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Randomization and Heavy TraÆ Theory:New Approahes to the Design and Analysis ofSwith AlgorithmsByDevavrat ShahAbstratThis thesis addresses the design and analysis of implementable high-performane algorithmsfor high speed data networks, suh as the Internet. Our fous is on designing shedulingalgorithms for rossbar swithes. We exhibit a natural tradeo� between implementationalsimpliity and goodness of performane for sheduling algorithms operating in very high speedswithes. Our goal will be to resolve this tradeo� using novel design methods whih involverandomization on the one hand; and to develop new methods to analyze the performane ofthese algorithms on the other. Along these lines, this thesis has two main parts.The �rst part is motivated by the following onsiderations. The sheduler of a high speedswith poses hallenging problems to the algorithm designer. It needs to provide a goodperformane even though sheduling deisions need to be made in a very limited time andwhile utilizing meagre omputational resoures. To illustrate, a swith in the Internet oreoperates at a line rate of 10 Gbps. This implies that sheduling deisions need to be maderoughly every 50 ns. Compliated algorithms annot be designed to operate at this speed;only the simplest algorithms are implementable. But a simple algorithm may perform ratherpoorly, if it is not well-designed. vii



We hoose randomization as a entral tool to design simple, high-performane swithshedulers. This hoie a�ords us the ability to exploit several desirable features of random-ized algorithms: simpliity, good performane, robustness, and the possibility of derandomiza-tion for eventual implementation. Spei�ally, we exhibit three algorithms that exhibit thesefeatures.Our seond ontribution is a new approah for analyzing the delay indued by a swithsheduling algorithm. Traditional methods, based largely on queueing and large deviationtheories, are inadequate for the purpose of analyzing the delays indued by swith shedulers.We adopt a di�erent strategy based on Heavy TraÆ Theory whih advanes our understandingof delay in the following two senses. First, it leads to the haraterization of a delay-optimalsheduling algorithm. Seond, it helps explain some intriguing observations other researhershave made through simulation-based studies about the delay of sheduling algorithms.
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Preliminaries
NotationA very useful representation of state of an n � n swith is an n � n real-valued matrix.Hene, a lot of notation used in thesis is matrix based. Let M be the set of n� n real-valuedmatries, and M + the subset onsisting of R+ -valued matries. Let S(x) be the subset of Monsisting of matries all of whose row sums and olumn sums are equal to x, and write Sfor S(1), the set of doubly stohasti matries. A matrix � = [�ij ℄ 2 S is alled permutationmatrix if �ij 2 f0; 1g for all i; j. Let P be the set of n� n permutation matries. Shedulein a swith will be represented by a permutation matrix, � 2 P. For a matrix a 2 M , writeai� =Xj aij ; a�j =Xi aij; a�� =Xi;j aij ; anda� = maxi;j fai�; a�jg; a� = mini;j faij : aij > 0g:For matries a; b 2 M + and funtion f : R ! R, leta � b =Xij aijbij;ab = �aijbij�ij 2 M ;f(a) = �f(aij)�ij 2 M :Let omponent-wise multipliation have preedene over �, so that a � b = a � (b).xv



The � operation is ommutative. Further, the following distributive law holds.a � (b+ ) = a � b+ a � :The well-known Birkho�-von Neumann's theorem states that the set of all doubly stohas-ti matries, S, is a onvex set with P as the set of all possible extreme points. Further, thedimension of the set is n̂ = n2 � 2n+ 1. Hene, a matrix a 2 S an be written asa = n̂Xk=1�k�k;where �k 2 P, �k � 0 for all k and Pk �k = 1. A matrix b 2 M + is alled a doublysub-stohasti if all of its n row sums and n olumn sums are no more than 1. A doublysub-stohasti matrix an be upper bounded omponent-wise asb � b�a;where a 2 S.ConventionsIn this thesis, we assume disrete time paketized network. All pakets are assumed to beof the same size. The line-rates are normalized to unit. The paket sizes are hosen so thatone paket an arrive in a unit time. In pratie, though the pakets arriving at a router are ofdi�erent size, they are internally divided into equal sized \ell"s for the purpose of sheduling.In an abstrat setting, it is possible to onsider an m � n, m 6= n, swith but in pratieeah data port of a router ats as an input as well as an output leading to onsideration of ann� n swith. Hene, in this thesis we restrit ourselves to n� n swith.We will use the words shedule, mathing and permutation interhangeably.The Maximum Weight Mathing sheduling algorithm is entral to the study this thesis.Though, many versions of the Maximum Weight Mathing algorithm are studied in this thesisdepending on the de�nition of weight funtion, whenever we write Maximum Weight Mathingor MWM without any additional quali�er, we refer to the basi Maximum Weight Mathingthat uses queue-sizes as weights. See the Setion 2.1 for exat de�nition of the basi MWMalgorithm. xvi



How to Read This Thesis
This thesis is about design and analysis of sheduling algorithms for Input Queued swithes.The thesis is logially divided into three part: (1) Introdution (Chapter 1), (2) Design methodsfor swith algorithms (Chapter 3) and (3) Analysis methods for swith algorithms (Chapter2 and 4). A reader is advised to reah Introdution �rst. The Design methods and Analysismethods an be read in any order. But, a reader is advised to read Chapter 2 before Chapter4. Also, if reader deided to read Chapter 3 before Chapter 2, she or he is advised to readstatement of Theorem 1 from Chapter 2 for better understanding of motivation for algorithmsof Chapter 3.In Chapters 2-4, we provide referenes and proper redit to original ontributor in theSetion titled "Bibliographi Notes" at the end of the hapter. This is done in order topossibly provide a better ow.This thesis assumes a fair amount of bakground in Algorithms, Probability theory, Realanalysis and Combinatoris. In addition, bakground in Convex Optimization, Computer Ar-hiteture and Router design is useful. Possible referene if required are as follows. Foralgorithms, a good set of referenes are Introdution to Algorithms by Cormen et al. [1990℄,Randomized Algorithms by Motwani and Raghavan [1995℄ and Data Strutures and NetworkAlgorithms by Tarjan [1983℄. For Probability theory, some good referenes are Probability:Theory and Examples by Durrett [1995℄ and Probability and Measure by Billingsley [1995℄.In addition, Brownian Motion and Stohasti Calulus by Karatzas and Shreve [1991℄ an beuseful. For Real analysis and Topology, see Introdution to Topology and Modern Analysis bySimmons [1963℄ and Topology by Munkres [1999℄. For Combinatoris, see A Course in Com-binatoris by van Lint and Wilson [1992℄, Enumerative Combinatoris by Stanley [1999℄ andCombinatorial Algorithms: for omputers and alulators by Nijenhuis and Wilf [1978℄. Foran introdutory text on Graph Theory, refer to Introdution to Graph Theory by West [1996℄.For Convex Optimization, refer to Convex Optimization by Boyd and Vandenberghe [2004℄and Convex Analysis and Optimization by Bertsekas et al. [2003℄. For Computer Arhiteture,see Computer Arhiteture by Hennesy and Patterson [1986℄ and a survey artile Survey onRouter Design by Keshav and Sharma [1998℄ for state-of-art information on router design.xvii
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CHAPTER 1
Introdution

