with NK(�) to determine itss
hedule. Note that, if K = �n2� then APSARA-R defaults to APSARA.Remark: Note that, APSARA (and its variants) generate all the mat
hings in the neighbor-hood set oblivious to the 
urrent queue-lengths. The queue-lengths are only used to sele
tthe heaviest mat
hing from the neighborhood set. It is therefore possible that the mat
hingdetermined by APSARA, while being heavy, is not of maximal size. That is, there exists aninput, say i, whi
h has pa
kets for an output j, but the mat
hing 
hosen by algorithm, bothi and j are 
onne
ted via empty (0 weight) edges. To over
ome this unne
essary idleness,one possible way is the following: 
omplete the mat
hing determined by APSARA in a round-robin order over the input-output ports that are empty. This version of the algorithm is 
alledMaxAPSARA.Properties of APSARAThe APSARA algorithm and its variants are stable as stated below.Theorem 6. The algorithms APSARA, APSARA-L and APSARA-R are all stable underBernoulli IID arrival pro
ess with admissible arrival rate-matrix �. Further, the average queue-size is bounded as Xi;j E[Qij ℄ � n(n+ n!)1� �� : (3.11)Proof. All versions use the Hamiltonian walk, H(�) and are based on using memory. Therefore,the proof of Theorem 5 implies the statement of Theorem 6.Theorem 6 does not suggest why APSARA and its variants should do mu
h better thanAlgo2 or Algo3. The following property indi
ates why APSARA should be better.



3.2. LOW DELAY ALGORITHMS 47Theorem 7. Let �(m) denote the s
hedule obtained by APSARA at time m. If �(m) =�(m� 1), that is the s
hedule does not 
hange from time m� 1 to time m, then�(m) �Q(m) � 12 max�2P � �Q(m): (3.12)Proof. Without loss of generality, let the identity permutation be the one that maximizes� �Q(m) for all � 2 P, that is, identity permutation is the maximum weight mat
hing at timem. As noted before, �(m) is the permutation 
hosen by APSARA and �(m) = �(m� 1).Now, 
onsider any i 2 f1; : : : ; ng. By de�nition, �(m) 
onne
ts i to �(m)(i). Let I1 =fi : i = �(m)(i)g. Let I2 = f1; : : : ; ng � I1. Now, for all i 2 I1,Qi�(m)(i)(m) = Qii(m): (3.13)Now 
onsider i 2 I2. Sin
e �(m) = �(m� 1), by the property of APSARA, it follows thatQi �(m)(i)(m) +Q��1(m)(i) i(m) � Qii(m): (3.14)Now summing over i, from (3.13) and (3.14), it is easy to dedu
e thatXi Qi�(m)(i)(m) +Q��1(m)(i)i(m) � Xi Qii(m): (3.15)Sin
e �(m) is a permutation, Xi Qi�(m)(i)(m) =Xi Q��1(m)(i)i(m). Further, by de�nition�(m) �Q(m) = Xi Qi�(m)(i)(m): (3.16)From (3.15), (3.16) and re
alling that identity permutation 
orresponds to the maximumweight mat
hing at time m, the statement of the Theorem 7 follows.Simulation ResultsWe study performan
e of APSARA and its variants via extensive simulation study. Thesimulation setup is identi
al to the one des
ribed in Se
tion 3.1.3 of this 
hapter.Figure 3.2 
ompares the average queue-sizes indu
ed by APSARA, MWM, iSLIP (withn iterations) and iLQF (with n iterations) under Diagonal traÆ
. The �gure suggests that
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ompetitively with MWM under all loadings. Onthe other hand, both iLQF and iSLIP in
ur severe pa
ket losses and large delays under heavyloading. We also note that under low loads, APSARA deviates from MaxAPSARA. The reasonis as follows: sin
e APSARA is not maximal, it may 
ause few queues to idle and at smallloads maximality is really what is important (as showed by iSLIP and iLQF's performan
e).Note that, the di�eren
e is negligible { its no more than 10 pa
kets on average. The �gurealso shows that though APSARA-L has only 32 neighbors, it performs quite well 
omparedto APSARA, whi
h uses �322 � = 496 neighbors. Separately, the randomized variant APSARA-R(32) does not perform as well as APSARA-L. Other study leads us to re
ommend thefollowing: when the number of allowable neighbors K � n, only then use randomized versionof APSARA-R(32).
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Figure 3.2: Performan
e of APSARA under Diagonal traÆ
.
3.2.2 LAURA: Use of Problem Stru
tureAs shown in Se
tion 3.1, the Algo2 provides 100% throughput. However, its delay perfor-man
e is quite poor. This is mainly be
ause of the following reason: every time, Algo2 sele
tsone of the two mat
hings (one random and the other from previous time) in its entirety ratherthan sele
ting heavy edges from both while satisfying mat
hing 
onstraints. The algorithmLAURA is mainly based on this observation. It uses a pro
edure 
alled Merge to obtain a
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hing than given two mat
hing by sele
ting heavier edges from both mat
hings.As we shall see, the Merge pro
edure 
leverly uses the stru
ture of the problem, leading toa very simple implementation. In addition, a non-uniform random sampling is used to biasa random sample towards heavier mat
hings. Thus, the main features used in the design ofLAURA are: (1) use of memory, (2) non-uniform random sampling, and (3) a Merge pro
edureto obtain a better mat
hing.LAURA AlgorithmLet �(m) be the mat
hing used by LAURA at time m. At time m + 1 LAURA does thefollowing:(a) Generate a random mat
hing �r(m+ 1) using the Random pro
edure.(b) Use �(m+ 1) = Merge(�r(m+ 1); �(m)) as the s
hedule for time m+ 1.Now we des
ribe the Random and Merge pro
edures.The Random Pro
edureLet F�(�) denote the minimal set of edges in the mat
hing � 
arrying at least a fra
tion� (0 � � � 1) of its weight. We shall 
all � the sele
tion fa
tor.Random is the following iterative pro
edure: Initially, all inputs and outputs are markedas unmat
hed. The following steps are repeated in ea
h of I iterations, where I is typi
allylog2 n:(i) Let i be the 
urrent iteration number. Let k � n be the number of unmat
hed input-output pairs. Out of the k! possible mat
hings between these unmat
hed input-outputpairs, a mat
hing �i(k) is 
hosen uniformly at random.(ii) If i < I, retain the edges 
orresponding to F�(�i(k)) and mark the nodes they 
over asmat
hed. If i = I, then retain all edges of �i(k).The Merge Pro
edureConsider a swit
h bipartite graph with Q matrix as its edge weights. Given two mat
hings�(1) and �(2), de�neS(�(1); �(2)) = f� 2 P : �ij = 1 only if �(1)ij = 1 or �(2)ij = 1g:
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Figure 3.3: An example of Merge pro
edure.The Merge pro
edure, when applied to �(1) and �(2), it returns a mat
hing ~� su
h that~� = arg max�2S(�(1);�(2))f� �Qg: (3.17)The Merge �nds su
h mat
hing using only 2n addition and subtra
tion. It is des
ribed asfollows: Color the edges of �(1) as red and the edges of �(2) as green. Start at output nodej1 and follow the red edge to an input node, say i1. From input node i1 follow the (only) greenedge to its output node, say j2. If j2 = j1, stop. Else 
ontinue to tra
e a path of alternatingred and green edges until j1 is visited again. This gives a \
y
le" in the subgraph of red andgreen edges.Suppose the above 
y
le does not 
over all the red and green edges. Then there exists anoutput j outside this 
y
le. Starting from j repeat the above pro
edure to �nd another 
y
le.In this fashion �nd all 
y
les of red and green edges. Suppose there are ` 
y
les, C1; :::; C`at the end. Then ea
h 
y
le, Ci, 
ontains two mat
hings: Gi whi
h has only green edges,and Ri whi
h has only red edges. For ea
h 
y
le Ci, the Merge 
hooses Ri if the sum of thequeue-size 
orresponding to these edges is higher than that of the Gi. Else, Merge 
hooses



3.2. LOW DELAY ALGORITHMS 51Gi. It is easy to show that the �nal mat
hing as 
hosen above is pre
isely the one 
laimed in(3.17). Figure 3.3 illustrates the Merge pro
edure.Properties of LAURAThe following theorem is about the throughput and delay property of LAURA.Theorem 8. The algorithm LAURA is stable under Bernoulli IID arrival pro
ess with admissiblearrival rate-matrix �. Further, the average queue-size is bounded asXi;j E[Qij ℄ � n(n+ n!)1� �� : (3.18)Proof. Consider the following two fa
ts about LAURA: (1) The probability of LAURA 
hoosingmaximum weight mat
hing s
hedule is at least 1=n!, every time, independent of everythingelse and (2) LAURA uses memory.Now, in the proof of Theorem 4, we showed that Algo2 is (n!,1)-MWM using the abovetwo properties. Hen
e, Theorem 2 of 
hapter 2 implies the statement of Theorem 8.Simulation ResultsWe study the performan
e of LAURA via extensive simulation study. The simulation setupis identi
al to the one des
ribed in Se
tion 3.1.3 of this 
hapter.We set the sele
tion fa
tor � = 0:5, and the number of iterations I = 5 = log2 n, forn = 32. The average queue-size indu
ed under algorithm LAURA is 
ompared with that ofthe MWM, iSLIP, iLQF and Algo2 algorithms under Diagonal traÆ
. The results are shownin Figure 3.4. The algorithms LAURA and MaxLAURA (whi
h is maximal version of LAURA)perform quite 
ompetitively with respe
t to MWM. We see that iSLIP and iLQF su�er largepa
ket losses at high loads. Strangely enough, although Algo2 is provably stable (as opposedto iSLIP and iLQF), its performan
e in terms of average ba
klog is the worst.The Impa
t of MergeIn this se
tion we study the role of the Merge pro
edure in LAURA for obtaining good delayperforman
e. For this purpose, we 
onsider the following two algorithms: Algo2 as des
ribedin Se
tion 3.1 and its variant using Merge, denoted by Algo4. At time m+ 1, the Algo4 uses
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Figure 3.4: Performan
e of LAURA under Diagonal traÆ
.
s
hedule �(m+ 1) = Merge(�r(m+ 1); �(m)), where �(m) is s
hedule used at time m and�r(m+ 1) is a mat
hing 
hosen uniformly at random at time m+ 1.Figure 3.5 show the average queue lengths for these two algorithms under Diagonal traÆ
.We note that both algorithms behave almost the same under Uniform traÆ
, and thus theMerge pro
edure does not make a big di�eren
e to the performan
e under this traÆ
. Whenthe traÆ
 is not Uniform, as shown in Figure 3.5, Algo4 performs mu
h better 
ompared toAlgo2. This shows that the use of the Merge pro
edure is essential for obtaining good delayperforman
e under non-uniform traÆ
.Learning Time: Merge v/s MaxThe main reason behind a
hieving 100% throughput for algorithms like Algo2 and Algo4 isthe �nite amount of time (on average) that it takes for these algorithms to obtain a mat
hingwhose weight is 
omparable to that of MWM. But the learning time 
an be drasti
ally di�erentand it dire
tly a�e
ts the delay performan
e of the underlying s
heduling algorithm.We now make a 
omparison of the learning time of Algo4, whi
h uses Merge pro
edure,with that Algo2, whi
h uses Max pro
edure. First we present the simulation study underdi�erent s
enarios and then present analyti
al results to understand the observed behavior
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Figure 3.5: An illustration of impa
t of Merge on Performan
e.
under a simple model.Comparison Algo2 and Algo4: SimulationSimulation setting: A random weighted bipartite graph is 
reated by 
hoosing the weight ofea
h edge a

ording to independent and identi
ally distributed random variables with mean1. We 
onsider three di�erent distributions : (a) Exponential, (b) Uniform on [0; 2℄, and (
)Bimodal on f0:1; 9:1g with probabilities f0:9; 0:1g. Both algorithms Algo2 and Algo4 start withthe same random initial mat
hing and subsequently they are provided with the same randommat
hings. Both the algorithms run till they obtain a mat
hing whose weight is at least apre-determined fra
tion f of the weight of MWM on the same graph. The average numberof iterations taken by an algorithm to a
hieve this weight is used as a measure of its learningtime. When an algorithm takes more than 10000 iterations to learn this weight, we simplyreport the number of iterations as 10000.Results: For ea
h f 2 [0:1; 0:9℄, and for ea
h distributions, we obtain the average numberof iterations over 100 sample runs. The results are plotted in the Figure 3.6. The X-axisis the fra
tion f while Y-axis the average number of iterations taken to learn the fra
tionf by algorithm. \Uni" represent uniform, \Bi" represents Bimodal and \Exp" representsExponential. Results show that for all distributions, both algorithms manage to learn qui
klywhen f � 0:2. But as f grows the average number of iterations taken by Algo2 is very high
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Figure 3.6: Learning time: Algo2 v/s Algo4.
ompared that of Algo4. We also note that learning time gets worse as the varian
e of theedge-weight distribution in
reases; i.e. Uniform is easier to learn than Exponential distributionwhi
h is easier to learn than Bimodal distribution.Comparison of Algo2 and Algo4: Analyti
al ModelAnalyti
al Model: The simulation study showed that Algo4 learns \good" mat
hing a lotqui
ker 
ompared to Algo2 under di�erent edge-weight distributions. It is not easy to obtainsu
h qualitative result analyti
ally for any general edge-weight distribution. As our interest is indetermining learning time of algorithm for MWM, we 
onsider a simpli�ed model in whi
h theedges of MWM are assigned weight 1(a large enough value) and all other edges are assignedweight 0. Without loss of generality we assume that the MWM is the identity mat
hing. Thusthe edge-weight matrix of the bipartite graph has 1 on n entries of the main diagonal and 0in remaining n2 � n positions. We 
ompare the performan
e of the Algo2 and Algo4 in this
ontext. Ea
h time both algorithms are provided the same random mat
hing. The MWM islearned when all edges of the identity mat
hing are learned by the algorithm.Performan
e of Algo2: First observe that the mat
hing retained by Algo2 at the end of timem is the mat
hing with the most of edges in 
ommon with the identity mat
hing, among allrandom mat
hings 
hosen till time m. An edge i of a mat
hing is said to be �xed if input iis mat
hed to output i. Note that all the elements of the identity mat
hing are �xed. The