The fous of this thesis is the design and analysis of implementable algorithms for prob-lems arising in high speed networks, suh as the Internet. Our goals are two-fold: To resolvethe tradeo� between implementational simpliity and the goodness of performane of swithsheduling algorithms, to develop new methods for analyzing the performane of these algo-rithms. Along these lines, this thesis has two main parts.The �rst part is motivated by the following onsiderations. A high speed network presentsthe algorithm designer with highly onstrained problems: the algorithms need to work at avery high speed and utilize limited omputational resoures, while providing good performane.Consequently, only the simplest algorithms are implementable. But a simple algorithm mayperform rather poorly if it is not well-designed. This tension between implementability andhigh-performane is inherent to the design of rossbar swith sheduling algorithms.To illustrate this point, let us onsider the sheduler of a rossbar swith operating in theore of the Internet. Suh swithes reside, for example, inside Ciso Systems' GSR 12000series of Internet routers. The swith operates at a line-rate of 10 Gbps. This implies thatthe sheduler needs to on�gure the fabri of the swith roughly one every 50 ns. Eahon�guration allows the transfer of pakets (more preisely, parts of pakets) from the inputs tothe outputs. This small amount of time and the rather limited omputational requirements at a1



2 CHAPTER 1. INTRODUCTIONore router make the design of implementable, high performane shedulers a very hallengingproblem. The situation will be aggravated in the next generation of routers whih will operateat line-rates of 40 Gbps and higher.Our main approah for designing simple, high-performane swith shedulers is to userandomization. The main idea of randomization is simple to state: Basing deisions on asmall, randomly hosen sample is a good surrogate for basing deisions upon the ompletestate. Therefore, randomized algorithms lead to the simple implementation of otherwiseompliated solutions. While this general philosophy gives hope, spei� problem instanesrequire the designer to exploit the struture of the problem to ome up with good randomizedalgorithms. In this respet we shall see that exploiting the fat that swith sheduling isequivalent to bipartite graph mathing is key.Clearly, the performane of a randomized algorithm depends ruially on the quality of thesamples and we are motivated to ask: (a) Is it possible to improve the quality of the sampleswithout inreasing their number? (b) If yes, how well would suh an improvement perform? Webuild on a previous design by Tassiulas [1998℄ to devise a simple trik for reursively improvingthe sample quality, whilst leaving its size �xed. This trik yields a signi�ant performane boostwhile retaining the essential simpliity of randomized shemes and has some quite interestingtheoretial impliations. For example, we shall �nd that one of our algorithms, Serena, exploitsboth the struture of mathings and the reursive trik mentioned above to be a very simple,high-performane randomized approximant of the (ideal) maximum weight mathing algorithm.Our seond ontribution is a new approah for analyzing the delay indued by a swithsheduling algorithm. Traditional methods, based on queueing and large deviation theories forexample, are inadequate for the purpose of analyzing delay. We adopt a di�erent strategybased on Heavy TraÆ Theory whih advanes our understanding of delay in the followingtwo senses. First, it leads to the haraterization of a delay-optimal sheduling algorithm.Seond, it helps explain some intriguing observations other researhers have made throughsimulation-based studies about the delay of sheduling algorithms.This thesis is entered around swithes that operate in the ore of the Internet and whihhave an Input-Queued (IQ) arhiteture (for example, GSR 12000 Series Router of Ciso[2000℄). For the sake of ompleteness, we will review fundamental onepts from the theoryof swithing in this hapter. The rest of the hapter is organized as follows. Setion 1.1 isdevoted to a brief introdution of a typial rossbar swith in the ore of the Internet. Wedesribe anonial rossbar-based swith arhitetures and explain the onstraints in building



1.1. SWITCH ARCHITECTURES 3them. In Setion 1.2, we establish the notation that shall be used in the rest of this thesis,and de�ne the problem of sheduling an IQ rossbar swith. We also survey the previous workon sheduling algorithms. In Setion 1.3, we disuss in some detail our ontributions, and weend with an outline of the rest of the thesis in Setion 1.4.1.1 Swith ArhiteturesSwithing is an integral funtion of data networks. In an Internet router, pakets arriveat various input (ingress) ports destined for any of the output (egress) ports. Figure 1.1shows the path of a typial paket through a router. On the arrival of a paket at the router,the admission ontrol (AC) module deides whether to admit it or not. Additional poliingor priing mehanisms may be performed at the ingress port. If the paket is admitted,the routing lookup (RL) module deides the output port to whih the paket should be sentdepending on its �nal destination and routing information available in loally maintained tables.Subsequently, the paket may be queued before being swithed to the orresponding outputport via the swith fabri. At the output port, the output sheduler (OSh) deides when totransmit the paket on the egress line.
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Figure 1.1: Path of a typial paket through a generi Router.As opposed to the above paket-entri view of a router, Figure 1.2 presents a funtionalview of the router. The latter representation aggregates modules of the router dependingon the kind of information they require to proess a paket. Thus, the AC, RL and poliingmodules require only ontrol information from the header of the paket; whereas the swithing



4 CHAPTER 1. INTRODUCTIONand OSh modules perform data-dependent operations. Note that only the modules in thedata plane are a�eted by the size of pakets.Now, as the speed of a network sales, the router is subjet to an inreasing amount ofomputational strain. But whereas the e�et on the ontrol plane an be alleviated, say bydiving the ow into pakets of larger size, problems enountered by the data plane have nosuh immediate solution. Thus, the funtional view learly identi�es those modules that arehit hardest by the saling of speed of the network, and whih need to be addressed e�etively.Our work will fous on providing eÆient solutions to problems enountered by the data planemodules, in partiular, the swith sheduler.PSfrag replaementsControl Plane
Data Plane

AC RL Poliing
Output ShedulingSwithing

Figure 1.2: Funtional view of a Router.The main funtion of a swith is to transfer pakets from input ports to their destinedoutput ports. An n� n swith an, by de�nition, reeive pakets on n inputs, and is possiblyrequired to send pakets out to all n outputs. A shemati diagram of a 3 � 3 swith isgiven in Figure 1.3. A swith mainly onsists of two parts: (i) Swith fabri, whih transferspakets from input to output ports; and (ii) Bu�ers, whih store pakets that annot be sentout immediately. For a swith residing in a ore router, line-rates are on the order of Gbps.For example, in the urrent OC-192 standard, the line-rate is 10 Gbps. Soon, the line-rate isexpeted to inrease to 40 Gbps when OC-768 standard is adopted. The bu�er of a swithmust operate at a rate that is at least twie the line-rate (orresponding to a read and a writeoperation per time slot).In reent years, due to the rapid and ubiquitous deployment of optial �bers, the line-rate has inreased at a very fast pae. Roughly speaking, line-rates have doubled every 12months. This should be ontrasted with the fat that memory speed is doubling every 18
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Figure 1.3: A Shemati Diagram of a 3� 3 Swith.months aording to Moore's law Hennesy and Patterson [1986℄. Currently it is barely feasibleto build a swith with memory fast enough to operate at the line-rate. In the future, it is likelyto beome extremely hallenging to build swithes that operate at line-rate. (The soure ofthe above information is MKeown).Given that memory bandwidth is one of the most signi�ant onstraints in building highspeed swithes, in what follows, the relative goodness of a swith arhiteture shall be deidedby its memory-bandwidth requirement.Next we disuss three popular swith arhitetures, whih di�er essentially in the plaementof bu�ers.1. Output-Queued (OQ) swithes, where bu�ers are at the output port,2. Input-Queue (IQ) swithes, where bu�ers are at the input port, and3. Combined Input-Output Queued (CIOQ) swithes, where bu�ers are at both the inputand the output port.1.1.1 Output-Queued SwithFigure 1.4 shows a 3 � 3 OQ swith. In an OQ swith, arriving pakets are diretlytransfered from input to output ports and stored in the bu�ers residing at the output ports,if required. In suh a swith, only the pakets destined for the same output will ontend forsharing bandwidth of the outgoing line. This is the least ontention of bandwidth expeted



6 CHAPTER 1. INTRODUCTIONin any swith. This makes an OQ swith an ideal swith in terms of performane. But anOQ swith requires huge memory bandwidth: in an n � n OQ swith, the bu�er memory isrequired to run n+1 times faster than the line-rate beause possibly n pakets arrive and onepaket departs from the same output port in a time slot. As disussed above, the limitationon memory bandwidth makes it infeasible to build high-speed OQ swithes with large numberof ports.Though unbuildable, the performane of the OQ swith is ideal. Hene, it is used as atheoretial referene to whih the performane of other swithes an be ompared. A detailedexposition on this topi an be obtained in the works by Prabhakar and MKeown [1999℄,Chuang et al. [1999℄, Iyer et al. [2002℄, Iyer [2002℄, Keslassy [2004℄, Shah [2003℄, Krishnaet al. [1999℄ et.
PSfrag replaementsInput Output

Figure 1.4: An example of an Output-Queued Swith.1.1.2 Input-Queued SwithFigure 1.5 shows a 3 � 3 IQ swith with a rossbar swith fabri. The arriving paketsare stored in the bu�ers at the input side. At eah input, there are separate bu�ers for eahoutput, whih are alled Virtual Output Queues (VOQ). The rossbar fabri imposes thefollowing logial onstraints: in a time slot, eah input an transfer at most one paket to anyoutput and eah output an reeive at most one paket from an input. For example, Figure1.5 shows an instane when input 1 is onneted to output 1, input 2 to output 2 and input3 to output 3. Due to the rossbar fabri, at most one paket arrive at eah output port in atime slot. Hene, bu�ers are not needed at the output ports.The rossbar onstraints require the bu�er memory to run only twie (one for read and



1.1. SWITCH ARCHITECTURES 7one for write) the line-rate of a swith of any number of ports. This low memory bandwidthrequirement makes it possible for an IQ swith to operate at very high speed. Though rossbaronstraints are useful for low memory bandwidth, they reate the following sheduling problem:in every time slot a sheduling algorithm is required to �nd a \shedule" of the pakets whihform a \mathing" between inputs and outputs. Now, the performane of a swith dependson the sheduling algorithm. For good performane, the algorithm is required to �nd a goodshedule. Further, engineering onstraints require it to be simple so as to be implementable.In this thesis, we present methods for designing implementable high performane shedulingalgorithms.The IQ swith arhiteture has been studied for more than a deade. It was �rst introduedby Karol et al. [1987℄. Later, the works of Tamir and Chi [1993℄Anderson et al. [1993℄Karolet al. [1992℄ led to the development of the theory of swith sheduling. The Setion 1.2introdues the problem of sheduling formally.
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8 CHAPTER 1. INTRODUCTIONfabri runs s times faster than the line-rate, then the CIOQ swith is said to have speedups. The speedup s > 1 in a CIOQ swith requires it to have bu�ers at both input and outputports. The bu�ers are required to operate rate s+1 times the line-rate in a CIOQ swith withspeedup s.The CIOQ swith arhiteture was formally introdued by Prabhakar and MKeown [1999℄.They showed the possibility of emulating the performane of an OQ swith by a CIOQ swithwith a onstant� speedup. However, the algorithms required for this emulation are very omplexto implement due to the ommuniation overhead in a omputing shedule and the requirementof additional speedup.
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Figure 1.6: An example of a Combined Input-Output Swith.
�Speedup 4 was shown to be suÆient in Prabhakar and MKeown [1999℄. In Chuang et al. [1999℄ speedup2 was shown to be neessary and suÆient.