3.2. LOW DELAY ALGORITHMS 55learning time of an algorithm in this 
ontext is simply the time taken to learn the edges of theidentity permutation. Therefore, the probability distribution of the number of �xed edges ina randomly 
hosen permutation 
an given us the distribution of the �xed elements learnt byAlgo2 till time m. This distribution is well-studied in the literature in various 
ontexts. Weprove some required results about this distribution for the sake of 
ompleteness.Let Ai denote the event that ith element is �xed in a randomly 
hosen permutation �r.Let P nk denote the probability that exa
tly k elements are �xed in �r. First, let us 
omputeP n0 , the probability that no element is �xed.P n0 = Pr(\ni=1A
i )= 1� Pr([ni=1Ai)(a)= 1� nXj=1(�1)j+1�nj�(n� j)!n!= nXj=0(�1)j 1j! � e�1;where (a) is a dire
t appli
ation of the In
lusion-Ex
lusion prin
iple. In general, for all k,P nk = �nk�P n�k0 (n� k)!n!= O� 1k!� :Hen
e, Qnk , the probability that a randomly 
hosen permutation has at least k �xed elements,is given as Qnk = Xj�k P nj= O0�Xj�k 1j!1A= O� 1k!� : (3.19)This leads to the following Lemma.Lemma 1. The algorithm Algo2 takes �(k!) time to learn k �xed elements.
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e of Algo4: Now, we 
onsider Algo4. We will show that the order of the learningtime for Algo4 is signi�
antly smaller than that of Algo2. Re
all that under algorithm Algo4,mat
hing �(m + 1) at time m + 1 is obtained by merging a random mat
hing �r(m + 1)
hosen at time m + 1 with �(m) 
hosen at time m. The Merge pro
edure 
onsiders 
y
leswith edges alternatively belonging to �(m) and �r(m+1). This is the same as 
onsidering the
y
li
 de
omposition of a random permutation. Now, for ea
h 
y
le Merge pro
edure eitherpi
ks all edges from �(m) or all edges from �r(m + 1). Hen
e it is important to know thedistribution of 
y
les in a random permutation. This distribution is well-studied. Let K(m) bethe random number of 
y
les indu
ed by the 
y
li
 de
omposition of �(m) and �r(m+1) andlet Cl(m); 1 � l � K(m) be the length of the lth 
y
le. Let us remind ourselves that K(m)and Cl(m); 1 � l � K(m) are IID random variables a
ross time m. Now, it is well-known thatK(m) is sharply 
on
entrated around its mean loge n. Though the distribution of 
y
le-lengthsCl(m) is not 
on
entrated around its mean n= loge n, for simpli
ity we assume the following:there are loge n 
y
les ea
h of length n= loge n. It 
an be shown that this assumption givesweaker upper bound on learning time of Algo4. Next we 
ompute the bound on iterationstaken by Algo4 to learn almost all elements of MWM in this 
ontext.
Let X(m) be the number of �xed elements in �(m), that is elements of MWM alreadylearnt by �(m) by time m. We would like to lower bound the probability of the event that thenumber of �xed elements will in
rease in �(m+1) given X(m). Consider the following event:�r(m+1) 
ontains a �xed element and it belongs to a 
y
le whi
h does not 
ontain any of theX(m) �xed elements of �(m). In this 
ase the Algo4 will pi
k elements of �r(m+ 1) for this
y
le. This in turn in
reases the number of �xed elements in �(m+ 1) to at least X(m) + 1.Hen
e whenever this event happens the number of �xed elements of �(m+1) in
reases. Nextwe 
ompute the probability of this event.
The probability that there are k �xed elements in �r(m + 1) is O(1=k!) as 
omputedabove. The X(m) �xed elements of �(m) are distributed among loge n 
y
les uniformly atrandom. A 
y
le 
ontains n= loge n elements of �r(m + 1) and �(m) ea
h. Consider one ofthe �xed element of �r(m+1). Now, the probability that the 
y
le 
ontaining a �xed element
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ontain any of X(m) element is:p = �n�X(m)n= loge n�� nn= loge n�� �1� X(m)n � nloge n (3.20)From the above dis
ussion, on average the in
rease in X(m+1) from X(m) is lower boundedas: E[X(m+ 1)�X(m)℄ � Xk�1 1k!kp= Xk�0 1k!p� (1�X(m)=n)n= log n� exp��X(m)logn � : (3.21)Let y(s) = E[X(sn)℄=n. Then, we obtain the following di�erential equation for large n:dy(s)ds = exp�� y(s)log n� :The solution of this equation is given bylognn �exp�ny(s)log n �� 1� = s: (3.22)From (3.22), we obtain logn�exp�X(m)logn �� 1� = m: (3.23)The (3.23) leads to the following Lemma.Lemma 2. The algorithm Algo4 takes 
�log n�expn klog no� 1�� time to learn k �xed ele-ments.Comparison of Algo2 and Algo4 Under Analyti
 Model: Let T2(n) and T4(n) denote theaverage time it takes for Algo2 and Algo4 to learn n �xed elements under the above des
ribedanalyti
 model. Then, results of Lemma 1 and Lemma 2 imply that T2(n) = �(n!) while
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h yields the following Theorem.Theorem 9. Under the simple analyti
al model des
ribed above, the average time it takes forAlgo2 and Algo4 for learn MWM, denoted by T2(n) and T4(n) respe
tively, are related asT2(n) = 
�T4(n)log2 n� : (3.24)Theorem 9 indi
ates the drasti
 di�eren
e between the learning time of the algorithmsusing Merge and Max. This in turn provides 
redibility to the Merge pro
edure.3.2.3 SERENA: Use of Arrival InformationThe SERENA algorithm 
an be seen as a variant of LAURA in the sense that it does notuse external non-uniform random sampling pro
edure. Instead it uses arrival information toobtain a new mat
hing every time. In summary, SERENA has the following three features:(1) use of memory, (2) use of arrival information to obtain new mat
hing, and (3) Mergepro
edure.SENENA AlgorithmNow, we des
ribe the algorithm. As before, let �(m) be the mat
hing used by SERENAat time m. Re
all that A(m + 1) = [Aij(m + 1)℄ is the arrival matrix at time m + 1. Thatis, Aij(m+ 1) = 1 denotes that a pa
ket arrived at input i for output j at time m+ 1. Thealgorithm �nds s
hedule at time m+ 1 as follows.(a) Compute mat
hing �A(m + 1) by applying pro
edure Arr-Mat
hing on arrival matrixA(m+ 1), whi
h uses queue-size matrix Q(m+ 1).(b) The s
hedule at time m+ 1 is �(m+ 1) = Merge(�(m); �A(m+ 1)).ARR-MATCHING Pro
edureThe pro
edure Arr-Mat
hing obtains a mat
hing from a given arrival matrix A = [Aij ℄.By de�nition, A is su
h that ea
h of the Ai� 2 f0; 1g for all i, that is, ea
h input 
an have atmost one arrival. But, more than one pa
kets (possibly n in the worst 
ase) 
an arrive for thesame output, that is, A�j 2 f0; : : : ; ng for all j. This stru
ture suggests one possible simple
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hing is as follows: (1) if there is no j su
h that A�j > 1, then Ais a possibly sub-mat
hing. Let �A be this mat
hing. Conne
t the inputs and outputs thatare not mat
hed under �A in any order. This yields the mat
hing; (2) otherwise, there arej1; : : : ; jk; k � n=2 su
h that A�jl � 2; l = 1; : : : ; k. Now we 
reate �A as follows. Initially, set�A = [0℄. For all l = 1; : : : ; k, do the following: Set �Ailjl = 1, whereil = arg max1�i�nfQijlAijlg:In the �A, thus obtained, will have some inputs and outputs su
h that they are not 
onne
ted(i.e. 
orresponding rows and 
olumns do not have any entry equal to 1). Conne
t thesein an arbitrary fashion and obtain a 
omplete mat
hing. This 
ompletes the des
ription ofArr-Mat
hing. The Figure 3.7 explains how the Arr-Mat
hing for a parti
ular example.Properties of SERENAThe following theorem states the throughput and delay property of SERENA.Theorem 10. The algorithm SERENA is stable under Bernoulli IID arrival pro
ess with ad-missible arrival rate-matrix �. Further, the average queue-size is bounded asXi;j E[Qij ℄ � n(n+�)1� �� ; (3.25)where � = � 1��(1���)�n.Proof. We will show that under Bernoulli IID traÆ
 with admissible arrival rate-matrix �, thePSfrag repla
ements * *101010
4040 3030

5 Arr-Mat
hing
Figure 3.7: An example of Arr-Mat
hing pro
edure.



60 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSalgorithm SERENA is (�,1)-MWM. Then, a dire
t appli
ation of Theorem 2 of Chapter 2 willimply the statement of Theorem 10.Now, we will show that SERENA is (�,1)-MWM. If we show that the probability of SER-ENA pi
king MWM as s
hedule at any given time is lower bounded by 1=�, then by thearguments used in the proof of Algo2, we immediately obtain that SERENA is (�,1)-MWM.Hen
e, we are left will showing that the probability of SERENA pi
king MWM as s
hedule atany given time is lower bounded by 1=�.Consider any time m. Let ��(m) be the maximum weight mat
hing at this time m. Wewish to lower bound the probability of the event that SERENA uses ��(m) as its s
hedule.Now, 
onsider ��(m). Let there be k,0 � k � n, input-output pairs that are mat
hed under��(m) su
h that the edges between them have arrival rate 0. If there are none su
h input-output pair then negle
t them in the remainder of the dis
ussion. Without loss of generality,let these inputs and outputs be numbered 1; : : : ; k. Now 
onsider the following event: (1) nopa
kets arrive at inputs 1; : : : ; k, and (2) pa
kets arrive at inputs k+1; : : : ; n pre
isely for theoutputs that are 
onne
ted by ��(m). This event will imply that Arr-Mat
hing will produ
ea mat
hing that is maximum weight mat
hing, and hen
e SERENA will use maximum weightmat
hing as a s
hedule. Now the probability of (1) is at least (1� ��)k and probability of (2)is (��)n�k Sin
e 0 � k � n, this probability is stri
tly larger than (����)n. Thus, we showedthat SERENA uses maximum weight mat
hing as its s
hedule with probability 1=� as desired.This 
ompletes the proof of Theorem 10.Simulation ResultsWe study the performan
e of SERENA via extensive simulation study. The simulationsetup is identi
al to the one des
ribed in Se
tion 3.1.3 of this 
hapter. We 
ompare theperforman
e of SERENA with the MWM, iSLIP and iLQF algorithms under the DiagonaltraÆ
. The results are shown in Figure 3.8. The algorithms SERENA and MaxSERENA (themaximized version of SERENA) perform quite 
ompetitively with respe
t to MWM.3.2.4 ImplementationIn this se
tion, we dis
uss implementation of all the three algorithms { APSARA, LAURAand SERENA.APSARA: All versions of APSARA involve a Hamiltonian walk. As noted in se
tion 3.1,
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Figure 3.8: Performan
e of APSARA under Diagonal traÆ
.
�nding next permutation in the Hamiltonian walk requires 
onstant number of operations.Moreover, we �nd that pra
ti
ally, we do not need Hamiltonian walk. All simulation resultsremain un
hanged when we ignore Hamiltonian walk. Thus, Hamiltonian walk is a purelytheoreti
al tool used in Theorems to provide stability. Thus, while the walk is extremely simpleto implement, we do not 
onsider it either in implementation or in performan
e evaluationThe main feature of APSARA is that it 
an be implemented in a parallel ar
hite
ture veryeÆ
iently. Figure 3.9 shows a s
hemati
 for the implementation of APSARA with K modules.As shown in the Figure 3.9, the old mat
hing �(m) and the new arrivals, A(m + 1), areused to 
ompute the weights of the K neighbor mat
hings in parallel. Arrival information isrequired to update at most n queues. Computing weight of ea
h neighbor involves 2 additionsand 2 subtra
tions. The new mat
hing, �(m + 1) is the one with highest weight among allthe K neighbors and the �(m). Computing the maximum 
an be done in logK time withO(K) hardware spa
e. The above 
omputation 
an be easily pipelined as a loss of very littleperforman
e.LAURA: There are two tasks performed in LAURA: (1) Non-uniform random sampling and (2)Merge pro
edure. Under non-uniform random sampling, I random permutations are 
hosen,ea
h of whi
h may require O(n log n) 
oin-
ips (or equivalent 
omputation). The standardparameter setting is su
h that I = log2 n. Hen
e, the operations involved in non-uniformrandom sampling is O(n log22 n). Two, Merge pro
edure. The Merge pro
edure essentially



62 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSinvolves n addition and n subtra
tions. Thus, it takes pre
isely 2n operation. Hen
e, netamount of work in LAURA is O(n log22 n)+2n. We note that, if 
ost of randomness is ignoredthen non-uniform sampling will require 
omputation of O(nI) = O(n log n) operations just tosele
t useful edges. Though, algorithm LAURA is simple, it does not seem simple enough.Certainly, it 
an be very useful algorithm given enough resour
es.SERENA: The algorithm SERENA performs two main tasks: (1) Arr-Mat
hing pro
edureand (2) Merge pro
edure. As dis
ussed above, the Merge pro
edure requires pre
isely nadditions and n subtra
tions. The Arr-Mat
hing is required to resolve 
on
i
ts between edgesat output side. This requires at most n 
omparisons. The Arr-Mat
hing is required to mat
hunmat
hed input-output nodes. This is done in any arbitrary fashion. A round-robin algorithm(or algorithms like Wave Front Arbiter) requires O(n) operations. Thus, SERENA algorithmis truly very simple and does not require any external randomization.3.2.5 Simulation Under Correlated TraÆ
The algorithms { APSARA, LAURA and SERENA { try to learn the weight of the MWMs
hedule using di�erent te
hniques. Depending on the arrival pro
ess, the rate at whi
halgorithms 
an learn the weight may 
hange, whi
h in turn may 
hange their performan
e.The simulation study in Se
tion 3.2 was based on friendly, 
ompletely independent (and hen
eno 
orrelation) Bernoulli IID arrival pro
ess. We study the 
hange in performan
e of algorithmswhen there is a strong 
orrelation in arrival pro
ess. Intuitively, temporal 
orrelation in traÆ

ould help an algorithm to learn qui
ker and a
hieve better performan
e. We verify our intuitionwith simulation results.The simulation setup is identi
al to the one des
ribed in Se
tion 3.1.3 ex
ept that arrivalpro
ess is 
orrelated. We des
ribe the model to generate 
orrelated arrival pro
ess. The traÆ
is generated a

ording to 
orrelated \bursty" traÆ
, with burst parameter B. Let � be thearrival rate-matrix. The 
ell arrival pro
ess at ea
h input i is 
hara
terized by a two-stateON-OFF model. Every input has its own two state (ON and OFF) Markov 
hain. At any timeslot, input i jumps from ON to OFF state with probability � 1B�i�� and jumps from OFF to ONstate with probability � 1B(1��i�)�. When i is in OFF state, it does not generate any pa
ket.When i is in ON state it generates pa
kets. Now, when i is in ON state for 
ontiguous timeslots, it generates pa
kets only for one output, whi
h is 
hosen to be j with probability �ij=�i�at random when i enters ON state from OFF state.



3.3. CHAPTER SUMMARY AND DISCUSSION 63Under the above simulation setup, the Figure 3.10 shows the mean queue-length of algo-rithms of interest as a fun
tion of the average burst-size, B. Note that, B = 1 
orrespond tothe results of Bernoulli IID traÆ
, whi
h is plotted in Figure 3.12.All the three proposed algorithms behave 
loser to the MWM as the average burst size(i.e. the degree of 
orrelation in the traÆ
) in
reases. Correlation 
an indeed help, sin
e the
orrelation among subsequent maximum weight mat
hings is 
aptured by the memory retainedin the previous mat
hing.3.3 Chapter Summary and Dis
ussionThe results of the previous 
hapter suggested that MWM (and its approximations) performvery well. But, it is not feasible to implement the MWM or its known approximations. Thismotivated us to seek implementable approximation of MWM that perform very well. In this
hapter, we present novel design approa
hes to obtain simple-to-implement approximationalgorithms of MWM. We exploited the following general features of the swit
h s
hedulingproblem in designing su
h algorithms: (i) the use of memory, (ii) the randomized weightaugmentation, (iii) the randomness and the information provided by re
ent arrivals, and (iv)parallelism that naturally arise due to stru
ture of the spa
e of permutations.We developed three algorithms { APSARA, LAURA and SERENA { to exploit the above-mentioned features. We analyzed their throughput and delay properties theoreti
ally and foundthat they are all stable. An extensive simulation study demonstrated that the algorithmsapproximate the performan
e of MWM very well. We 
learly spelled out the implementationdetails of these algorithms. We strongly believe that these algorithms are implementable inthe 
urrent 
ore-routers at a very little implementation 
ost.The design methods of this 
hapter are quite general. They 
an be applied for a large
lass of problems in networking (and other systems setting) where the "
ontinuity of state"is observed.The results of this 
hapter show that it is not very diÆ
ult to obtain an approximationalgorithm of the MWM in a sto
hasti
 setting, that is, when the weights of underlying bipartitegraph are 
hanging by little every time in a sto
hasti
 manner. An interesting theoreti
alquestion that arises from this work is as follows: what is the inherest 
omplexity of �ndingthe Maximum Weight Mat
hing exa
tly (not approximately) when little 
hange happen in theweight of bipartite graphs. Is it still O(n3) or 
an we do really better. We believe that when



64 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSall the weights are distin
t most of the time, then the 
omplexity 
an be signi�
antly redu
e.3.4 Bibliographi
 NotesThe basi
 randomized algorithm, Algo2 was �rst proposed by Tassiulas and Ephremides[1992℄. The proof of stability of Algo2 presented in this 
hapter, is quite di�erent from theproof by Tassiulas and Ephremides [1992℄. The algorithms { APSARA, LAURA and SERENA{ were published by Gia

one et al. [2003℄. The related work to the results of this 
hapter
an be found in the works by Shah et al. [2001℄, Gia

one et al. [2001℄ and Gia

one et al.[2002℄.A lot of work has been done in the past to obtain simple-to-implement high performan
es
heduling algorithms and in parti
ular approximations to MWM. Among 
ommer
ially avail-able routers, mainly variants of the three maximal type mat
hing algorithms are implemented.These three algorithms are iSLIP, Parallel Iterative Mat
hing (PIM) and Wave Front Arbiter(WFA). The iSLIP algorithm was proposed by M
Keown [1995℄. A detailed exposition oniSLIP and its variants 
an be found in work by M
Keown [1999℄. The PIM algorithm wasproposed by Anderson et al. [1993℄. It originated during the design of AN2 swit
hes of formerDEC. The WFA algorithm was proposed by Tamir and Chi [1993℄. These algorithms, thoughvery simple to implement, are rather poor in performan
e. For example, simulation resultspresented in this 
hapter exposes the weakness of iSLIP algorithm.Among other known approximations, the greedy Maximum Weight Mat
hing algorithm,also 
alled iLQF was formally studied by M
Keown [1995℄. The iLQF algorithm is (0,0:5)-MWM. It provides lower throughput and high delay (see simulations of this 
hapter). Manyother algorithms have been proposed, for example RPA was proposed by Marsan et al. [1999℄,MUCS by H.Duan et al. [1997℄ et
. None of these algorithm 
ompare well with the algorithmproposed in this 
hapter.
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hemati
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CHAPTER 4
Fluid Models, Heavy TraÆ
 and Delay

In the previous two 
hapters, we studied Maximum Weight Mat
hing and its approxima-tion algorithms. The Chapter 2 showed that under Bernoulli IID arrival pro
ess, MWM andits approximations have good throughput and delay properties. The implementation 
on
ernsmotivated design of simple approximations to MWM that have 
omparable performan
e toMWM. The Chapter 3 presented various design methods to obtain approximation to MWM.These methods are general enough in the sense of they 
an be used to design good approxi-mation to MWM even when weight are di�erent from queue-sizes. This naturally leads to thefollowing questions: (1) what are all possible weight for whi
h MWM stable? (2) among allsu
h stable MWM, what weight sele
tion minimizes the average queue-size or delay?In this 
hapter, we present answers to both of the above questions. To answer the �rstquestion, we de�ne a general 
lass of MWM algorithm, denoted by MWMf. The MWMfalgorithm 
hooses maximum weight mat
hing as s
hedule, where weight of an edge (i,j) isf(Qij) instead of queue-size Qij for some real valued fun
tion f . As a spe
ial 
ase, whenf(x) = x, MWMf be
omes the usual MWM. We 
hara
terize the 
lass of fun
tions f underwhi
h MWMf is stable. To answer the se
ond question, we study MWMf under the spe
ial 
lassof fun
tions parametrized by � 2 R+ . The fun
tion 
orresponding to parameter � is f(x) =x�. Again, for � = 1, the algorithm 
orresponds to MWM. The algorithm 
orresponding67



68 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYto parameter � is denoted by MWM-�. We 
hara
terize an optimal algorithm among allpossible s
heduling algorithm (not only among MWMf algorithms) as the limiting algorithm,MWM-0+, whi
h is obtained as � ! 0+. The MWM-0+ is a Maximum Weighted MaximumSize Mat
hing. That is, among all Maximum Size Mat
hings, it serves the one that hasmaximum weight (weight is logarithm of queue-size). We also �nd that the usual MWM isnot optimal and thus 
ontradi
ting the long standing folk-lore in the swit
hing 
ommunityabout the optimality of MWM. We use similar methods to resolve the Conje
ture 1 stated inChapter 1.To obtain the above 
laimed answers we use 
uid model te
hnique and heavy traÆ
 analysisof swit
hes. We �rst present useful de�nition and notation for this 
hapter in Se
tion 4.1.We present formal 
uid model of a swit
h in Se
tion 4.2. Then, we use the 
uid model toprove stability MWMf 
lass of algorithms. In Se
tion 4.3 we study 
uid models of swit
hunder MWMf algorithm when swit
h is loaded 
riti
ally, that is, one or more of n inputs and noutputs are loaded to its 
apa
ity. This se
tion requires us to prove 
ombinatorial propertiesof MWMf algorithms in order to 
hara
terize the spa
e of �xed points of 
riti
al 
uid model.The results of 4.3 are of parti
ular interest as they are essential in obtain the behavior ofsystem under heavy traÆ
. In Se
tion 4.4, we introdu
e the set up of heavy traÆ
 s
alingfor a swit
h. We de�ne and 
hara
terize the \state spa
e 
ollapse" spa
e of a swit
h usingresults of Se
tion 4.3. Using the state spa
e 
ollapse 
hara
terization of MWMf algorithmand in parti
ular MWM-�, we obtain the optimality of MWM-0+ under heavy traÆ
 in Se
tion4.5. Further, we present explanation for Conje
ture 1. Finally, Se
tion 4.6 presents dis
ussion,s
ope of the method developed in this 
hapter and 
hapter summary.4.1 PreliminariesThe MWM algorithm 
hooses s
hedule ��(m) as a s
hedule at time m, where ��(m) issu
h that it satis�es ��(m) = argmax�2P f� �Q(m)g: (4.1)Equivalently, (4.1) 
an be interpreted in terms of 
umulative servi
e ve
tor (S�(m))�2P asfollows: S�(m) > 0 ) � �Q(m) � � �Q(m); 8 � 2 P: (4.2)



4.2. FLUID MODEL AND STABILITY OF MWMF 69Now we de�ne a generalized Maximum Weight Mat
hing algorithm. Consider any fun
tionf : R+ ! R+ . Then, MWMf algorithm 
hooses the s
hedule so that the following is alwayssatis�ed: S�(m) > 0 ) � � f(Q(m)) � � � f(Q(m)); 8 � 2 P; (4.3)where re
all that f(Q(m)) = (f(Qij(m)))ij . Thus, at time m MWMf 
hooses a maximumweight mat
hing as the s
hedule with weight of edge (i,j) as f(Qij(m)). In this 
hapter, we
onsider fun
tions f that satisfy the following 
ondition.Condition 1. The fun
tion f : R+ ! R+ is a stri
tly in
reasing 
ontinuous fun
tion withf(0) = 0. Further, for any (x1; : : : ; xn) and (y1; : : : ; yn) in Rn+Xi f(xi) �Xi f(yi) implies Xi f(Æxi) �Xi f(Æyi); 8 Æ > 0: (4.4)Some examples of fun
tion that satisfy 
ondition 1 are f(x) = x2, f(x) = log x et
. Aspe
ial sub-
lass of MWMf algorithms of our interest are the 
lass of algorithms parametrizedby � 2 R+ and denoted by MWM-� algorithms. An MWM-� uses f(x) = x� as its weightfun
tion.4.2 Fluid Model and Stability of MWMfIn this se
tion we �rst introdu
e the 
uid model of a swit
h. We des
ribed what we meanby 
uid model of a swit
h. For the ease of understanding, the formal des
ription of 
uid modelasso
iated with the swit
h is presented �rst. Then, we provide justi�
ation. Finally, we use
uid model to prove the stability of MWMf algorithm.4.2.1 Fluid Model of a Swit
hAs des
ribed in 
hapter 1, the dynami
s of a swit
h 
an be des
ribed 
ompletely by thetuple X (m) = ( �A(m);D(m); Q(m); S(m)); m 2 Z+: The 
uid s
aling of swit
h is de-veloped essentially to study the behavior of system at the \rate" level. Under the 
uids
aling, instead of looking at X (m), the fo
us is in studying the behavior of the tuple



70 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYx(t) = (a(t); d(t); q(t); s(t)); t 2 R+ , wherex(t) = limr!1 X (rt)r ; (4.5)where X (t) = (1� t+ bt
)X (bt
) + (t� bt
)X (bt
 + 1):Note that, as de�ned above, x(t) represents one of possibly many limit points. One doesnot require existen
e of a unique �xed point, as generally one proves properties for all limitpoints.From Assumption 1, inter-arrival times are IID. Hen
e by Strong Law of Large Numbers(or ergodi
 theorem) for IID variable,limm!1 1m �A(m) = �; with probability 1: (4.6)This in turn implies that, with probability 1,a(t) = �t: (4.7)Now, we are ready to des
ribe the dynami
s of the swit
h and the 
orresponding 
uidmodel equations. The 
uid model equations are essentially the equations that govern theevolution of quantities of x(t). Though, these 
uid model equations are intuitively 
lear, theformal justi�
ation is not straightforward. The formal justi�
ation is given later. Similar to thetreatment in Chapter 1, we 
onsider the dynami
s of a swit
h in two separate 
omponents:(i) Algorithm-independent dynami
s, and (ii) Algorithm-dependent dynami
s.
Algorithm-independent Dynami
sThe quantities Q(�); �A(�) and D(�) are related by the following basi
 queueing equation.Q(m) = Q(0) + �A(m)�D(m)= �A(m)�D(m); (4.8)
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e Q(0) = 0 from Assumption 2. In ea
h time slot, at most one of the permutation isserved and we are interested in non-idling swit
hes. Hen
e,X�2PS�(m) = m: (4.9)Clearly, D(m) and fS�; � 2 Pg are related to ea
h other. Spe
i�
ally,Dij(m) = X�2P mX̀=1 �ij1Qij(`)>0 (S�(`)� S�(`� 1)) ; 8 i; j: (4.10)Equivalently,Dij(m)�Dij(m� 1) = X�2P�ij1Qij(m)>0 (S�(m)� S�(m� 1)) ; 8 i; j: (4.11)
Next, we des
ribe the 
orresponding dynami
s of 
uid s
aled swit
h. The basi
 
uidquantities (q(t); d(t); a(t); s(t)) are absolutely and hen
e di�erentiable almost everywhere w.r.t.the Lebesgue measure. We will talk about 
uid model equations as the di�erentiable t. Theequations analogous to (4.8)-(4.10) are the following.q(t) = �t� d(t); (4.12)X�2Ps�(t) = t; (4.13)_dij(t) = X�2P�ij1qij(t)>0 _s�(t): (4.14)We de�ne additional notation, whi
h will be useful in further exposition. The n� n matrix ofinstantaneous servi
e rates, �(t), is �(t) = X�2P� _s�(t): (4.15)Then the equations (4.12) and (4.14) 
an be re-written as follows:_qij(t) = 8<:�ij � �ij(t) if qij > 0��ij � �ij(t)�+ otherwise (4.16)



72 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYThe above equations 
an be written in the following 
ompa
t form._q(t) = ��� �(t)�+[q=0℄: (4.17)Algorithm-dependent Dynami
sThe above are the basi
 equations whi
h govern a swit
h, regardless of the s
heduling al-gorithm. For a spe
i�
 s
heduling algorithm there may be additional equations. The algorithmde
ides whi
h permutations are 
hosen for servi
e, that is, fS�(�); � 2 Pg. We des
ribe thedynami
s for MWMf algorithm. Under the MWMf algorithm, the equation (4.3) is satis�ed,whi
h is the following.S�(m+ 1) = S�(m) if � � f(Q(m)) < max�2P � � f(Q(m)); m 2 Z+: (4.18)The 
orresponding 
uid model equation is given by_s� = 0 if � � f(q) < max�2P � � f(q): (4.19)4.2.2 Justi�
ation of Fluid ModelIn this se
tion, we present justi�
ation of 
uid model equations (4.12)-(4.14) and (4.19).We �rst introdu
e some de�nitions and notations. We want to study the limiting quantityx(t), where x(t) = limr!1 X (rt)r ; (4.20)where X (t) = (1� t+ bt
)X (bt
) + (t� bt
)X (bt
 + 1):Equivalently, we wish to study limr!1 xr(t) where, for r 2 R+xr(t) = X (rt)=r:In parti
ular, we wish to study x(t) over a time interval [0; T ℄, where T 2 R+ a �nite 
onstant.Ea
h xr(t) has asso
iated probability measure �r(�). Our interest is in studying the limitingmeasure �(�) obtained as the limit of �r(�) as r !1. Basi
 questions are: what is the spa
e



4.2. FLUID MODEL AND STABILITY OF MWMF 73on whi
h �r(�) is de�ned? are limit points of �r(�) probability measures? if yes, 
an we obtaintheir 
hara
terization ? Answering these questions is equivalent to showing that the limits ofxr(�) satisfy 
uid model equations.Now we pro
eed towards studying limits of �r(�). The spa
e of �r(�) is the set of all valuestaken by xr(t) as r ! 1 over a �nite time [0; T ℄. For this we need following de�nition. Asequen
e of fun
tions ff r; r 2 R+g where f r : [0; T ℄! R+ , is said to 
onverge uniformly on
ompa
t intervals (u.o.
.) to a fun
tion f : [0; T ℄! R+ iflimr!1 jf r � f jT = 0;where the jf r � f jT is the sup-norm de�ned asjf r � f jT = sup0�t�T jf r(t)� f(t)j:Next, we note the following properties of X (�); xr(�) whi
h prove their Lips
hitz 
ontinuity.1. At most one pa
ket 
an arrive at an input in a time slot. Hen
e, for all i; jjAij(m+ `)�Aij(m)j � `; 8m; ` ) jarij(t+ s)� arij(t)j � s; 8t; s: (4.21)2. At most one pa
ket 
an depart from an input (as well as output) in a given time slot.Hen
e, for all i; jjDij(m+ `)�Dij(m)j � `; 8m; ` ) jdrij(t+ s)� drij(t)j � s; 8t; s: (4.22)3. Everytime one of the mat
hing is s
heduled to transfer unit pa
ket. Thus, for all � 2 PjS�(m+ `)� S�(m)j � `; 8m; ` ) jsr�(t+ s)� sr�(t)j � s; 8t; s: (4.23)4. From (4.21) and (4.22), we obtain that for all i; j,jQij(m+ `)�Qij(m)j � `; 8m; ` ) jqrij(t+ s)� qrij(t)j � s; 8t; s: (4.24)From (4.21)-(4.24), we obtain that X (�); xr(�) are 4-tuple of Lips
hitz 
ontinuous fun
tionson [0; T ℄. Thus, the probability measure �r(�) is on the spa
e of Lips
hitz fun
tions. Now, we
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laim the following Lemma.Lemma 3. For any sequen
e rk " 1, the sequen
e of measures �rk is tight.Proof. The support set of measure �r, for any r 2 R+ , is a 4-tuple of fun
tions whi
h are (i)Lips
hitz 
ontinuous and hen
e equi
ontinous, (ii) uniformly bounded and (iii) with 
ompa
tdomain [0; T ℄ and image 
ontained in Rd+ , for some �nite integer d. Hen
e, Arzela-As
olli'sTheorem implies that the 
losure of the support is 
ompa
t on the spa
e of fun
tions (withdomain [0; T ℄ and range Rd+) endowed with topology indu
ed by metri
 of sup-norm. Thisin turn implies that for any sequen
e rk " 1, the sequen
e of measures �rk is tight. This
ompletes the proof of Lemma 3.From Lemma 3 and Prohorov's Theorem, we obtain that for any sequen
e of tight measures�rk on a metri
 spa
e, there exists a 
onvergent subsequen
e �rkj su
h that �rkj ! �; here� is a probability measure with the same support. Next we study the measure �. In parti
ular,we show that � 
on
entrates all of its mass on solution of 
uid model equations. As before,we divide the treatment in algorithm independent and algorithm dependent parts.Algorithm-independent 
uid modelWe will show that� ( fx(�) satis�es equations (4.12)-(4.14)g ) = 1:Re
all that inter-arrival times are IID (Assumption 1) and hen
e as shown in (4.7) with prob-ability 1, limr!1ar(t) = �t: (4.25)Sin
e �rkj ) �, �(a(t) = �t) = 1:From (4.25) and swit
h dynami
s implies, with probability 1,limr!1 qr(t) + dr(t) = �t; (4.26)
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e, q(t); d(t) satisfy (4.26) with probability 1, under �. This in turn implies that, x(�)satis�es (4.12) with probability 1 under �. The equation (4.13) is satis�ed trivially sin
e allalgorithms under 
onsideration are non-idling. The only remaining equation is (4.14).Fix i; j. We need to show that, under �, with probability 1, when qij(t; !) > 0,_dij(t) =X�2P�ij _s�(t):By 
ontinuity of qij(�), there exists a Æ > 0, su
h that a = mint02[t;t+Æ℄ qij(t0) > 0 if qij(t) > 0.Then for any large enough j, we haveqrkjij (t0) � a=2 for t0 2 [t; t+ Æ℄ and rkja=2 > 1:Thus, qij(rkj t0) > 1 for t0 2 [rkj t; rkj (t+ Æ)℄:Thus, for interval [rkj t; rkj (t + Æ)℄, the queue qij(�) is non-empty. Hen
e in this interval,departure from qij(�) mat
hes the amount of servi
e it was given, that is,dij(rkj t+ 1)� dij(rkj t) = X�2P�ij �s�(rkj t+ 1)� s�(rkj t)� : (4.27)By de�nition, rkjdrkjij (�) = dij(rkj �). Hen
e, from (4.27) we obtain,drkjij (t+ rkj )� drkjij (t)1=rkj = X�2P�ij �s�(t+ 1=rkj )� s�(t)1=rkj � : (4.28)Now by letting j !1, we obtain_dij(t) =X�2P�ij _s�(t):Thus, x(�) satis�es (4.14) with probability 1 under �. Hen
e, we have shown that under�, (4.12)-(4.14) are satis�ed with probability 1.