1.2. SCHEDULING IN IQ SWITCH 91.2 Sheduling in IQ SwithConsider an n � n IQ swith. The pakets arriving at input i destined for output j arestored in VOQ (i; j). The oupany of VOQ (i,j) is represented by Qij. As noted before, therossbar fabri imposes the following onstraints: in a time slot, (i) eah input an transfer atmost one paket, and (ii) eah output an reeive at most one paket. The swith shedulingproblem is to �nd a shedule of pakets satisfying the above onstraints.A natural and a very useful representation of an IQ swith is a weighted bipartite graph.A weighted bipartite graph orresponding to a 3� 3 IQ swith is shown in the Figure 1.7(a).The nodes on the left represent inputs and the nodes on the right represent outputs. Anedge between input i and output j orresponds to (a non-empty) queue (i; j). Edge (i,j) isassigned weight whih is a funtion of the state of the swith. For example, weight of the edge(i,j) an be queue-size Qij or a funtion of Qij. A mathing y in suh a weighted bipartitegraph orresponds to a possible shedule in the IQ swith. The Figure 1.7(b) shows one ofthe possible mathings or shedules for the bipartite graph in part (a) of the �gure. Thus, asheduling algorithm is equivalent to a mathing algorithm on a weighted bipartite graph.
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10 CHAPTER 1. INTRODUCTION1.2.1 Notation, Setup, and Dynamis of a SwithLet time be indexed by m. Initially, m = 0. Let the n� n integer valued matrix Q(m) =[Qij(m)℄ denote the queue-sizes of the swith at time m � 0. We assume that the swithstarts empty, i.e. Q(0) = [0℄. For reasons that will beome apparent later in the thesis,we all Qi�(m) the workload at input i; Q�j(m) the workload at output j at time m; andQ��(m) the overall workload in the swith. We are interested in the dynamis of Q(�), whihdepends on the arrival and servie proess. The arrival proess is exogenous while the servieproess depends on the sheduling algorithm. Next, we desribe the neessary notation andassumptions on the arrival and servie proesses.Let �A(m) = [ �Aij(m)℄ denote the umulative arrival proess until time m, i.e. �Aij(m)denote the number of pakets arrived at input i for output j in the time interval [0;m℄. LetAij(m) = �Aij(m) � �Aij(m � 1) be the number of pakets arriving at input i for output j intime slot m. Sine at most one paket an arrive at input i in a time slot, the Aij(m) are0-1 variables. Let uij(k) denote the inter-arrival time between the (k� 1)st and kth paket atinput i for output j. Thus, �Aij(m) = maxf` : X̀k=1 uij(k) �mg:Similarly, �D(m) = [ �Dij(m)℄ denotes the umulative departure proess from Q(m), and D(m)denoted the number of departures in time m. We assume that �A(0) = �D(0) = [0℄.Now, the line-rates are normalized to one, and hene at most one paket an arrive atan input and at most one paket an depart from an output in a given time slot; i.e. for allm; ` � 0 and for all i; j,�Aij(m+ `)� �Aij(m) � `; �Dij(m+ `)� �Dij(m) � `: (1.1)Additionally, we assume that the arrival proess satis�es the following assumption.Assumption 1. The inter-arrival times (uij(�)) are IID random variables for all i; j. Let thearrival rate-matrix be � = [�ij℄, that is,E[ �A(1)℄ = �: (1.2)



1.2. SCHEDULING IN IQ SWITCH 11Further, whenever �ij 6= 0 (i.e. pakets arrive at input i for output j),E[u2ij(1)℄ < 1: (1.3)Under a Bernoulli IID arrival proess, fAij(m);m � 1g are Bernoulli IID random variableswith Pr(Aij(1) = 1) = �ij. Note that, the Bernoulli IID arrival proess satis�es Assumption 1as stated above. As we shall see later in the thesis, the Bernoulli IID arrival proess providesus with a good understanding of the throughput and delay under various swith algorithms.Assumption 2. We assume that the swith starts empty at time 0, that is,Q(0) = [0℄: (1.4)The line-rates are one and hene by de�nition �i� is at most 1 for all i. Sine the outputline-rates are one, in order to have �nite queue sizes, ��j is required to be less than 1. Motivatedby this, we all an arrival rate-matrix � as admissible if it is stritly doubly sub-stohasti, i.e.�i� < 1; ��j < 1; 8 i; j: (1.5)We say that an input (output) port i (j) is ritially loaded if �i� = 1 (��j = 1).In swithes, queues are served by shedules (or permutations). Hene, the servie pro-ess (subsequently departure proess) is ompletely determined by fS�(m); � 2 P;m � 0g,where S�(m) denotes the umulative amount of time a sheduling algorithm hooses to servepermutation � in the time interval [0;m℄. Let S�(0) = 0; 8� 2 P.Now, we are ready to desribe the dynamis of the swith. The dynamis of a swithhave two omponents: (1) Algorithm-independent dynamis, and (2) Algorithm-dependentdynamis.Algorithm-independent dynamisThe dynamis of a swith are ompletely desribed by the quantities Q(�); A(�), D(�) andS(�) = (S�(�))�2P. That is, the tuple X (�) = (Q(�); A(�);D(�); S(�)) desribes the swith.These quantities are related by the following basi queueing equation.Q(m) = Q(0) + �A(m)� �D(m)= �A(m)� �D(m); (1.6)



12 CHAPTER 1. INTRODUCTIONsine Q(0) = 0 from Assumption 2. In eah time slot, at most one of the permutations isserved, and we are interested in non-idling swithes. Hene,X�2PS�(m) = m: (1.7)Clearly, �D(m) and fS�(�); � 2 Pg are related to eah other. Spei�ally,�Dij(m) = X�2P mX̀=1 �ij1Qij(`)>0 (S�(`)� S�(`� 1)) ; 8 i; j: (1.8)Equivalently,�Dij(m)� �Dij(m� 1) = X�2P�ij1Qij(m)>0 (S�(m)� S�(m� 1)) ; 8 i; j: (1.9)Note that, the equations (1.6)-(1.9) hold for a swith with any sheduling algorithm.Algorithm-dependent dynamisNow we desribe the dynamis of a swith that depends on the algorithm, unlike the aboveequations. In partiular, an algorithm deides whih permutations are hosen for servie, thatis, fS�(�); � 2 Pg. Here, we desribe the dynamis for the following algorithms of partiularinterest: (1) a very well-studied algorithm alled the Maximum Weight Mathing algorithm,(2) Maximum Size Mathing, (3) Maximal Mathing, and (4) Round-Robin algorithm.(1)Maximum Weight Mathing. Consider the swith bipartite graph, as in Figure 1.7. Letthe edge (i,j) be assigned weight Qij(m) at time m. Then, the basi Maximum WeightMathing algorithm, denoted by MWM, selets a shedule orresponding to the maximumweight mathing in the bipartite graph. Equivalently, at timem, MWM hooses a permutation,��(m) suh that ��(m) = argmax�2P � �Q(m): (1.10)An equivalent ondition is the following.S�(m) = S�(m� 1) if � �Q(m) < max�2P � �Q(m); m 2 Z+: (1.11)