76 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYAlgorithm-dependent 
uid modelNext, we justify algorithm dependent 
uid equations (4.19) for MWMf algorithm. ForMWMf algorithm, the swit
h obeys the following equations.S�(m+ 1) = S�(m) if � � f(Q(m)) < max�2P � � f(Q(m)); m 2 Z+: (4.29)Consider any r and t. By de�nition, qr(t) = Q(rt)=r. Hen
e, from the Condition 1 weobtain � � f(Q(rt)) < max�2P � � f(Q(rt)) ) � � f(qr(t)) < max�2P � � f(qr(t)): (4.30)Now 
onsider a time t and the sequen
e frkjg. From (4.29) and (4.30), we obtainsrkj (t+ 1=rkj ) = srkj (t) if � � f(qrkj ) < max�2P � � f(qrkj ); t 2 R+ : (4.31)Diving both sides of equation on the left in (4.31) by rkj and letting j !1, gives the desiredequation as follows. _s� = 0 if � � f(q) < max�2P � � f(q):We 
on
lude the following result.Lemma 4. Given � > 0 and T , for r large enough there exists a solution of 
uid modelequations, x(�), su
h that Pr(jxr(�)� x(�)jT > �) < �:4.2.3 Stability of MWMfNow, we will use 
uid model to prove stability of MWMf algorithm. In order to use 
uidmodel equations to prove stability, we �rst de�ne notion of weak stability of 
uid model.De�nition 5 (Weak Stability). The 
uid model of a swit
h operating under a s
hedulingalgorithm is said to be weakly stable if for every solution of 
uid model equations x(�) is su
hthat q(t) = [0℄ for all t � 0, whenever q(0) = [0℄.The following theorem relates notion of weak stability with the rate-stability of algorithm.Theorem 11. A swit
h operating under s
heduling algorithm is rate-stable if the 
orresponding
uid model is weakly stable.
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uid model is weakly stable. Hen
e, given q(0) = [0℄, q(t) = [0℄ for allt > 0. This means that for all the solutions of 
uid model equations, we have 
orrespondingd(t) = �t from equation (4.12) for all t > 0. Thus, there is a unique solution to 
uid modelequation, given by (q(t); d(t); a(t)) = ([0℄; �t; �t) for all t > 0.Now 
onsider the 
ase when t = 1, that is, d(1) = �. Now by Lemma 4, uniqueness of
uid model solutions and re
alling the de�nition of 
uid s
aling, we obtain that,limr!1 D(r)r = d(1)= �; (4.32)with probability 1. Restri
ting r to integers, we obtain that the departure pro
ess also has rate� over dis
rete time, that is, the swit
h is rate-stable. This 
ompletes the proof of Theorem11.
Now we use the Theorem 11 to prove stability of MWMf. For this, we need to show that
uid model is weakly stable. For this purpose, we �rst de�ne the following Lyapunov fun
tion:L(q) = F (q) � [1℄ =Xi;j F (qij) where F (x) = Z xy=0 f(y) dy: (4.33)Though, L depends on the fun
tion f , we do not expli
itly mention f in its notation. Thede�nition of L will be 
lear from the 
ontext. Now, 
onsider the following Lemma whi
h showsthat L is indeed a Lyapunov fun
tion of MWMf algorithm.Lemma 5. For a swit
h operating under the MWMf algorithm with admissible arrival rate-matrix �, for any 
uid model solution q(t) 6= [0℄, ddt L(q(t)) < 0.Proof. Re
all that q(t) is absolutely 
ontinuous, and note that L(�) is 
ontinuous; thus thederivative exists wherever the derivative d=dt q(t) exists, whi
h is almost everywhere. At su
ht, let w�(f(q(t)) = max�2P � � f(q(t)):
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onsider the following.ddtL(q(t)) = f(q(t)) � (�� �)+[q(t)=0℄= f(q(t)) � (�� �(t)) sin
e f(z) = 0 whenever z = 0 (4.34)(a)� f(q(t)) �0��� 24 n2Xk=1�k�k35� �(t)1A= ��0� n2Xk=1�kf(q(t)) � �k1A� w�(f(q(t))) from equation (4.19) (4.35)� �(1� ��)w�(f(q(t))): (4.36)The (a) follows from the fa
t that admissible doubly sto
hasti
 rate-matrix � 
an be bounded
omponent-wise as � � ��Pn2k=1 �k�k, where �k 2 R+ ; Pk �k = 1. Now sin
e q(t) 6= [0℄,w�(f(q(t))) > 0. For admissible �, �� < 1. Hen
e from (4.36) we obtain ddtL(q(t)) < 0. This
ompletes the proof of Lemma 5.Next, 
onsider the following Lemma whi
h will be useful to prove weak stability of 
uidmodel equations under MWMf.Lemma 6. Let f : R+ ! R+ be an absolutely 
ontinuous fun
tion with f(0) = 0. Assumethat ddtf(t) � 0 for almost every t (w.r.t. Lebesgue measure) su
h that f(t) > 0 and f isdi�erentiable at t. Then, f(t) = 0 for almost every t � 0.Proof. For almost every t � 0, f2(t) � f2(0) = 2 R t0 f(s) ddsf(s)ds � 0, sin
e f(s) ddsf(s) � 0a.e. in [0; t℄. Now f(0) = 0 and f(t) � 0 imply that f(t) = 0 for almost every t.Now we state the result about rate-stability of MWMf algorithm.Theorem 12. Under any arrival pro
ess satisfying Assumption 1 with admissible rate-matrix�, the swit
h operating under MWMf algorithm is rate-stable.Proof. From Theorem 11, it is suÆ
ient to prove weak stability of 
uid model equations inorder to prove rate-stability of the swit
h operating under MWMf. Lemmas 5 and 6 implythat L(q(t)) = 0 for almost every t if q(0) = 0. By de�nition of L(�), this immediately impliesthat q(t) = 0 for almost every t when q(0) = 0. That is, the swit
h is weakly stable underMWMf algorithm. This 
ompletes the proof of Theorem 12.



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 794.3 Equilibrium Analysis of Fluid ModelIn the previous se
tion, we obtained 
uid model 
orresponding to a swit
h operating underMWMf algorithm. We used the 
uid model solutions to prove rate stability of MWMf algo-rithms under arrival pro
ess when rate-matrix is admissible. Now, we study the 
uid modelsolutions when some of the ports are 
riti
ally loaded, that is,jfi : �i� = 1g [ fj : ��j = 1gj � 1:In parti
ular, we are interested in 
hara
terizing invariant state of 
uid model equations, for-mally de�ned as follows.De�nition 6 (Invariant State.). Consider a swit
h operating under an algorithm A with arrivalrate matrix �. We 
all a state p 2 M + as an invariant if the following holds for all 
uid modelsolutions of su
h a swit
h: q(t) = p ) q(s) = p; 8s � t:Re
all that when � is admissible, i.e. �� < 1, the invariant state is q(t) = [0℄ as shownin Theorem 12. In this se
tion, when one or more ports of swit
h are 
riti
ally loaded, weseek to obtain (i) 
hara
terization of invariant states of 
uid model equations of a swit
h, and(ii) time taken for the 
onvergen
e to invariant states, starting from any initial state. In thisse
tion, we obtain answers to both (i) and (ii) under MWMf algorithm. We �nd that a stateq is an invariant state if and only if it is the solution to a 
ertain optimization problem whosethe input data the set of workloads qi� and q�j of the initial state.4.3.1 Preliminary Results about Mat
hingsRe
all that the Birkho�-von Neumann theorem says that the set of doubly sto
hasti
matri
es S forms a 
onvex set, with the permutation matri
es P as extreme points. Thus anydoubly sto
hasti
 matrix a 
an be written asa =X�2P
�� where ea
h 
� � 0 and X� 
� = 1:Furthermore, if the entries of a are all rational, then the 
� may be 
hosen to be rational.
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on
ern maximum weight mat
hings. Given a weight matrix q 2 M �,letM(q) be the set of maximum weight mat
hings, and letM(q) be the matrix whi
h indi
ateswhi
h entries are involved in a maximum weight mat
hing:M(q)ij = 8<:1 if �ij = 1 for some � 2M(q)0 otherwiseThe set M(q) exhibits an important 
losure property:Lemma 7. Let � 2 P, and suppose M(q)ij = 1 whenever �ij = 1. Then � 2M(q).Proof. De�ne the matrix a by a = X�2M(q) �:It is easy to see that a� � has non-negative entries, and that its row and 
olumn sums are allequal, so by the Birkho�-von Neuman de
ompositiona = � +X�2P
��where ea
h 
� � 0 and P 
� = jM(q)� 1j.Letm be the weight of a maximum weight mat
hing. By 
onstru
tion of a, q�a = jM(q)jm.On the other hand, by maximality, it must be that q � � � m and q � (a� �) � jM(q) � 1jm.If either of these inequalities are stri
t we get that jM(q)jm < jM(q)jm, a 
ontradi
tion.Hen
e q � � = m, and so � 2M(q).Let � be doubly sub-sto
hasti
. It 
an be augmented to form a doubly sto
hasti
 matrix�+ �, where the matrix � satis�es�ij > 0 if �i� < 1 and ��j < 1:We will 
all su
h an � the matrix of arrival rates that is 
omplementary to �. (One wayto obtain su
h an � is to start with �ij = " for the entries spe
i�ed above, where " =n�1mini(1 � �i�) ^minj(1 � ��j), and then to add the `de�
it' amount of load a

ording tothe transport algorithm.)�Here q denotes any positive weight matrix and not ne
essarily the queue-size matrix.
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h that qij = rij = 0 whenever �ij = 0. Let,ri� � qi� if �i� = 1 and r�j � q�j if ��j = 1; 8 i; j:Then there exists a doubly sto
hasti
 matrix � 2 S, a positive matrix " 2 M + , and a durationt > 0 su
h that r = q + t(�� �) + ": (4.37)Suppose that in addition ri� � qi� and r�j � q�j 8 i; j:Then for any augmentation �+ of �, there exist �, t and " as above su
h thatr = q + t(�+ � �) + ": (4.38)Proof. We will �rst prove (4.37). The proof of (4.38) is very similar.Let � = ��Æ(r�q) for suÆ
iently small Æ > 0. We will show that � is doubly sub-sto
hasti
matrix with non-negative entries.First, we'll show that all entries of � are non-negative, that is, �ij � 0. Now, if �ij > 0,then by 
hoosing Æ small enough, �ij 
an be made positive; else if �ij = 0 then trivially by
onstraints on q; r, we obtain �ij = 0. Thus, � 2 M + .Next, we show that � is doubly sto
hasti
, that is, �i� � 1; ��j � 1; 8i; j:. Consider �i�:either �i� < 1, in whi
h 
ase �i� < 1 for suÆ
iently small Æ; or �i� = 1, in whi
h 
ase ri� � qi�and �i� � 1. Similarly, ��j � 1; 8 j.Now, � is doubly sub-sto
hasti
 non-negative matrix. Hen
e, there exists an augmentationof �, i.e. there exists a doubly sto
hasti
 matrix � for whi
h � � � 
omponent-wise. Thenq + Æ�1(�� �) � q + Æ�1(�� �) = r:This proves (4.37).The proof of (4.38) is similar, with � = �+ � Æ(r � q). It makes use of the fa
t that�+ij = 0 implies �ij = 0.
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 Maximum Weight Mat
hingWe will start with some analysis of the equilibrium states of the basi
 Maximum WeightMat
hing algorithm, MWM-1. We will only give partial results, be
ause this algorithm is fullydes
ribed in se
tion 4.3.3 as a spe
ial 
ase of the generalized MWMf algorithm. Nonetheless,it is useful to build up some intuition by working with a spe
ial 
ase|we have found thatthe results des
ribed in this se
tion are intuitively appealing, even though they are in somesense restri
tive. Additionally, the results of this se
tion highlight some of the interesting
ombinatorial 
hara
terization of invariant state of the MWM-1 algorithm. In the rest of thepaper, whenever we use MWM, we mean MWM-1 unless spe
i�ed.Consider a single server serving many queues. The server de
ides whi
h queue to serveevery time. Under a work 
onserving poli
y when the arrival rate is no more than the servi
erate, the net work does not in
rease. Further, under the longest queue �rst poli
y, the sizeof the longest queue does not in
rease when arrivals and servi
es are deterministi
 (i.e. on
uid s
ale). Based on this, in the 
ontext of a swit
h, one would expe
t the weight ofmaximum weight mat
hing to be non-in
reasing under admissible deterministi
 arrivals. Next,we present an example (prompted by dis
ussions with Frank Kelly and Mark Walters) that
ontradi
ts this expe
tation. This should 
aution us against making any strong 
laims aboutoptimality of MWM algorithm.Example 6. Let the matrix of arrival rates be
� = 15 0BBBBBBB� 1 1 1 1 11 41 41 41 4

1CCCCCCCA(where blank entries are to be read as 0). Suppose that at some point in time the systemrea
hes the state q = 0BBBBBBB� 6 11 11 11 1111 911 911 911 9
1CCCCCCCA



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 83The weight of the maximum-weight mat
hing here is m(q) = 49. There are four mat
hingswhi
h have this weight. One 
an show that the MWM algorithm will serve these four, in equalproportion in this example, giving servi
e matrix
� = 14 0BBBBBBB� 1 1 1 11 31 31 31 3

1CCCCCCCA and �� � = 120 0BBBBBBB� 4 �1 �1 �1 �1�1 1�1 1�1 1�1 1
1CCCCCCCAwhi
h will be applied until the system rea
hes the state

r = 0BBBBBBB� 10 10 10 10 1010 1010 1010 1010 10
1CCCCCCCAThe maximum-weight mat
hing here is m(r) = 50. In other words, under the operation ofMWM, the weight of the maximum-weight mat
hing has in
reased.One 
an also show that, on
e the system has rea
hed state r, it will remain in that statethereafter.The key idea in this se
tion is of invariant states. Consider a swit
h with doubly sub-sto
hasti
 arrival rates �.Theorem 13. Suppose � > 0 in ea
h 
omponent. If q is an invariant state then it is theunique solution to the linear program MWM+-LP(q), whi
h is tominimize m(r) = max�2P � � r over r 2 M +su
h that ri� � qi� if �i� = 1, andr�j � q�j if ��j = 1Conversely, if q solves MWM+-LP(q) then it is an invariant state.(This restri
tion on � is ne
essary. Example 6 is a 
ase where some 
omponent of � isequal to zero, and the system does not minimize the maximum weight mat
hing. In 
ases



84 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYlike this, the results that follow are not appropriate. Se
tion 4.3.3 deals with this in a moresophisti
ated way.)The intuition behind the result is as follows. The MWM algorithm only o�ers servi
e tomat
hings whi
h have maximum weight. If this in
ludes only some of the queues, then thosequeues have more servi
e than arrivals, so they de
rease, whi
h pulls downm(q). This explainsthe obje
tive fun
tion. If some row i has �i� = 1 then the total servi
e rate for that row isequal to the total arrival rate, so qi�, the workload at input i, 
an never de
rease, it 
an onlyin
rease (but, subje
t to this, the workload 
an be rearranged among the queues in row i).Otherwise the total servi
e rate is greater than the total arrival rate, whi
h means that theworkload 
an also de
rease. This explains the 
onstraints.In proving the theorem, it is helpful to use a more expli
it 
hara
terization of invariantstates.De�nition 7 (MWM+-endstate.). We say that q is an MWM+-endstate if1. Every queue is involved in some maximum weight mat
hing, i.e. M(q)ij = 1 for all i; j,i.e. M(q) = P.2. If �i� < 1 and ��j < 1 then qij = 0.Lemma 9. If � > 0, then q is an invariant state if and only if q is an MWM+-endstate.Proof. The Theorem 15 relates invariant state and endstate in the 
ontext of general MWMfalgorithm. Taking f(x) = x, and restri
ting to the 
ase of � > 0, Theorem 15 immediatelyimplies the Lemma.Now we are ready to prove the Theorem 13.Proof of Theorem 13. Lemma 10 shows that if q solves MWM+-LP(r) then q satis�es bothrequirements of an endstate. Hen
e Lemma 9 implies the 
onverse of Theorem 13, i.e. if qis a solution of MWM+-LP(r) for some r, then q is an invariant state. Next, we pro
eed toprove that if q is an invariant state then it satis�es MWM+-LP(q).Now suppose q is an endstate and 
onsider MWM+-LP(q). First, a solution exists, sin
ethe obje
tive is a 
ontinuous fun
tion, and we 
an take the domain to be 
ontained in thebounded set fr : rij � m(q)g.



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 85Now let r be any solution to MWM+-LP(q), r 6= q. By Lemma 11 given below, ri� � qi�and r�j � q�j for all i and j. Hen
e by Lemma 8 we 
an writer = q + t(�+ � �) + "for some doubly sto
hasti
 �, where t > 0 and either �+ 6= � or " > 0 in some 
omponent.If �+ 6= �, then by Lemma 12 there is some mat
hing � with � �(�+��) > 0, whi
h impliesthat � � r > � � q. By assumption, q is an endstate, and so all mat
hings (and mat
hing � inparti
ular) have maximum weight for q, thus m(r) > m(q), whi
h 
ontradi
ts the optimalityof r. Otherwise �+ = � and " > 0 in some 
omponent, in whi
h 
ase it is easy to see thatm(r) > m(q), the same 
ontradi
tion.Thus r = q. Therefore q is the unique solution to MWM+-LP(q).Lemma 10. Suppose q solves MWM+-LP(r) for some r. Then all mat
hings are maximumweight mat
hings for q; furthermore, if �i� < 1 and ��j < 1 then qij = 0.Proof. Suppose that not all mat
hings are maximum weight mat
hings for q. By Lemma 7,there is some queue whi
h is not part of any maximum weight mat
hing. Without loss ofgenerality, suppose it is q11, i.e. suppose M(q)11 = 0. De�ne the matrixÆ = 0BBBBB� "(n� 1) �" � � � �"�"... "(n� 1)�1�"
1CCCCCAand let q0 = (q + Æ)+Sin
e all the row and 
olumn sums of Æ are equal to 0, q0 is feasible for MWM+-LP(r). Wewill now argue that m(q0) is stri
tly less than m(q), 
ontradi
ting the optimality of q.Consider any � whi
h is a maximum weight mat
hing for q. Suppose that �i1 = �1j = 1,i.e. that � mat
hes input port i to output port 1, and input port 1 to output port j. Byassumption, q11 is not part of any maximum weight mat
hing, so i 6= 1 and j 6= 1. Therefore� must 
omprise qi1 from the �rst 
olumn, q1j from the �rst row, and n� 2 queues from theremaining rows and 
olumns. We will argue below that at least one of qi1 and q1j is stri
tly
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iently small), we �nd that� � q0 � � � q + (n� 2) "n� 1 � "< � � q:(The inequality 
omes from the fa
t that one of qi1 and q1j may be 0.) Therefore m(q0) <m(q).It remains to show that at least one of qi1 and q1j is stri
tly positive. Suppose not. Considerthe mat
hing � whi
h is like � ex
ept that �11 = �ij = 1 and �i1 = �1j = 0. In words, � is like� ex
ept that it maps input 1 to output 1, and input i to output j. The weight of mat
hing� is � � q = � � q � �qi1 + q1j�+ �q11 + qij� � � � q:(The inequality 
omes from the fa
t that the two queues qi1 and q1j are both 0.) Thereforeq11 is part of a maximum weight mat
hing, whi
h 
ontradi
ts our premise. Thus it 
annot bethat both the queues are 0.Now, we will show that if �i� < 1 and ��j < 1 then qij = 0. Suppose not. Let q0 be like q,but with q0ij = 0. Then q0 is feasible for MWM+-LP(r), and sin
e no queues have in
reased,m(q0) � m(q). If m(q0) < m(q) then q is not optimal, a 
ontradi
tion. If m(q0) = m(q), thenq0 also solves MWM+-LP(r), so by the above all mat
hings in q0 have maximal weight. Andyet there is some mat
hing � (any mat
hing involving q0ij will do) for whi
h � � q0 < m(q0), a
ontradi
tion. Thus qij = 0.Note that we 
an 
hoose the matrix Æ, whi
h leads to a de
rease in the maximum weight,as a fun
tion of only q. Now, if we knew �, we 
ould 
hoose a servi
e matrix � su
h that��� � Æ, and hen
e a
hieve a stri
t de
rease in m(q) (unless q is already an endstate). Thismeans that m(q) is a Lyapunov fun
tion for some s
heduling algorithm (though probably notfor any online s
heduling algorithm).Lemma 11. Let q be an endstate, and let r solve MWM+-LP(q). Then ri� � qi� and r�j � q�jfor all i and j (not just for the 
riti
ally loaded ports).Proof. Without loss of generality, assume there are 
riti
al ports. By assumption q is anendstate, and by Lemma 10 r is too. The two requirements of an endstate imply that any
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s = 0BBBBBBBBBBB�

x1 + y1 � � � xC + y1 y1 y1 � � �... . . . ... ... ...x1 + yR � � � xC + yR yR yR � � �x1 � � � xCx1 � � � xC 0... ...
1CCCCCCCCCCCAWe have arranged the rows and 
olumns so that the �rst R input ports and the �rst C outputports are 
riti
al. To see that it must have this form, 
onsider a permutation � for whi
h�ij = �kl = 1 where input port i and output port j are both sub
riti
al, and 
onsider also thepermutation � whi
h is like � but with �il = �kj = 1 instead of �ij = �kl = 1. Sin
e s is anendstate, sij = 0, and both � and � are maximum weight mat
hings, hen
esij + skl = skl = sil + skj:By 
onsidering various possibilities for k and l we arrive at the above general form for s.Let the terms in this representative matrix be x1; : : : and y1; : : : for r, and u1; : : : andv1; : : : for q. Let x = x1 + � � �+ xC et
.Suppose the result of the lemma is false. Then (without loss of generality) u > x. Whatdoes this mean for y?First, write down the equations whi
h 
ome from the fa
t that r is feasible for MWM+-LP(q): (n�R)x+ (Rx+ Cy) � (n�R)u+ (Ru+ Cv)(n� C)y + (Rx+ Cy) � (n� C)v + (Ru+ Cv)Rearranging, we obtain Rx+ Cy > Ru+CvRx+ ny � Ru+ nv =) y > v
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e (n� C)y + (Rx+ Cy) > (n� C)v + (Ru+ Cv)i.e. RXi=1 x+ nyi > RXi=1 u+ nvi:Thus there is some i � R for whi
h x+ nyi > u+ nvi (4.39)and in parti
ular yi > n�1(u� x) + vi � 0: (4.40)Consider a new state r0 whi
h is like r ex
ept thaty0i = yi � "for " > 0 suÆ
iently small. By (4.39) and (4.40), r0 is feasible for MWM+-LP(q). Certainlym(r0) � m(r), sin
e " > 0; but by optimality of r, m(r0) � m(r); hen
e m(r0) = m(r), sor0 is optimal. Sin
e r0 is optimal, by Lemma 10 all mat
hings in r0 have maximum weight.However there is some mat
hing � (any mat
hing for whi
h �i (C+1) = 1 will do) whi
h hadmaximum weight for r, but for whi
h� � r0 < � � r = m(r) =m(r0):This 
ontradi
ts the fa
t that all mat
hings in r0 have maximum weight. So it 
annot be thatu > x.Applying the same argument to 
olumns, it 
annot be that v > y. This 
ompletes theproof.Lemma 12. Let " 2 S(0). If " is not identi
ally zero, there exists some permutation � su
hthat � � " > 0.Proof. Suppose not. Then � � " � 0 for all �.
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e " 2 S(0), it has a Birkho�-von Neuman de
omposition" =X� 
�� where X� 
� = 0:Therefore " � " =X� 
�� � " = 0;whi
h 
ontradi
ts the assumption that " is not identi
ally zero.Therefore � � " < 0 for some �. Now 
onsider the family of permutations �k de�nedby �k(i) = �(i) + k mod n. Certainly � = �0; and it is easy to see that the matrix � =�0 + � � � + �n�1 is identi
ally equal to 1. Thus � � " = 0. Sin
e �0 � " < 0 by assumption, itmust be that �k � " > 0 for some k.4.3.3 MWMfIn this se
tion we will prove results about 
riti
ally loaded 
uid model solutions of theMWMf algorithm. We will exhibit a Lyapunov fun
tion for the system state, and we will
hara
terize invariant states as the solution to an optimization problem whose obje
tive is theLyapunov fun
tion.First re
all some notation. The weight fun
tion f is stri
tly in
reasing real valued fun
tionwith f(0) = 0, satisfying Condition 1. Let q 2 M + be a state of the system. Let M(f(q)) bethe set of maximum weight mat
hes on f(q), and let M(f(q)) be the matrix whi
h indi
ateswhi
h queues are involved in some maximum weight mat
hing. Let � be the doubly sub-sto
hasti
 matrix of arrival rates. Let m(f(q)) be weight of the maximum weight mat
hing,m(f(q)) = max�2P � � f(q):Let � be a 
omplementary arrival matrix, that is, a matrix � 2 M + su
h that �+ = �+ � isdoubly sto
hasti
, and furthermore �ij > 0 whenever �i� _ ��j < 1. It must be that �ij = 0whenever �i� = 1 or ��j = 1. For MWMf algorithm we again use the following Lyapunovfun
tion. L(q) = F (q) � 1 =Xi;j F (qij) where F (x) = Z xy=0 f(y) dy: (4.41)Though, L depends on the fun
tion f , we do not expli
itly mention f in its notation. The



90 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYde�nition of L will be 
lear from the 
ontext. De�ne the 
onvex optimization problem MWMf-CP(q) to be minimize L(r) over r 2 M +su
h that ri� � qi� if �i� = 1r�j � q�j if ��j = 1rij = 0 if �ij = 0Note that the obje
tive fun
tion is stri
tly 
onvex as f(�) is stri
tly in
reasing fun
tion on R+ .De�ne B(q) 4= fr 2 M + : rij � q��; 8i; jg:It is easy to see that we 
an take the domain of r to be 
ontained B(q) for the purpose ofoptimization. By de�nition, B(q) is bounded and hen
e the optimization problem has a uniquesolution. Thus, optimization problem MWMf-CP(q) 
an be seen as a map from q 2 M + toM + . This leads to the following de�nition of Lifting Map.De�nition 8 (Lifting Map). The lifting map �f : M + ! M + , maps q to the unique solutionof optimization problem MWMf-CP(q), denoted by �f (q).Next, we state the 
hara
terization of invariant state under MWMf algorithm and itsrelation to the Lyapunov fun
tion L.Theorem 14. For a swit
h operating under the MWMf algorithm,(a) For any 
uid model solution q(t), ddt L(q(t)) � 0,(b) q is an invariant state if and only if it solves MWMf-CP(q), and(b) q(t) is an invariant state if and only if ddt L(q(t)) = 0.Proof. We present the proof of the (a) �rst, followed by (b) and (
).Proof of (a): ddt L(q(t)) � 0. Re
all that q(t) is absolutely 
ontinuous, and note that L(�) is
ontinuous; thus the derivative exists wherever the derivative d=dt q(t) exists, whi
h is almost
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h points,ddtL(q(t)) = f(q) � (�� �)+[q=0℄= f(q) � (�� �) sin
e f(z) = 0 whenever z = 0� f(q) � (�+ � �) sin
e � � �+ (4.42)= f(q) � �+ �m(f(q)) by the 
uid model equation (4.19)=X�2P
�f(q) � � �m(f(q)) by de
omposition of �+� m(f(q))�m(f(q)) sin
e m(f(q)) is maximum weight (4.43)= 0:Proof of (b): q invariant , q solves MWMf-CP(q).(() Suppose that q solves MWMf-CP(q). Let q(t) be any 
uid model solution with q(0) = q.Now d=dtL(q(t)) � 0 by (a). Now, we 
laim that q(t) is a feasible solution to MWMf-CP(q)for all t. If this is so then d=dtL(q(t)) = 0 by optimality of q, and ea
h q(t) is also an optimalsolution. But the optimum is unique. Hen
e q(t) = q for all q, i.e. q is invariant.We still need to verify that q(t) is feasible for all t. A

ording to the 
uid equations,_q(t) = ��� �(t)�+[q(t)=0℄If �i� = 1 then _qi�(t) � �i� � �i�(t) = 0:Thus, qi�(t) � qi�(0); similarly for q�j(t). Also, if �ij = 0 then_qij(t) � 0and so (as qij = 0) qij(t) = 0. Thus q(t) is a feasible solution to MWMf-CP(q).()) Now suppose that q is an invariant state. Let q(0) = q. Then, d=dtL(q(t)) = 0. Hen
ethe (4.42) and (4.43) must be equalities, whi
h implies thatf(q) � � = m(f(q)):Now let r be any feasible solution to MWMf-CP(q) and suppose r 6= q. By Lemma 8, we 
an



92 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYwrite r = r0 + " where r0 = q + t(�� �):where � is doubly sto
hasti
, t > 0 and " � 0; and either � 6= � or " > 0 in some 
omponent.Consider the family of states s(u) = q + u(�� �); u 2 [0; t℄giving s(0) = q and s(t) = r0. It is the 
ase thatdduL(s(u)) ���u=0 = f(q) � (�� �)= f(q) � �� f(q) � �= m(f(q))� f(q) � � by (4.3.3)� m(f(q))�m(f(q)) by de
omposing � into permutations= 0:Now, L(q(u)) is stri
tly 
onvex as a fun
tion of u, so if � 6= � then L(r0) = L(q(t)) >L(q(0)) = L(q), and sin
e L is in
reasing, L(r) = L(r0 + ") > L(q). Otherwise � = � and" > 0 in some 
omponent, so again L(r) = L(r0 + ") > L(q). We have shown that if r 6= qthen m(f(r)) > m(f(q)), i.e. that q solves MWMf-CP(q).Proof of (
): q(t) is not invariant , ddt L(q(t)) < 0.(() This is equivalent to the statement that if q(t) is invariant then ddt L(t) = 0, whi
h is trueby de�nition of invariant state.()) This is equivalent to the statement that q 4= q(t) is not invariant and the derivative isequal to zero. As we argued above, f(q) � � = m(f(q)) and hen
e q solves MWMf-CP(q). Aswe argued in (a), if q solves MWMf-CP(q) then it is an invariant state. This 
ompletes theproof of (
).Thus, we have proved (a)-(
) as 
laimed above.Next we present an alternative 
hara
terization of invariant states. We de�ne MWMf-endstate as follows.De�nition 9 (MWMf-endstate.). A state q is an MWMf-endstate if1. M(f(q))ij = 1 if �ij > 0,



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 932. M(f(q))ij = 1 if both �i� < 1 and ��j < 1,3. qij = 0 if both �i� < 1 and ��j < 1.Note that, for � > 0 in all 
omponents and f(x) = x, the MWMf-endstate is the sameas MWM+-endstate as de�ned in the previous se
tion. Next, we state the result that relatesMWMf-endstate and an invariant state of MWMf algorithm.Theorem 15. A state q is an MWMf-endstate if and only if it is an invariant state for MWMfalgorithm.Proof. From Theorem 14, q is invariant if and only if for q(t) = q, ddt L(q(t)) = 0. Hen
efrom (4.42) and (4.43), q is invariant if and only if f(q) � � = m(f(q)). Hen
e it is suÆ
ientto prove that q is an MWMf-endstate if and only if f(q) � � = m(f(q)).q is an MWMf-endstate ) f(q) � � =m(f(q)). First writef(q) � � = f(q) � �+ � f(q) � �;where as before � is 
omplementary matrix and �+ is doubly sto
hasti
, meaning that it hasa de
omposition �+ =X�2P
�� where P 
� = 1 and ea
h 
� � 0:By property (3) of MWMf-endstate and the property of � that �ij > 0 if and only if �i: < 1and �:j < 1 yields f(q) � � = 0. Hen
e, we are only required to show f(q) � �+ = m(f(q)) inorder to prove that q is invariant.Consider �+. If �+ij > 0 then there are two possibilities:1. �ij = �+ij > 0 then by property (1) of an MWMf-endstate, M(f(q))ij = 1.2. �ij < �+ij then �ij > 0 in whi
h 
ase M(f(q))ij = 1 by property (2) of MWMf-endstate.Thus, �+ij > 0 impliesM(f(q))ij = 1. Now in the de
omposition of �+, if 
� > 0 then �+ij > 0whenever �ij = 1 and so by the above M(q)ij = 1. Thus, if 
� > 0 then � 2 M(f(q)) byLemma 7, i.e. f(q) � � = m(f(q)). Thereforef(q) � �+ =X�2P
�f(q) � � = m(f(q)):Thus, if q is an MWMf-endstate then f(q) � � =m(f(q)).