1.2. SCHEDULING IN IQ SWITCH 13Now, if edge (i,j) is given weight f(Qij(m)) for some funtion f : R+ ! R+ , then the or-responding Maximum Weight Mathing, denote by MWMf, satis�es the following onditions:S�(m) = S�(m� 1) if � � f(Q(m)) < max�2P � � f(Q(m)); m 2 Z+: (1.12)An MWMf algorithm using f(x) = x�; � 2 R+ , is denoted by MWM-�. In this thesis, we willstudy the properties of MWM-� algorithms in a great detail.(2) Maximum Size Mathing. The Maximum Weight Mathing algorithm assigns the queuesize (or a funtion of it) as the weight of an edge, and serves the maximum weight mathing.Instead, onsider the following weight: let the weight be 0 if the queue is empty and 1 otherwise.The MaximumWeight Mathing algorithm with respet to this weight serves the mathing thatmaximizes the number of pakets transferred. That is, the algorithm serves a maximum sizemathing. The Maximum Size Mathing (MSM) algorithm satis�es the following equations.S�(m) = S�(m� 1) if � � 1(Q(m)) < max�2P � � 1(Q(m)); m 2 Z+; (1.13)where the funtion 1(x) = 8<:1; if x > 0;0; otherwise:(3) Maximal Mathing. The use of a word maximal mathing is not unique to one partiularalgorithm, but is a harateristi of a large lass, inluding MWM and MSM desribed above.Intuitively, an algorithm is alled maximal if the shedule used by algorithm is suh that nomore pakets an be transferred in the same time slot, in addition to the pakets transferredby the algorithm, while obeying the mathing onstraints. Preisely, a Maximal Mathingalgorithm satis�es the following onditions.Qij(m) > 0) "X�2P nXk=1(S�(m)� S�(m� 1))(�ik1Qik(m)>0 + �kj1Qkj(m)>0)# > 0 (1.14)(4) Round-Robin. Let all n! permutations of P be numbered from 1; : : : ; n! in some order.Let �(l) denote the permutation numbered l aording to this order. The Round-Robin (RR)algorithm selets the shedule orresponding to the permutation �(m mod n! + 1) at timem. Hene, under the RR algorithm, the swith obeys the following equations.S�(l)(m) = S�(l)(m� 1) + 1fl=(m mod n!+1)g; m 2 Z+: (1.15)



14 CHAPTER 1. INTRODUCTION1.2.2 Performane MeasuresThe performane of a sheduling algorithm is measured in terms of throughput and averagepaket delay. Intuitively, throughput is the rate at whih the swith an transfer data frominputs to outputs. As disussed above, any rate � that an be transferred by swith has to beadmissible. Next, we de�ne the notion of stability or 100% throughput.De�nition 1 (Stable Algorithm). A sheduling algorithm is alled rate-stable (equivalently,it is said to deliver 100% throughput) if under any arrival proess satisfying Assumption 1 andadmissible rate-matrix �, the departure proess is suh thatlimm!1 D(m)m = �; with probability 1:A rate-stable algorithm is alled strongly stable iflim supm!1E[Qij(m)℄ <1; 8i; j:The delay of a paket is the time spent by the paket in the swith until it departs. ByLittle's Law, average delay is related to average queue-size for a stable system. Hene, in thisthesis, we may use the words average delay and average queue-size interhangeably.1.2.3 Previous work on Sheduling AlgorithmsInput-Queued swith sheduling algorithms have been very well studied in the last deadeor so. A lot of researh has been done by people in industry and aademis to obtain imple-mentable sheduling algorithms with good performane guarantees. To evaluate the perfor-mane of sheduling algorithms, a great deal of theory has been developed. Unfortunately, notmuh suess has been ahieved either in terms of designing good implementable algorithmsor in developing theory to analyze the delay of sheduling algorithms.Previous work on Design of AlgorithmsThe initial work on the design of sheduling algorithms foused on obtaining stable shedul-ing algorithms. MKeown et al. [1996℄ showed that under a Bernoulli IID arrival proess, Max-imum Weight Mathing (with queue-size as weight) is stable. A similar result in the ontextof Radio-hop networks was obtained by Tassiulas and Ephremides [1992℄. Reent results by



1.2. SCHEDULING IN IQ SWITCH 15Prabhakar and MKeown [1999℄, Chuang et al. [1999℄ and Krishna et al. [1999℄ proposedalgorithms for CIOQ swithes to emulate the performane of an OQ swith with speedupbetween 2 and 4. These algorithms are stable and permit the use of sophistiated mehanismsfor supporting quality-of-servie (QoS).However, the above algorithms are too ompliated to implement. For example, the bestknown algorithm to �nd a Maximum Weight Mathing requires O(n3) operations in the worstase Edmonds and Karp [1972℄. That is, for a 30-port swith, it will require 27000 operations.Thus, a swith operating at 10Gbps, with paket size of 50 bytes, will be required to do thismany operations roughly every 5-10ns. This is infeasible under urrent tehnology. Further,due to the bak-traking nature of the routine involved in suh an algorithm, it is not suitablefor pipelining. Similar reasons hold for other well-known algorithms.Implementation onsiderations have therefore led to the proposal of a number of pratiablesheduling algorithms. A very suessful algorithm, alled iSLIP, was proposed by MKeown[1995℄ and MKeown [1999℄. The iSLIP algorithm is a maximal mathing algorithm withthe possibility of distributed implementation. Due to the simpliity of iSLIP, its variants areimplemented in some ommerially available routers. The iSLIP algorithm, though very simpleto implement, performs poorly. To improve the performane while retaining simpliity a numberof other algorithms have been proposed; notably iLQF by MKeown [1995℄, RPA by Marsanet al. [1999℄, MUCS by H.Duan et al. [1997℄, Parallel Iterative Mathing by Anderson et al.[1993℄ and Wave Front Arbiter by Tamir and Chi [1993℄. However, these algorithms performpoorly ompared to MWM when the input traÆ is non-uniform: they indue very large delaysand their throughput an be less than 100%.More reently, some partiularly simple-to-implement sheduling algorithms have been pro-posed by Chang et al. [2001℄ and by Iyer [2002℄ and proven to be stable. But these algorithmsrequire multiple swith fabris. Essentially they redue the omplexity of the sheduling al-gorithm by additional (expensive) resoures. Nevertheless, these algorithms demonstrate asigni�ant point: delivering 100% throughput does not ompliate the sheduling problem.On the other hand, in order to keep delays small, it seems neessary to �nd very good math-ings; and �nding good mathings is generally very hard, requiring omplex algorithms.Previous work on Analysis of AlgorithmsA signi�ant amount of researh has been done to develop methods for analyzing the per-formane of algorithms. A great amount of suess has been ahieved in developing methods