94 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYq is not an MWMf-endstate ) f(q) � � <m(f(q)). If q is not an MWMf-endstate then oneof the three properties of MWMf-endstate must fail.1. If property (1) of MWMf-endstate fails, then M(f(q))ij = 0 and �ij > 0 for some i; j.Thus �+ij > 0, and so in the de
omposition of �+ there must be some � 62 M(f(q))with 
� > 0. Sin
e this � is not a maximum weight mat
hing, f(q) � � < m(f(q)), andso f(q) � � � f(q) � �+ < m(f(q)):2. If property (2) of MWMf-endstate fails, then M(f(q))ij = 0 and �ij > 0 for some i; j.Thus, �+ij > 0 with the same 
onsequen
es as above.3. If property (3) of MWMf-endstate fails, then qij > 0 and �ij > 0 for some i; j. Thusf(q) �� > 0. Also f(q) ��+ � m(f(q)), from the de
omposition of �+ and the fa
t thatf(q) � � � m(f(q)) for all �. Hen
ef(q) � � � m(f(q))� f(q) � � < m(f(q)):From above, if q is not an MWMf-endstate then f(q) � � < m(f(q)).The last result of this se
tion 
on
erns the speed of 
onvergen
e. Its relevan
e will notbe
ome 
lear until we 
ome to prove a heavy traÆ
 limit theorem. First some notation. De�neD(q) = fr 2 M + : L(r) � L(q)g:Note that if q(0) = q, then by Theorem 14(a), q(t) 2 D(q). Given q(0) = q, Theorem 14implies that q(t) 
onverges to an invariant state. Let 1 2 M + denote the matrix with allentries 1. Then D(1) is a 
losed and bounded (and hen
e 
ompa
t) set in M + . Consider thefollowing de�nitions: I = fq 2 D(1) : �f (q) = qg;and I(Æ) = fq 2 D(1) : 9r 2 I s.t. kr � qk < Æg:Note that both I and I(Æ) \ D(1) are 
losed and bounded set. Further, I as well as I(Æ)are stri
tly 
ontained inside D(1) for small enough Æ. Now 
onsider a fun
tion g : M + ! R+



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 95where g(q) = m(f(q))� f(q) � �:Note that, given f and �, g is a fun
tion on M + and g(q) = � ddt L(q(t)) for q(t) = q. Further,g(q) > 0 for q 2 I(Æ)
 \ D(1) from Theorem 14. Now g is a fun
tion and hen
e it a
hievesin�mum inside the 
losed and bounded set I(Æ)
\D(1), whi
h is stri
tly positive. Let �(Æ) > 0be this in�mum of g. Finally, de�neT (�) = infft � 0 : q(0) 2 D(1); q(t)��f (q(t)) � �g:Now we state the following result.Lemma 13. For any given � > 0, there exists a Æ(�) > 0 su
h thatT (�) � L(1)�(Æ(�)) : (4.44)Proof. Re
all de�nition �f (�). The �f (�) is uniformly on a bounded set D(1). Hen
e, for any� > 0, there exists 0 < Æ(�) � �2 su
h that for q1; q2 2 D(1),kq1 � q2k < Æ(�) ) k�f (q1)��f (q2)k < �2 :Consider any q1 2 I(Æ(�)). From de�nition, there exists an r 2 I su
h thatkq1 � rk < Æ(�) ) k�f (q1)��f (r)k < �=2: (4.45)But �f (r) = r and Æ(�) < �2 by de�nition. Hen
e,kq1 ��f (q1)k < �: (4.46)The (4.46) implies that T (�; q) is bounded above by the time it takes for q(t) to rea
h I(Æ(�))given q(0) = q. Now if q 2 I(Æ(�)) then trivially (4.44) is satis�es. If q =2 I(Æ(�)), then for allt su
h that q(t) =2 I(Æ(�)), ddt L(q(t)) = �g(q(t)) < ��(Æ(�)):Sin
e L(q(t)) � L(q) � L(1), we obtain the (4.45).



96 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAY4.4 Heavy TraÆ
 and State Spa
e CollapseIn this se
tion state our result of State Spa
e Collapse of IQ Swit
h operating underMWMf algorithm under Heavy TraÆ
 regime. We �rst de�ne the Heavy TraÆ
 s
aling andsome required notations.
4.4.1 Heavy TraÆ
 S
alingConsider a sequen
e of IQ swit
h systems, indexed by r 2 R+ , satisfying Assumptions 1and 2. The arrival rate matrix of rth system, �r, is�r = �� 1r�; (4.47)where � 2 M + is a �xed 
onstant matrix. The (4.47) suggests that,limr!1�r = �:Additionally, � is su
h that one or more of 2n ports (inputs and outputs) are 
riti
ally loaded,i.e. jfi : �i: = 1g [ fj : �:j = 1gj 6= 0: (4.48)Let X r(m); m 2 Z+ be the tuple des
ribing dynami
s of the rth system. Under Heavy TraÆ
s
aling, our interest is in studying the following s
aled quantity.x̂r(t) = X r(r2t)r ; t 2 R+ ; (4.49)where, as before, for any t 2 R+ ,X r(t) = (1� t+ bt
)X r(bt
) + (t� bt
)X r(bt
+ 1):Let xr(�) denote the 
uid s
aled quantity of rth system, as de�ned in (4.20). Thenx̂r(t) = xr(rt): (4.50)



4.4. HEAVY TRAFFIC AND STATE SPACE COLLAPSE 97In the above notation, we ignore parti
ular randomness !. When required we will use notationx̂r(t; !).For a matrix q 2 M + , de�ne workload ve
tor w(q) asw(q) = [q1: : : : q(n�1): q:1 : : : q:(n�1) q::℄:Essentially, the 
omponents of w(q) to n � 1 row-sum, n � 1 
olumn-sum and net sum forthe n� n matrix q. Intuitively, if q is a queue-size matrix for a swit
h, then the 
omponentsof the work-load ve
tor are: work at ea
h of the n� 1 input ports, work at ea
h of the n� 1output ports and the total work in the swit
h.Now we obtain 
hara
terization of the State Spa
e Collapse under MWMf algorithm. Thefollowing theorem makes the pre
ise statement.Theorem 16. Consider a family of IQ swit
h systems, indexed by r 2 R+ , satisfying Assump-tion 1-2, equation (4.48) and operating under the MWMf s
heduling algorithm satisfyingCondition 1. Let x̂r(�); r 2 R+ be de�ned as in (4.49). Then for any �nite T � 0,jq̂r(�)��f (q̂r(�))jTjq̂r(�)jT _ 1 ! 0; in probability as r !1: (4.51)Here, j � jT denotes sup-norm of a fun
tion de�ned on [0; T ℄.The Theorem 16 motivates the following de�nition of State Spa
e Collapse spa
e ofMWMf algorithms.De�nition 10 (State Spa
e Collapse Spa
e). Consider a swit
h of size n operating underMWMf algorithm under � su
h that all input and output ports are 
riti
ally loaded. We 
allq 2 M + an invariant state i� q = �f (q). Corresponding to an invariant state q, the workloadve
tor w(q) = [q1�; : : : ; qn�1�; q�1; : : : ; q�n�1; q��℄, is 
alled feasible workload ve
tor. The spa
eof all feasible workload (� R2n�1+ ) is 
alled the State Spa
e Collapse Spa
e of MWMf algorithmand it is denoted by SSC(n,MWMf).Theorem 16, as stated above, obtains weak state spa
e 
ollapse (see Bramson [1998℄for de�nition) for all MWMf algorithm. The state spa
e 
ollapse is 
alled weak, be
ause thejq̂r(�) ��f (q̂r(�))jT goes to 0 on the s
ale of (jq̂r(�)jT _ 1). Hen
e, unless shown otherwise,if jq̂r(�)jT grow to 1, then it is not possible to 
on
lude from Theorem 16 that the state ofthe limiting q̂r(�) lives in the state spa
e 
ollapse spa
e. As we shall see later, this property
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omes 
ru
ial in obtaining delay optimal algorithm. Motivated by this, we state the followingresult for MWM-� algorithms.Theorem 17. Consider a family of IQ swit
h systems, indexed by r 2 R+ . Let the arrivalpro
ess be Bernoulli IID in addition to satisfying Assumption 1-2 and equation (4.48). Further,the operates under MWM-� s
heduling algorithm for � 2 R+ . Let x̂r(�); r 2 R+ be de�nedas in (4.49). Then for any �nite T � 0,���q̂r(�)��f (q̂r(�))���T ! 0; in probability as r !1: (4.52)4.4.2 Proof of Theorem 16 on Weak State Spa
e CollapseTo prove Theorem 16, we �rst establish relation between heavy traÆ
 s
aling of systemand 
uid s
aling of system. Then we use results of se
tion 4.2 about the equilibrium behaviorof 
riti
ally loaded 
uid model equations to obtain the state spa
e 
ollapse 
hara
terization.Heavy TraÆ
 and Fluid Models. We wish to study the limiting pro
ess x̂(�) over some �nitetime interval [0; T ℄. For the rth system (r 2 R+), the heavy traÆ
 s
aled version x̂r(�) isrelated to the 
uid s
aled version xr(�) asx̂r(t) = xr(rt):Hen
e to study the x̂r(�) on interval [0; T ℄, we de�ne the following s
aled system: for m =0; : : : ; brT 
 xr;m(t) = (ar;m(t); dr;m(t); qr;m(t); sr;m(t));where ar;m(t) = Ar(tzr;m + rm)�Ar(rm)zr;m (4.53)dr;m(t) = Dr(tzr;m + rm)�Dr(rm)zr;m (4.54)sr;m(t) = Sr(tzr;m + rm)� Sr(rm)zr;m (4.55)qr;m(t) = Qr(tzr;m + rm)zr;m (4.56)



4.4. HEAVY TRAFFIC AND STATE SPACE COLLAPSE 99and zr;m = jQr(rm)j _ r: (4.57)To study the x̂r(�) over �nite interval [0; T ℄, that is, to study the original system X (�) overtime interval [0; r2T ℄, we study xr;m(�) over a �nite interval [0; L℄; L � 1, for all m � brT 
 asthis range 
overs the whole interval [0; r2T ℄. The xr;m(�) is s
aled like 
uid s
aling. We wishto show that any limit point of xr;m(�) as r " 1 obeys 
uid model equations (4.12)-(4.14)and (4.19). Now sin
e �r ! � and for every r 2 R+ , rth system satis�es Assumption 1, weobtain limr!1ar;m(t) = �t; almost surely. (4.58)Given (4.58) and noting that zr;m � r, it is easy to 
he
k that xr;m(�) satis�es equations(4.29)-(4.31). This leads to the result similar to Lemma 4.Lemma 14. Given � > 0 and L, for large enough r there exists a solution of 
uid modelequations, xm(�), su
h that Pr(jxr(�) � xm(�)jT > �) < �:Next we state useful properties of xr;m(�) as follows.Lemma 15. Given � > 0, L and T , for any m < rT let xm(�) be one of the limit of xr;m(�).Then for large enough r and T (�) � t � L,Pr(jqr;m(t)��f (qr;m(t))j > 3�) < �: (4.59)Further, under Assumption 2,Pr(jqr;0(�)��fqr;0(�)jL > 3�) < �: (4.60)Proof. We �rst prove (4.59). From 
ontinuity of 4f , for � > 0 there exists Æ(�) > 0 su
hthat for any q1; q2 � L ? 1,jq1 � q2j < Æ(�) ) j4f (q1)�4f (q2)j < �: (4.61)



100 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYFrom Lemma 14, for r large enough there exists a solution to 
uid model equations, qm(�),so that Pr(jqr;m(�)� qm(�; !)jL > minf�; Æ(�)g) < �: (4.62)Now, by de�nition qr;m(0) � 1 and hen
e qm(0) � 1. Hen
e by Lemma 13, for t � T (�),jqm(t)�4f (qm(t))j � �: (4.63)From (4.62) and (4.63) we obtain that for t � T (�),Pr(jqr;m(t)�4f (qm(t))j > 2�) < �: (4.64)Combining (4.61), (4.62) and (4.64), we 
an obtain (4.59).Next, we prove (4.60). From Assumption 2, the system starts empty, that is, qm(0) =4f (qm(0)) = 0. Hen
e, from (4.59) we trivially obtain (4.60).
Towards The Completion of Proof. Now, we use properties of xr;m(�) to study x̂r(�) and obtainthe proof of Theorem 16. We �rst state the following Lemma whi
h is a dire
t 
onsequen
eof Lemma 15.Lemma 16. Fix � > 0, L and T . For r 2 R+ and m � brt
, de�ne yr;m = zr;m=r. Then, forlarge enough r Pr(jq̂r(t)��f q̂r(t)j > 3�yr;m) < �; (4.65)for yr;mT (�) +mr � t � Lyr;m +mr :Further, under Assumption 2,Pr(jq̂r(�)��f q̂r(�)j�L > 3yr;0�) < �; (4.66)where �L = Lyr;0=r.



4.4. HEAVY TRAFFIC AND STATE SPACE COLLAPSE 101Proof. The proof follows from Lemma 15. From de�nitionqr;m(t) = 1yr;m q̂r� tyr;m +mr � : (4.67)The Condition 1 regarding weight fun
tion f(�) and the stru
ture of the optimization problem�f (�) implies �f (�q) = ��fq; for any � 2 R+ : (4.68)Now the statement of Lemma 16 follows from (4.67), (4.68) and Lemma 15.Next, we use Lips
hitz property of qr;m(�) to obtain a bound on the rate at whi
h yr;m 
anin
rease.Lemma 17. For r 2 R+ and m � brT 
yr;m+1 � 2yr;m: (4.69)Proof. From de�nition (see (4.57)), yr;m = zr;m=r � 1:By the property of a swit
h that at most one arrival 
an happen to a queue in a given timeslot, we obtain the following. yr;m+1 = Qr(rm+ r)r _ 1� Qr(mr) + rr _ 1� �Qr(mr)r _ 1�+ 1= yr;m + 1� 2yr;m: (4.70)



102 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYFor a given t 2 [0; T ℄ and r 2 R+ , de�ne mr(t) as follows:mr(t) = arg minm�0�mr � t � Lyr;m +mr � : (4.71)Next we obtain an estimate on mr(t).Lemma 18. Fix � > 0; L, and T and Æ � 1. Then for large enough r and t 2 h ÆLyr;0r ; T i,rt�mr(t) � ÆLyr;mr(t)2 : (4.72)Proof. For t 2 h ÆLyr;0r ; Lyr;0r i, by de�nition mr(t) = 0, whi
h satis�es (4.72). For t > Lyr;0=r,it follows that mr(t) � 1. By de�nition of mr(t), we obtainrt� (mr(t)� 1) > Lyr;mr(t)�1: (4.73)From Lemma 17, yr;mr(t) � 2yr;mr(t)�1: (4.74)From (4.73) and (4.74), we obtainrt�mr(t) > Lyr;mr(t)2 : (4.75)This 
ompletes the proof of Lemma 18.Now we are ready to 
omplete the proof of Theorem 16.Proof. (Theorem 16.) Let T be given. Then for any � > 0, 
hoose L satisfyingL > 2T (�)Æ :From Lemma 18 and given that L > 2T (�)Æ for all t 2 h ÆLyr;0r ; T i,rt�mr(t) � ÆLyr;mr(t)2� T (�)yr;mr(t): (4.76)



4.4. HEAVY TRAFFIC AND STATE SPACE COLLAPSE 103From de�nition jq̂r(�)jT _ 1 � yr;m; 8m: (4.77)From (4.76),(4.77) and Lemma 16 and we obtainPr(jq̂r(t)�4f (q̂r(t))j > 3�(jq̂r(�)jT _ 1)) < �; (4.78)for t 2 [ÆLyr;0=r; T ℄. Further, when Assumption 2 holds, by Lemma 16 the (4.78) holds fort 2 h0; Lyr;0r i. Now, [0; Lyr;0=r℄[ [ÆLyr;0=r; T ℄ = [0; T ℄. This 
ompletes the proof of Theorem16.
4.4.3 Proof of Theorem 17: on Strong State Spa
e CollapseNow, we prove Theorem 17 using some results of Chapter 2 and Theorem 16. Now,in order to prove Theorem 17, given the result of Theorem 16, we only need to show thatlimr!1 jq̂r(�)jT = O(1) in probability. For ease of exposition, we present arguments for � = 1.Exa
tly the same arguments will work for any positive �nite � 2 R+ .Consider the 
ase when � = 1. Consider rth system for some large r. Lets go ba
k tooriginal time-s
ale from heavy traÆ
 s
aling. Consider time interval [0; dr2T e℄. The arrivalrate to the system is �(r) = � � 1r�. Hen
e, the maximal net load is ��(r) = 1 � �(1=r).Let the Qr(m) denote the queue-size matrix at time m 2 [0; dr2T e℄. To show, jq̂r(�)jT isO(1), it is suÆ
ient to show that the maximum queue-size attained in the interval [0; dr2T e℄ isO(r) (see de�nition (4.49)). Hen
e, next we show that under Bernoulli IID traÆ
 with arrivalrate-matrix �(r) su
h that ��(r) = 1��(1=r), the maximum queue-size at any queue is O(r)with probability 1� o(1) (where probability s
aling is in terms of r).Re
all proof of Theorem 1 of Chapter 2. The proof used quadrati
 Lyapunov fun
tion,L(Q(m)) =Pi;j Q2ij(m). (Here, we drop referen
e to r in the notation Qr(m) so as to avoidpossible 
onfusion between exponent 2 and index r.) The inequality (2.16) is reprodu
ed hereas follows. E[L(Q(m+ 1))� L(Q(m))jQ(m)℄ � �2(1� ��)n kQ(m)k1 + 2n: (4.79)



104 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYLet Y (m) = L(Q(m)). Now, by non-negativity of ea
h of Qij(m),Xi;j Qij(m) � 0�Xi;j Q2ij(m)1A0:5 : (4.80)Now, (4.79), (4.80), (1 � ��(r)) = �(1=r) and notation Y (m) = L(Q(m)), give us thefollowing. E[Y (m+ 1)℄ � E[Y (m)℄� 2nrpY (m) + 2n: (4.81)Now, ignoring the addition term in (4.81), essentially Y (m) is a positive super-martingale (forte
hni
al 
ompleteness, one 
an de�ne pre
ise super-martingale asX(m) = Y (m)1fY (m)>2n4r2g+2n4r21fY (m)�2n4r2g). Hen
e, by Dubin's inequality(see Chapter 4, Durrett [1995℄) for up
ross-ing of interval [100n4r2;K100n4r2℄ (applied to super-martingale) starting from Y (0) = 0, givesus that the number of up
rossing is at least 1 with probability at most 1=K. That is, given� > 0, the maximum value of Y (m) over interval [0; dr2T e℄ is no more than 100n4r2� withprobability at least 1� �. That is,Pr� max0�m�dr2T e Y (m) = O(r2)� � 1� �; (4.82)for any � > 0. By de�nition, Y (m) =Pi;j Q2ij(m). From the well-known relation between `2and `1 norm, n2Y (m) �Pi;j Qij(m). Hen
e, we obtain thatPr0� max0�m�dr2T eXi;j Qij(m) = O(r)1A � 1� �; (4.83)This in turn implies that, Pr (jq̂r(�)jT = O(1)) � 1� �: (4.84)This 
ompletes the proof of Theorem 17 for � = 2. The main ingredient used in this proof isthe Lyapunov drift equation to obtain super martingale. Su
h Lyapunov drift is available forall MWM-� by design. Hen
e, using arguments as above, Theorem 17 
an be proved for all� 2 R+ .