16 CHAPTER 1. INTRODUCTIONfor throughput analysis, but delay analysis methods are still laking.Throughput analysis methods are mainly based on Lyapunov funtion theory and uidmodel tehniques. The method of using Lyapunov funtions is quite anient. In the on-text of swithing, it was �rst used by Tassiulas and Ephremides [1992℄ and MKeown et al.[1996℄ to prove the stability of the Maximum Weight Mathing algorithm under Bernoulli IIDarrival proesses. Subsequently, it has been utilized very heavily. For example, in Tassiulas[1998℄Keslassy and MKeown [2001a℄Giaone et al. [2003℄Marsan et al. [2003℄.The uid model tehnique is one of the signi�ant development of the 1990s for throughputanalysis of stohasti networks. Dai and Prabhakar [2000℄ were the �rst ones to apply the uidmodel tehnique in the ontext of swith sheduling algorithms. They proved rate-stability ofthe MWM algorithm and showed that any maximal mathing is stable for a CIOQ swith atspeedup 2 or more. This method is quite general and has been used extensively. For example,in Shah [2001℄.The de�nition of throughput assumes availability of in�nite size bu�ers. In pratie, routershave �nite size bu�ers. Hene, sometimes throughput fails to apture the notion of "pratialapaity". To explain this, we present an example. Consider two algorithms, Algo2 and iSLIP.A detailed desription of the Algo2 an be found in Setion 3.1 of Chapter 3. The Algo2provides 100% throughput (i.e. stable) while iSLIP algorithm is believed to be unstable fornon-uniform traÆ. Now for a partiular non-uniform traÆ pattern (alled Diagonal traÆpattern), we �nd the simulation results as shown in Figure1.8. The Figure 1.8 plots averagequeue-length versus the normalized load for various algorithms. The performane under theMWM algorithm is plotted as a referene. The �gure suggests that at load 0:5 (i.e. at 50%loading) the performane of iSLIP is vastly better than Algo2. In partiular, at the load of 0:5the average queue-size under iSLIP is less than 10 while the average queue-size under Algo2 isso large that an not be plotted in the �gure (i.e. a lot larger than 10000). Thus, if a routerhas bu�er size equal to 1000, then the e�etive throughput ahieved at load 0:5 under iSLIPis at least is 99% of arriving traÆ while the Algo2 will ertainly lose a signi�ant fration ofthe throughput. Thus, iSLIP seems muh better algorithm than Algo2 for partiular situationexplained above.The above example motivates the neessity of studying queue-size or delay indued by analgorithm. Unlike throughput analysis methods, delay analysis methods are not well developed.The main reason is the inherent diÆulty in analyzing delay in omplex systems like swithes.However, some interesting approahes for analysing the delay of a swith algorithm have been
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Figure 1.8: Comparison of Algo2 and iSLIP.developed, whih we now desribe.Prabhakar and MKeown [1999℄ introdued the notion of Output Queued swith emulation.This allows for the evaluation of the delay of an algorithm as it is relatively easy to expliitlyevaluate delay of an OQ swith for a large lass of arrival proess. Unfortunately, OQ emulationis a rare property and hene this strategy is not very useful in general.Leonardi et al. [2001℄ obtained delay bounds for the Maximum Weight Mathing algorithmfor Bernoulli IID arrival proess. Unfortunately, their method, as presented, does not seem toapply well to general algorithms.Summary of Previous WorkThe previous work an be summarized with the help of Figure 1.9. This �gure plots theknown algorithms and arhitetures with respet to implementability and performane. TheOQ swith as well as the CIOQ swith (emulating an OQ swith) are ideal in performane butpratially infeasible to implement in a high speed swith. The iSLIP algorithm and its variantsare very good in terms of implementation but very poor in performane. Algorithms based onMaximum Weight Mathing provide Statial guarantees but still remain unimplementable.The questions that remain open are: (i) what is an implementable algorithm that is good inperformane? (A in Figure 1.9); and (ii) what is an ideal sheduling algorithm for an IQ swith



18 CHAPTER 1. INTRODUCTIONin terms of throughput and delay? (B in Figure 1.9).
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Figure 1.9: Summary of previous results: performane v/s implementability.1.3 ContributionsThis thesis has two main ontributions: �rst, we develop new design methods for imple-mentable algorithms with performane guarantees; seond, we develop a new analysis method,based on Heavy TraÆ theory, to study the delay of algorithms.1.3.1 Design MethodsWe exploit three design tehniques to obtain simple-to-implement high performane shedul-ing algorithms: (1) Randomization with Memory, (2) Use of arrival information and (3) Par-allelism.For more than a deade, randomization has been used in many problems to design simplealgorithms (see Motwani and Raghavan [1995℄). The basi idea behind randomized algorithms



1.3. CONTRIBUTIONS 19is as follows: the deision is based on a few randomly hosen samples instead of the wholestate. In many appliations, lever hoie of few random samples gives exellent performane.Unfortunately, in the ontext of swith sheduling, randomization alone does not help inobtaining a good sheduling algorithm. Observe though that the state (i.e. queue-sizes) ofa swith hanges very little between suessive time slots. Hene a heavy shedule remainsheavy (with respet to queue-size as weight) in the suessive time slots. Thus, the use ofinformation from the past, or memory, is very useful. We use randomization and memoryalong with the struture of mathings to obtain the high performane algorithm LAURA.In swithes, the goal of a sheduling algorithm is to keep the delay or queue-sizes small.To do so, the algorithm should serve longer queues with higher priority. The queues to whiharrivals happen often are more likely to be longer. Hene, looking at the queues that areexposed by arrivals leads to a way to disover good shedules. The algorithm SERENA isbased on this idea.Finally, the struture of permutations allows for the parallelism in disovering good shedulefrom a previous shedule. We use this idea to obtain the algorithm APSARA.The algorithms implemented in the urrent routers (for example Ciso [2000℄) have poorperformane. Hene, in order to guarantee high performane, an ISP over provisions thenetwork in terms of routers. We believe that by employing the algorithms proposed in thisthesis (espeially APSARA and SERENA), the performane of routers will improve signi�antly.Hene, the ISP using these new routers will require a lot fewer routers in order to guaranteethe same level of performane. Consequently, the ost of operating a ore-network will reduedrastially.1.3.2 Analysis MethodsPerhaps the most important ontribution of this thesis is the delay analysis method basedon the Heavy TraÆ Theory.The Heavy TraÆ theory has been well developed over the past two to three deades.As the name suggests, roughly speaking under heavy traÆ saling the system is loadedritially. In this regime, for many networking systems, a phenomenon alled \state spaeollapse" ours. This means that the state of the system under heavy traÆ lives in asmaller dimensional spae ompared to the original spae. Stolyar [2004℄ studied the statespae ollapse property of MWM algorithms under the speial ase of heavy traÆ in whihonly one logial resoure (i.e. one input port or one output port) is saturated while the rest