4.5. INFERRING PERFORMANCE VIA STATE SPACE COLLAPSE 1054.5 Inferring Performan
e via State Spa
e CollapseThe Theorem 16 suggests that under heavy traÆ
 s
aling, the s
aled version of the systemis always in an MWMf endstate. That is, given input and output workload, the queue-sizesare determined by the Lifting Map, �f (�). Thus, in order to determine state of the swit
h, it issuÆ
ient to tra
k the input and output workload ve
tors. This simpli
ity in the des
ription ofthe system opens up the possibility of making more re�ned statement about the performan
e ofalgorithm. To explain this subtle issue, we review some of the well known te
hniques and theirfailure to study performan
e of s
heduling algorithm. Then, we will use the state spa
e 
ollapseproperty of MWM-� algorithm to obtain the 
hara
terization of a delay optimal algorithm (atthe heavy traÆ
 s
ale). We �nd that MWM-�, as � ! 0+, is an optimal algorithm. Weobtain des
ription of this algorithm at the a
tual time s
ale and �nd it very similar to theLongest Port First algorithm proposed by Mekkittikul and M
Keown [1998℄. We also �nd thatMWM-1 algorithm is not optimal. Finally, we use the state spa
e 
ollapse 
hara
terization toprovide an explanation of Conje
ture 1 of Chapter 1.4.5.1 Failure of Known MethodsA large body of literature has been developed for more than past 40 years to understandperforman
e of queueing systems or networks in a sto
hasti
 setting. The motivation ofanalyzing networks in most generality has led to a beautiful development of sto
hasti
 networkstheory. The tools developed in sto
hasti
 networks theory have been su

essful in manysituations to analyze performan
e of system in terms of throughput (e.g. 
uid model te
hnique,Lyapunov fun
tion theory, et
.) and delay (e.g. queueing theory, theory of large deviations,et
.).For the swit
h system, traditional methods like Lyapunov fun
tion theory and 
uid modelte
hnique have been su

essful as shown in this thesis in the 
hapters 2, 3 and 4 till now.Thus, as far as throughput performan
e of algorithms is 
on
erned, traditional approa
heshave been extremely su

essful.The delay analysis of swit
h is not well understood. We obtained bounds on average delay in
hapter 2 with the help of Lyapunov fun
tions for Bernoulli IID arrival pro
ess. Unfortunately,as shown in se
tion 2.3 of 
hapter 2, these bounds are not tight. Hen
e, they do not allow
omparison of algorithms based on delay performan
e nor allow 
hara
terization of optimalalgorithm.
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h is useful to analyze delay of a queue when both arrivaland servi
e distributions are known. In the 
ase of swit
h, arrival pro
ess is external and hen
ewell known. But, the servi
e distribution for any queue strongly depends on the s
hedulingalgorithm and the de
ision of s
heduling algorithm depends on the whole system. This makesit impossible to 
hara
terize the servi
e distribution indu
ed by the algorithm. Hen
e, standardapproa
h does not work to analyze queueing delay.In the 
ontext of ATM networks, theory of Large Deviations has been extremely su

essful(see books by Dembo and Zeitouni [1998℄ for theory of Large Deviations and book by Ganeshet al. [2004℄ for its appli
ation to the queueing systems). The main reason for the su

esswas the possibility of de
oupling large systems into small system. For example, in 
ase of ann port Output Queued swit
h, the system 
an be seen as made of n independent single FIFOqueues with deterministi
 servi
e rate. Hen
e, su
h system 
an be analyzed. For Input Queuedswit
h, due to dependen
ies indu
ed by algorithm, su
h de
omposition is not possible.In sto
hasti
 networks, the tool of sto
hasti
 
oupling has been very well exploited to
ompare performan
e of two systems. Su
h results do not 
hara
terize exa
t performan
e butprovide relative behavior. Though the results are weaker than exa
t performan
e 
hara
teri-zation, they 
an be possibly useful in 
ontext of swit
h due to their generality of appli
ation.However, obtaining su
h 
oupling arguments in the 
ontext of swit
h requires one to studythe stru
ture of the system in a great detail. We �nd it very diÆ
ult to apply dire
tly on thea
tual system.Instead, in the subsequent se
tions, we apply a modi�ed sto
hasti
 
oupling to 
hara
terizeoptimal algorithm as well as 
ompare performan
e of algorithms by looking at the system inthe heavy traÆ
 s
ale. The system in heavy traÆ
 are easy for this purpose is purely be
auseof their state spa
e 
ollapse property or equivalently possibility of des
ribing the 
omplete stateof the system only via input-output workload ve
tors.4.5.2 An Optimal AlgorithmIn this se
tion, we 
hara
terize an optimal algorithm at the heavy traÆ
 s
ale. For thispurpose, we will fo
us on studying state spa
e 
ollapse of MWM-� algorithms. We assumethat all input and output ports are 
riti
ally loaded. That is,�i� = ��j = 1; 1 � i; j � n:
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ity of notation, in the rest of the se
tion, we use q(t) in pla
e of q̂(t). Now, wede�ne an optimal algorithm at the heavy traÆ
 s
ale.De�nition 11 (Optimal Algorithm). An algorithm A is 
alled optimal at heavy traÆ
 s
aleif under identi
al arrivals the s
aled workload ve
tor w(q(t)) is 
omponent-wise no more thanthe s
ale workload ve
tor of any other algorithm.Next, we state the following 
hara
terization of an optimal algorithm.Theorem 18. The limiting algorithm lim�!0+ MWM-� is an optimal s
heduling algorithm inthe sense of De�nition 11 for any n� n swit
h.To prove the Theorem 18, we will require some Lemmas. Let the limiting algorithmlim�!0+ MWM-� be denoted by A?.We re
all some notations before presenting next few Lemmas. In the 
ontext of n � nswit
h, let q 2 M + be the queue-size and w(q) 2 R2n�1+ be 
orresponding workload ve
tore,where w2n�1(q) = q��;wi(q) = qi�; 1 � i < n; andwj+n�1 = q�j; 1 � j < n:Now, we state the Lemma about State Spa
e Collapse 
hara
terization of A?.Lemma 19. For any n�n swit
h, the state spa
e 
ollapse spa
e of algorithm A? is a 
ompletespa
e, that is,SSC(n, A?) = fw = (w1; : : : ; w2n�1) 2 R2n�1+ : wi > 0; 8ig: (4.85)Proof. We prove this by 
ontradi
tion. Suppose the statement of Lemma is not true. Thatis, there exists a workload ve
tor w = (w1; : : : ; w2n�1) satisfying 
onditions of (4.85) whi
h isnot feasible as de�ned in De�nition 10. That is, for any matrix q 2Matri
eP with w = w(q)q 6= �A?(w(q));where �A?(�) denotes the lifting map of algorithm of A?. As shown before, there exists asolution to the 
onvex optimization problem q� = �A?(w) (for ease of understanding, treatA? as an MWM-� algorithm with a �xed but very small �.)
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ular, it must be larger than w in at least two of the 
omponents(one row and one 
olumn). Without loss of generality, let w(q�)1 > w1; w�n > wn andw(q�)i � wi otherwise. Now it must be the 
ase that q�11 = 0. If not, then we 
an redu
e q�11either till it be
omes 0 or w�1 = w1 or w�n = wn. Thus, q�11 = 0. Now due to w being positivein all 
omponents, there exists i; j su
h that q�1i; q�j1 > 0. Without loss of generality, leti = j = 2. Now, sin
e q� satis�es the 
onvex optimization problem, A?-CP(q�) 
orrespondingto the MWM-0+-CP(�), by Theorem 15 it must be the 
ase that the weight of all mat
hingsare equal.Under algorithm A?, the weight of entry (i; j) is lim�!0+ �q�ij��. Now for very small �,�q�ij�� � 1 + � log q�ij: (4.86)Thus, for � ! 0+, essentially the weight is 1 if entry is non-zero and zero otherwise. Now
onsider two mat
hings: � and �̂ where �(k) = k;8k, while �̂(1) = 2; �̂(2) = 1; �̂(k) =k; k � 3. Then, it is easy to see that the weight of � is stri
tly smaller than the weight of �̂sin
e q�11 = 0 while q�12; q�21 > 0. This is a 
ontradi
tion.Thus, the original assumption of w(q�) 6= w is false. That is, w is a feasible workloadve
tor under algorithm A?. This 
ompletes the proof of Lemma 19.As an immidate 
orollary of Lemma 19, we obtain the following (whi
h we state as aLemma).Lemma 20. Under A? algorithm, let q be an invariant state. Then,qij > 0 , qi� > 0 and q�j > 0: (4.87)Proof.()) This is a straightforward impli
ation: if qij > 0 then qi�; q�j > 0.(() This follows using very similar arguments as used to prove Lemma 19.Lemma 21. Let q be su
h that all input workloads and output workloads are non-zero, thatis, qi� > 0; 8i; q�j > 0; 8j: (4.88)Then, under A? all input and output workloads are served at unit rate.



4.5. INFERRING PERFORMANCE VIA STATE SPACE COLLAPSE 109Proof. From Lemma 20, under (4.88), all entries are stri
tly positive. Hen
e, whatever mat
h-ing A? 
hooses to serve, its never going to idle. Hen
e, by the property of mat
hing, ea
hinput is served at unit rate as well as ea
h output is served at unit rate.Lemma 22. Under heavy traÆ
 s
aling, for any s
heduling algorithm, the limiting queue-sizesare su
h that all input and output workloads are non-zero with probability 1.Proof. Consider any input i. Under heavy traÆ
 s
aling, the limiting arrival pro
ess has rate1. Under any s
heduling algorithm, the net servi
e rate is at most 1. Thus, workload at inputi, qi� 
an be lower bounded by that of an �=D=1 queue with deterministi
 servi
e of rate 1. Thewell known results in queueing theory imply that the queue-size of su
h a queue under heavytraÆ
 s
aling (equivalently, when arrival rate is 1) be
omes a re
e
ted Brownian motion. Forsu
h re
e
ted Brownian motion, the set of time when it is 0 is measure 0. That is, withprobability 1, the queue-size of su
h a queue is non-zero. That is, the workload at input i isnon-zero with probability 1.The similar argument applies for all output workload. This 
ompletes the proof of Lemma22.Proof of Theorem 18. Consider an n � n swit
h under heavy traÆ
 s
aling. By Lemma 22,under any algorithm the input and output workloads are non-zero with probability 1. Giventhe swit
h 
onstraints, no algorithm 
an serve input workload or output workload at rate morethan 1. In parti
ular, from Lemma 21, A? serves all input and output workloads at rate 1 withprobability 1. Hen
e, the input and output workload are minimal under A? algorithm at all thetime under heavy traÆ
 s
aling. This 
ompletes the proof of Theorem 18.4.5.3 MWM-1 is Not OptimalThis se
tion is dedi
ated to the following theorem, stating that MWM-1 is not optimal.Theorem 19. The algorithm MWM (i.e. MWM-1) is not optimal.To prove the Theorem 19, we need the following state spa
e 
ollapse 
hara
terization ofMWM-1.
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h,SSC(n,MWM-1) = fw 2 R2n�1+ : wi + wj+n�1 � w2n�1n ; 1 � i; j � n� 1;(n� 1)w2n�1n � n�1Xk=1wk+n�1 � wi; 1 � i � n� 1;(n� 1)w2n�1n � n�1Xk=1wk � wj+n�1; 1 � j � n� 1;wk � w2n�1; 1 � k � 2n� 1g: (4.89)Proof. Let w 2 R2n�1+ be a workload ve
tor for a n � n swit
h. For its feasibility underMWM-1, there must exists a n� n positive matrix q 2 M + su
h that��(q) = q and for 1 � i � n� 1, qi� = wi; q�i = wi+n�1; q�� = w2n�1:This implies that given net-work w2n�1, for any feasible w, the 
orresponding invariant q � (0).Thus, to 
hara
terize SSC(n,MWM-1), we need to 
hara
terize q in terms of w and obtainthe 
onditions for it being a positive matrix.Given w, from Theorem 15, if � > 0 
omponent-wise, the invariant state has the prop-erty that all mat
hings are of equal weight. Given workload ve
tor w, the weight of ea
hmat
hing will be w2n�1=n. Now, a simple 
omputation will lead to the following positivity
hara
terization qij � 0 , qi� + q�j � w2n�1n ; 8 i; j: (4.90)Sin
e q is an invariant state 
orresponding to the workload ve
tor w, it must be that w(q) = w.Hen
e, by de�nition qi� = wi and q�j = wj+n�1 for 1 � i; j � n � 1; qn� = w2n�1 �Pn�1k=1 wk and q�n = w2n�1 �Pn�1k=1 wk+n�1. Now, repla
ing these in (4.90) essentially givesthe 
hara
terization of SSC(n,MWM-1) as des
ribed in (4.89).This 
ompletes the proof of Lemma 23.Proof of Theorem 19. The Lemma 23 suggests that the SSC(n,MWM-1) is a stri
tly smallersub-spa
e of R2n�1+ . There exists arrival pro
ess su
h that under algorithm A?, the workloadve
tor 
an take value outside of SSC(n,MWM-1). The MWM-1 algorithm, in su
h 
onditionswill retain its workload ve
tor inside SSC(n,MWM-1) by idling on some port. Thus, losing
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e. This proves that MWM-1 algorithm will not be optimal as de�ned in De�nition11. This 
ompletes the proof of 19.4.5.4 An Explanation of Conje
ture 1In this se
tion, we o�er an explanation for the Conje
ture 1. In order to do so, we studythe state spa
e 
ollapse spa
e of MWM-� algorithms. We �rst state result 
omparing thestate spa
e 
ollapse spa
e of MWM-� algorithms for 2� 2 swit
hes. We strongly believe thatthe following result hold in general for any n� n swit
h.Lemma 24. For �1; �2 2 R+ , if �1 < �2 thenSSC(2;MWM-�2) � SSC(2;MWM-�1): (4.91)Proof. Let w = (w1; w2; w3) 2 R3+ be a workload ve
tor for a 2� 2 swit
h. For its feasibilityunder MWM-�, there must exists a 2� 2 positive matrix q 2 M + su
h that��(q) = q and q1� = w1; q�1 = w2; q�� = w3:This implies that given net-work w3, for any feasible w, w1; w2 � w3 and the 
orrespondinginvariant q � (0). Now q � (0) further 
onstraints the possible values w1; w2 
an take, givenw3. Hen
e to 
hara
terize SSC(2,MWM-�), we need to �rst 
hara
terize q in terms of w andobtain the 
onditions for it being positive matrix.Given w, from Theorem 15, if � > 0 
omponent-wise, the invariant state has the propertythat both mat
hings are of equal weight, where weight is �th power of queue-size. Givenworkload ve
tor w, the input workloads are w1� = w1 and w2� = w3�w1 while output workloadsare w�1 = w2 and w�2 = w3 � w2. This leads to the following positivity 
hara
terizationqij � 0 , wi� + w�j + �w�i� + w��j�1=� � w3: (4.92)Thus, inequalities on the right hand side of (4.92) 
hara
terize the SSC(2,MWM-�). Now,
onsider the following known analysis result.Lemma 25. For any x; y 2 R+ and any � � 1,�x� + y��1=� � x+ y: (4.93)
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onsider 0 < �1 < �2. Then, for any a; b 2 R+ ,(a�2 + b�2)1=�2 � (a�1 + b�1)1=�1 : (4.94)The (4.94) follows from Lemma 25 by taking x = a�1 and y = b�1 . From (4.92) and (4.94),it is easy to 
on
lude thatSSC(2;MWM-�2) � SSC(2;MWM-�1):This 
ompletes the proof of the Lemma 24.The Lemma 24 suggests that as � in
reases the state spa
e 
ollapse spa
e de
reases. Nowthe state of the system (i.e. workload ve
tor) roams inside the state spa
e 
ollapse spa
e.Every time it hits the boundary, the swit
h algorithm sele
ts mat
hing so that the state of thesystem remains inside the state spa
e 
ollapse spa
e by idling on some port. This intuitivelymeans that given the same arrival pro
ess, the swit
h is more likely to idle for smaller statespa
e 
ollapse spa
e. Hen
e, from the result of Lemma 24, the swit
h performan
e shouldbe
ome worse as � in
reases under the MWM-� algorithm. This o�ers an intuitive explanationto the Conje
ture 1 for a 2� 2 swit
h. Next, we make this intuition rigorous.Ideally, we would like to obtain the result of the following type: the workload of algorithmMWM-�1 is dominated by the workload of MWM-�2 algorithm for �1 < �2 under heavy traÆ
s
aling. Suppose the following was true: the feasibility of all input workloads only dependedon the value of other input workloads (similarly for output workload). Then, using statementof Lemma 24, obtaining the ideal result is a straightforward 
oupling.Unfortunately, as shown in Lemma 24, the state spa
e 
ollapse 
hara
terization is su
hthat feasibility of an input workload depends on other input as well as output workloads.Hen
e, obtaining a 
oupling is very hard. Hen
e, in order to 
ompare algorithms, we 
onsidera spe
i�
 arrival pro
ess with arbitrary starting position. We des
ribe the setup next.Consider a 2 � 2 swit
h. Let the arrival pro
ess be determisti
 with rate � su
h that allports are 
riti
ally loaded and �ij > 0. For 2� 2 swit
h, su
h a � 
an be written as� = a�1 + (1� a)�2; a 2 (0; 1);where �1 serves queues (1,1) and (2,2) while �2 serves queues (1,2) and (2,1). Let the initialstate of the swit
h be any w 2 R3+ . Now, let the swit
h be operating under algorithm MWMf.
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h-state q is su
h that q = �f (q) and w(q) = q. Ifw =2 SSC(2,MWMf), then q is the solution to the following optimization problem.minq02M+ max�2P � � f(q0)su
h that w(q0) = w:Now, we state the following theorem 
omparing MWM-� algorithms.Theorem 20. Under the setup des
ribed above, the workload ve
tor under algorithm MWM-�1 is 
omponent-wise dominated by the workload ve
tor under algorithm MWM-�2 for 0 <�1 < �2.Proof. For ease of exposition, the proof if presented for �1 = 1 and �2 = 2. The arguments
an be easily extended for any 0 < �1 < �2.Consider a w 2 R3+ . From Lemma 24, there are three possibilities:(1) w 2 SSC(2,MWM-1) and w 2 SSC(2,MWM-2).(2) w 2 SSC(2,MWM-1) and w =2 SSC(2,MWM-2).(3) w =2 SSC(2,MWM-1) and w =2 SSC(2,MWM-2).In what follows, we 
onsider the situation where w1 � w2 � w3=2. All other (total 8)situations 
an be redu
ed to this by renumbering input/output and 
hanging input/outputde�nition. Let u(t) and v(t) denote the workloads at time t under algorithms MWM-1 andMWM-2 respe
tively, with u(0) = v(0) = w. Re
all that both re
eive arrivals at deterministi
rate � = a�1 + (1� a)�2; a 2 (0; 1).Case (1). In this 
ase, the swit
h starts in the invariant state for both MWM-1 and MWM-2.Hen
e, by Theorem 14, it remains in the same state forever, that is, u(t) = v(t) = w for allt � 0.Case (2). In this 
ase, the swit
h starts in the invariant state for MWM-1 and hen
e u(t) = wfor all t � 0. On the 
ontrary, for MWM-2, the swit
h starts in non-invariant state. As perabove setup, the intial swit
h state q 
orresponding to w is su
h that it has a unique maximumweight mat
hing. Due to w1 � w2 � w3=2, �1 will be the maximum weight mat
hing and
orresponding initial state has q11 = 0. Now, MWM-2 will serve �1 at unit rate till bothmat
hings be
ome of equal weight. During this time, (i) MWM-2 idles at q11 for (1 � a)fra
tion of the time sin
e � = a�1 + (1 � a)�2, (ii) MWM-2 in
reases v1(t); v2(t) at rate
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reases v3(t) at rate 1� a. Now, on rea
hing invariant state, theMWM-2 retains this invariant state from then on. Thus, under this 
ase, u(t) < v(t) for allt > 0.Case (3). In this 
ase, both algorithms start with initial state that is non-invariant. Bothalgorithms have �1 as unique maximum weight mat
hing in this initial state and both algorithmsserve �1 at unit rate till they rea
h invariant state. During this time, both algorithms (i)idle at q11 for (1 � a) fra
tion of the time sin
e � = a�1 + (1 � a)�2, (ii) they in
reaseu1(t); u2(t); v1(t); v2(t) at rate (1 � a), and (iii) in
reases u3(t); v3(t) at rate 1 � a. Thus,given u(0) = v(0) = w, both algorithms 
hange their workload u(t); v(t) in the same dire
tion.Now, by Lemma 24, SSC(2,MWM-2) � SSC(2,MWM-1):Hen
e, it must be the 
ase that u(t) rea
hes SSC(2,MWM-1) qui
ker than v(t) rea
hingSSC(2,MWM-2). Let T1 be the time when u(t) rea
hes SSC(2,MWM-1). Then, we obtainthat, u(t) = v(t); t � T1; and u(t) < v(t); t > T1.Thus, as shown in 
ases (1), (2) and (3), u(t) � v(t); for all t � 0 under any initialworkload w 2 R3+ . This 
ompletes the proof of Theorem 20.4.6 Chapter Summary and Dis
ussionThis 
hapter was dedi
ated to the study of throughput and delay property of generalizedMaximum Weight Mat
hing algorithm, denoted by MWMf.We obtained 
hara
terization of all stable weight fun
tions f . We used 
uid model te
h-niques and Lyapunov fun
tions theory to analyze throughput of MWMf algorithms. Thethroughput results suggest that a large 
lass of algorithms provide optimal throughput.This naturally led us to the following question:whi
h, among all of these throughput op-timal MWMf, is a delay optimal algorithm?. The traditional methods failed in answering thisquestion. In sear
h of an answer to the above question, we studied the IQ swit
h under heavytraÆ
 s
aling. We obtained the state spa
e 
ollapse property for MWMf algorithm via �xedpoints of equilibrium 
uid model equations. As an aside, we note that the results on equilibrium
uid model equations revealed interesting properties of these mat
hing algorithms.Interestingly, the state spa
e 
hara
terization of MWM-0+ algorithm allowed us to proveits optimality. Now, the des
ription of MWM-� algorithm for all � > 0 remains the samefor the system operating at the heavy traÆ
 s
ale (or 
uid s
ale) and the dis
rete s
ale.



4.7. BIBLIOGRAPHIC NOTES 115The approximation (4.86) suggests that, MWM-0+ must do the following: among all possiblemaximum size mat
hing, 
hoose the maximum weight (weight is logarithm of queue-size)maximum size mat
hing. Now, at dis
rete s
ale, the queue-sizes are always integer. Further,if queue-sizes are assumed to be bounded above by some 
onstant, then there exists a smallenough � su
h that the above des
ription be
omes exa
t.This also reminds us of the Longest Port First (LPF) algorithm propose by Mekkittikuland M
Keown [1998℄. The LPF algorithm 
hooses the Maximum Weighted Maximum SizeMat
hing where weight of an edge (i,j) is the sum of the workload at input i and output j.Based on this, we believe that the Longest Port First algorithm is an optimal algorithm. ThediÆ
ulty in proving this statement is of the te
hni
al form: the des
ription of LPF is not easyfor 
uid model analysis as it involves modeling Maximum Size Mat
hing.In addition to identifying the optimal algorithm, we used the method to demonstrate thatthe usual Maximum Weight Mat
hing algorithm is not optimal. This falsi�ed one of thelong standing folk-fore in the swit
hing 
ommunity. We also used the methods to provideexplanation to the observation of by Keslassy and M
Keown [2001a℄ noted as Conje
ture 1in the beginning of the thesis.We believe that the method of this 
hapter are quite general. In parti
ular, we believethat methods 
an be extended to a large 
lass of s
heduling problems where "MWM-type"algorithms are throughput optimal algorithms. For example, framework of Radio-hop networkused by Tassiulas and Ephremides [1992℄. In general, the results of this 
hapter leads to thefollowing intuitive understanding of optimality of algorithms: an optimal algorithm is the onethat has maximal state spa
e 
ollapse spa
e so as the idling in the system is minimized.4.7 Bibliographi
 NotesA part of results of Se
tion 4.2 are published by Shah [2001℄. The results of the Se
tions4.3, 4.4 and 4.5 are part of a preprint by Shah and Wis
hik. These results motivated by
ompanion papers by Bramson [1998℄ and Williams [1998℄.The 
uid model for a swit
h was �rst developed by Dai and Prabhakar [2000℄. They usedthe 
uid model to analyze throughput of MWM and Maximal Mat
hing algorithms. Fluidmodel te
hnique has been very well developed and used in various 
ontext. See noted byDai [1999℄ for a detailed exposition on this subje
t. The work by Stolyar [2004℄ studied ainput queued type swit
h under heavy traÆ
. This work restri
ts the number of port that are
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riti
ally loaded to one. This, in turn, obtains one-dimensional state spa
e 
ollapse spa
e forall algorithms and hen
e 
an not di�erentiate performan
e of MWMf algorithms for di�erentweight fun
tions.The state spa
e 
ollapse phenomenon was �rst observed by Whitt [1971℄. A series ofresults were obtained on heavy traÆ
 analysis of basi
 queueing systems in the early 1970s,notably by Iglehart and Whitt [1970a℄, Iglehart and Whitt [1970b℄, Iglehart and Whitt [1971℄.This led to a wonderful development of theory of heavy traÆ
 for 
omplex queueing systems.For example, works by Harrison [1988℄, Harrison [1995℄, Harrison and Williams [1992℄ andReimann [1984℄. A good referen
e for the early development of the heavy traÆ
 theory is thebook by Harrison [1985℄. The results of Bramson [1998℄ and Williams [1998℄ have provideda standard te
hnique to obtain state spa
e 
ollapse 
hara
terization of systems under heavytraÆ
 s
aling. They pioneered the use of equilibrium 
uid model to obtain the state spa
e
ollapse property.



CHAPTER 5
Con
lusions and Future Work

This thesis was about desing and analysis of s
heduling algorithms for the IQ swit
hes.The memory bandwidth requirement is be
oming a major bottlene
k in designing high-speedswit
hes. Due to low memory bandwidth requirement, the IQ swit
h ar
hite
ture is 
urrentlyvery popular for designing high speed swit
hes. But, IQ swit
hes require good s
heduling algo-rithm in order to provide good performan
e. Implementation 
on
erns make simple algorithmsdesirable. But if algorithm is too simple, it may perform rather poorly. Thus, one is requiredto resolve the tension between implementability and performan
e of s
heduling algorithm.Motivated by this 
hallenge, one part of this thesis (Chapter 3) provided a suite of simpleto implement high performan
e s
heduling algorithms { APSARA, LAURA and SERENA.These algorithms were based on novel design ideas like (i) use of information from past, (ii)use of arrival information, (iii) exploiting problem stru
ture (Merge pro
edure) and (iv) useof parallelism for sear
h in the spa
e of mat
hings; along with the well-known te
hnique ofrandomization. We proved that the proposed algorithms provide 100% throughput and havelow delay. Our simulations showed that they perform very 
ompetitively relative to knowngood algorithm, MWM. We dis
ussed the implementation details of this algorithm and �ndthat algorithms like APSARA and SERENA are implementable in 
urrent swit
hes in 
ore-routers. 117



118 CHAPTER 5. CONCLUSIONS AND FUTURE WORKThe se
ond part of this thesis presented novel analysis methods for s
heduling algorithms.In Chapter 2, we analyzed throughput and delay property of MWM and its approximations usinga method based on Lyapunov fun
tions. These methods, though appli
able to Bernoulli IIDtraÆ
 only, provide a great insight and useful bounds on performan
e of algorithms. Motivatedby the 
onsideration of general distributions for arrival pro
ess, in the Se
tion 4.2 of Chapter4, we used 
uid models to analyze throughput of algorithms. In parti
ular, we showed thata large 
lass of MWM-type algorithms have optimal throughput. But, they have di�erentdelay property. Though, theoreti
al studies have mainly fo
used on analyzing throughput ofalgorithms, delay or queue-size is a very important metri
. In pra
ti
e, routers have �nitebu�ers. Hen
e, it is possible that among two algorithms, an algorithm with theoreti
allyhigher throughput (when bu�er-size is in�nite) may provide lower throughput 
ompared tothe other algorithm in the presen
e of �nite bu�er! For example, see Figure 3.1 of Chapter 3and 
ompare performan
e of stable Algo2 with un-stable iSLIP algorithm at load � = 0:5 andbu�er-size of 1000.This motivated us to study the following question: what is a delay optimal algorithm?,and 
an we 
ompare performan
e of algorithms in terms of delay? Traditional methods werenot useful in answering these questions. We developed a new approa
h based on heavy traÆ
theory to obtain 
hara
terization of a delay optimal algorithm. We found that the folk-lore of Maximum Weight Mat
hing being optimal is false. Further, our results provided anexplanation to an intriguing empiri
al observation made by Keslassy and M
Keown [2001b℄about monotoni
ity in the delay property of MWM-� algorithms. Separately, our results onheavy traÆ
 analysis of swit
hes are of interest in their own right.5.1 Future WorkThis thesis brings us to a point from whi
h we 
an follow two seemingly di�erent paths: (i)Implementation of algorithms in a
tual swit
hes, and (ii) Use and further development ofanalyti
 methods of this thesis.5.1.1 ImplementationAlgorithms des
ribed in these thesis are very good in performan
e, veri�ed using theoryand via simulations. The 
laim, whi
h we made repeatedly in this thesis, that still remains



5.1. FUTURE WORK 119to be veri�ed is about their implementability. We brie
y dis
uss possible appli
ation of thesealgorithms.The main feature of APSARA algorithm is the possibility of parallel implementation. Itis very well suited for swit
hes with very large number of ports, sin
e in su
h a situationdesigning 
entralized s
heduler is almost impossible. A possible appli
ation of this algorithm
an be s
heduling in swit
hes for large storage-area networks.Among SERENA and LAURA algorithms, due to simpli
ity, we re
ommend SERENA forthe purpose of implementation. For simple implementation of Merge pro
edure, some formof 
entralized 
o-ordination is ne
essary. This makes SERENA parti
ularly well suited for veryhigh speed swit
hes with fewer ports.5.1.2 Analyti
 MethodThough this thesis dis
usses the design and analysis methods in the 
ontext of swit
hs
heduling, we believe that they are quite general.For example, the heavy traÆ
 analysis of s
heduling algorithm for IQ swit
h should beappli
able to a large 
lass of s
heduling problems, in
luding the setup of Radio hop introdu
edby Tassiulas and Ephremides [1992℄. The use of State Spa
e Collapse for 
hara
terizing delayoptimal algorithm in the 
ontext of swit
h s
heduling is based on a general philosophy. Westrongly believe that it should be useful in many other 
ontexts.The next natural question is: 
an we use the state spa
e 
ollapse 
hara
terization ofswit
hes to obtain an estimation of queue-size distribution?The design methods of the thesis are quite general. For example, the idea of using arrivalinformation in algorithm SERENA 
an be interpreted by a 
omputer s
ientist working on onlinealgorithms as \tra
k the adversary." This idea 
an prove to be very powerful in the 
ontextappli
ations like networking where system state 
hanges very slowly.
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