20 CHAPTER 1. INTRODUCTIONare underloaded. The result obtained by Stolyar [2004℄ strongly depends on the fat that onlyone logial resoure is saturated. The tehniques do not extend to the ase when multipleresoures are saturated.In this thesis, we study the swithes under heavy traÆ when one or more ports aresaturated. When all ports are saturated, we �nd that the state spae ollapse region isdi�erent for di�erent algorithms, unlike the results of Stolyar [2004℄, who �nds the same statespae ollapse for all algorithms. Our results build on the reent work by Bramson [1998℄ andWilliams [1998℄ in the heavy traÆ theory.The state spae ollapse haraterization of algorithms extends our understanding of theperformane of algorithms. First, we use this haraterization to �nd an optimal algorithmin terms of throughput and average delay. In partiular, we show that the formal limit ofMWM-� algorithm as � ! 0+ is an optimal algorithm. As explained in Chapter 4, this is aMaximum Size Mathing algorithm whih breaks ties among multiple maximum size mathingby seleting the maximum weighted maximum size mathing.Next, we use this tehnique to demonstrate that the MWM (i.e. MWM-1) algorithm isnot optimal. Thus, we show that the long-standing folk-lore in the swithing ommunity aboutthe optimality of MWM is false.Finally, we use these results to explain the following intriguing onjeture made by Keslassyand MKeown [2001a℄ based on empirial observations.Conjeture 1. For � 2 R+ , the average delay of the MWM-� algorithm dereases as �dereases.It an be shown that all MWM-� algorithms are stable for � 2 R+ , using the traditionalmethod based on uid model (see Setion 4.2 of Chapter 4). But, traditional methods fordelay analysis are not useful in explaining the delay behavior of algorithms as laimed by theConjeture 1. Again, we use the state spae ollapse haraterization of MWM-� algorithmsto explain the observed monotoniity in the delay behavior of the MWM-� algorithms.Our methods are general and we believe that they an be easily extended to other shedulingproblems where a sheduling deision orresponds to an extreme point of a losed and boundedonvex set in Rd , for some �nite d.



1.4. ORGANIZATION OF THESIS 211.4 Organization of ThesisThe rest of the thesis is organized as follows. In Chapter 2, we prove the throughput anddelay properties of MWM and its approximations under Bernoulli IID traÆ. We develop amethod based on Lyapunov funtions to obtain the delay bounds.In Chapter 3, we present various implementable high-performane sheduling algorithms.We prove their performane guarantees and disuss implementation details.Chapter 4 studies a lass of swith algorithms under heavy traÆ saling. In order to obtainthe state spae ollapse property of algorithms, we �rst study the algorithms under uid saling.This allows us to obtain two types of results: �rst, the rate-stability of algorithms; seond,the haraterization of the state spae ollapse spae. Using the state spae ollapse spae,we obtain a haraterization of a delay optimal sheduling algorithm and o�er an explanationfor the Conjeture 1.Finally, in Chapter 5 we present the onlusions of the thesis and disuss future researhdiretions.
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CHAPTER 2
Maximum Weight Mathing

The Maximum Weight Mathing(MWM) algorithm has been very well studied in the on-text of IQ swith sheduling. One of the main reason for the popularity of MWM is the naturalassoiation of the swith sheduling problem with bipartite mathing problem.The MWM and its approximation algorithms are entral to the study of this thesis. Hene,this hapter is dediated to the study of properties of MWM and its approximation algorithms.In Setion 2.1, we briey reall the de�nition and known algorithms to �nd MWM. We statethroughput and delay properties of MWM. We use method based on Lyapunov funtions toderive these properties of MWM. The exellent performane of MWM raises the followingquestion: do approximate MWM algorithms have good properties? In Setion 2.2, we addressthis question. We introdue a lass of approximate MWM algorithms whih we denote by(�,�)-MWM with approximation parameters � 2 Z+; � 2 (0; 1℄. This notion of (�,�)-MWM is motivated by the theory of approximation algorithms. Again, we use Lyapunovfuntions based methods to analyze throughput and delay properties of these algorithms. We�nd the following intuitively pleasing onlusion: a good approximate MWM algorithm alsoapproximates the performane of MWM very well in terms of throughput and delay.We disuss the strength and weakness of the results of this hapter in Setion 2.3. Someof the results that are presented in this setion are known. As noted earlier in the Preliminaries,23



24 CHAPTER 2. MAXIMUM WEIGHT MATCHINGthe bakground, related work and itations are presented in the bibliographi notes (Setion2.4). We note that, the results of this hapter will be useful throughout this thesis in variousontexts.2.1 The Basi MWMConsider an n�n swith operating under the MWM algorithm. Let the arrival proess beBernoulli IID with admissible arrival rate-matrix �. In this hapter, we only onsider BernoulliIID arrival proess. General arrival proesses are onsidered in Chapter 4.Next, we reall de�nition of MWM. Let � = [�ij ℄ 2 P be one of n! possible shedulesa sheduling algorithm an hoose. De�ne weight of the shedule � at time m, denoted byw�(m), as w�(m) = Q(m) � � =Xij �ijQij(m): (2.1)The MWM algorithm shedules pakets aording the shedule with the maximum weight.That is, MWM hooses a shedule ��(m) at time m, where��(m) = argmaxfw�(m) : � 2 Pg:If there are multiple shedules with the highest weight, then MWM breaks tie arbitrarily. Aswe shall see later in this thesis, a lass of Maximum Weight Mathing algorithms is obtainedby hanging the de�nition of weight. In this hapter, we fous only on the weight as de�nedin (2.1). We shall disuss how our results of this hapter hange when weight funtions di�erin setion 2.3.We briey note that, �nding a MWM shedule is well-known algorithmially. There areknown polynomial time (in n) algorithms that �nd MWM (independent of weight). Thesealgorithms are lassi�ed as network-ow type algorithms. See Setion 2.4 for detailed refer-enes.2.1.1 Properties of MWMNow, we state the results about throughput and delay property of the MWM.



2.1. THE BASIC MWM 25Theorem 1. Consider a swith operating under MWM algorithm. Let the arrival proess beBernoulli IID with admissible arrival rate-matrix �. Then, the swith is strongly stable. Further,the average queue-size is bounded above asXij E[Qij ℄ � n21� �� : (2.2)Proof. We �rst prove the strong stability of the swith under MWM algorithm. To do so, weuse the quadrati Lyapunov funtion, whose value at time m is given as follows.L(Q(m)) = Q(m) �Q(m) =Xij Q2ij(m): (2.3)The results of Kumar and Meyn [1995℄ suggest that to prove strong stability, that is,lim supm!1E[Qij(m)℄ <1;8i; j;it is suÆient to show that for all time m,E[L(Q(m+ 1))� L(Q(m))jQ(m)℄ � ��kQ(m)k1 +B; (2.4)where � and B are positive onstants. We note that, the same onlusion also follows by theFoster's Criteria (see books by Asmussen [1987℄ and Meyn and Tweedie [1993a℄ and works byMeyn and Tweedie [1993b℄ and Meyn and Tweedie [1993℄ for a detailed exposition on theuse of Foster's Criteria).Now we prove (2.4). Consider the following.L(Q(m+ 1))� L(Q(m)) = Xi;j [Q2ij(m+ 1)�Q2ij(m)℄= Xi;j [Qij(m+ 1)�Qij(m)℄[Qij(m+ 1) +Qij(m)℄:Let ��(m) be the shedule used by MWM at time m, D(m) be the indued departures at timem and A(m+ 1) be the arrivals to queues at time m+ 1.Qij(m+ 1) = Qij(m) +Aij(m+ 1)�Dij(m); (2.5)Dij(m) = ��ij(m)1fQij (m)>0g: (2.6)



26 CHAPTER 2. MAXIMUM WEIGHT MATCHINGFrom (2.6), we obtain,L(Q(m+ 1)) � L(Q(m)) = Xi;j 2Qij(m) (Aij(m+ 1)�Dij(m))+ Xi;j (Aij(m+ 1)�Dij(m))2: (2.7)Now, in a time slot, at most n pakets arrive and n pakets depart as well as (Aij(m) �Dij(m)) 2 f�1; 0; 1g. Hene,Xi;j (Aij(m+ 1)�Dij(m))2 � 2n: (2.8)Also, (2.6) implies that Qij(m)Dij(m) = Qij(m)��ij(m): (2.9)From (2.7),(2.8) and (2.9), we obtainL(Q(m+ 1)) � L(Q(m)) � Xi;j 2Qij(m) �Aij(m+ 1)� ��ij(m)�+ 2n: (2.10)Taking onditional expetation with respet to Q(m) in (2.10), we obtainE [L(Q(m+ 1))� L(Q(m))jQ(m)℄ � 2Xij Qij(m) �E �Aij(m+ 1)� ��ij(m)jQ(m)��+ 2n= 2Xij Qij(m)[�ij � ��ij(m)℄ + 2n= 2(Q(m) � ��Q(m) � ��(m)) + 2n: (2.11)We used the fat that arrival proess is Bernoulli IID to obtain (2.11).Now the arrival rate-matrix � is doubly sub-stohasti. Hene, we an upper bound �omponent-wise as � � ��0� n2Xk=1�k�k1A ; (2.12)where for all k, �k 2 P, �k 2 R+ and Pk �k = 1.



2.1. THE BASIC MWM 27Also, by property of MWM,Q(m) � � � Q(m) � ��(m); 8� 2 P: (2.13)From (2.11),(2.12) and (2.13), we obtainE[L(Q(m+ 1)) � L(Q(m))jQ(m)℄ � �2(1� ��)(Q(m) � ��(m)) + 2n: (2.14)Now the weight of �� is at least as large as the average weight of a mathing when it ishosen uniformly at random from P. When a mathing is hosen uniformly at random, edge(i,j) belong to mathing with probability 1=n. Hene average weight of randomly hosenmathing is Q(m) � (1=n)ij = 1nXi;j Qij(m) = 1nkQ(m)k1;where kak1 =Pij aij for a 2 M + . Now, we obtainQ(m) � ��(m) � 1nkQ(m)k1: (2.15)From (2.14) and (2.15) we obtainE[L(Q(m+ 1))� L(Q(m))jQ(m)℄ � �2(1� ��)n kQ(m)k1 + 2n: (2.16)Thus, (2.16) satis�es the desired ondition (2.4). This ompletes the proof of strong stabilityof MWM algorithm.Now, we prove the laimed bound on the average queue-size. Consider the following.E[L(Q(m+ 1))℄ = E fE[L(Q(m+ 1)) � L(Q(m))jQ(m)℄g +E[L(Q(m))℄� �2(1� ��)n E[kQ(m)k1℄ + 2n+E[L(Q(m))℄: (2.17)Here, the (2.17) follows from (2.16).Now telesopi summation of (2.17) from m = 0 to m = T � 1 and realling that swithstarts empty, we obtainE[L(Q(T ))℄ � �2(1� ��)n T�1Xm=0E[kQ(m)k1℄ + 2n: (2.18)



28 CHAPTER 2. MAXIMUM WEIGHT MATCHINGNote that, by de�nition E[L(Q(T ))℄ � 0: (2.19)Further, sine swith is strongly stable under MWM and Q(m) forms an irreduible, aperiodiMarkov hain, it is ergodi and onverges to equilibrium distribution. Hene,limT!1 1T T�1Xm=0E[kQ(m)k1℄ = E[kQ(1)k1℄; (2.20)where Q(1) is the queue-size random variable distributed aording to its stationary (equilib-rium) distribution.From (2.18),(2.19) and (2.20) we obtain that the stationary average queue-size is boundedabove as Xi;j E[Qij ℄ � n21� �� : (2.21)This ompletes the proof of Theorem 1.A straightforward orollary of the Theorem 1 is as follows.Corollary 1. Consider a swith operating under MWM algorithm. Let the arrival proessbe Bernoulli with admissible arrival rate-matrix �. Then, the net stationary average delay isbounded above as E[D℄ � n2���(1� ��) : (2.22)Proof. By Little's Law, for any stable system, the average queue-size, E[Q℄, and averagedelay, E[D℄, are related as E[D℄�� = E[Q℄; (2.23)where �� is the arrival rate to the system. Now, when the whole swith, when onsidered asone system, the net queue-size is kQ(m)k1 at time m and the net arrival rate is ��� =Pi;j �ij.Hene, by Theorem 1 and (2.23), we obtain the statement of Corollary 1.



2.2. APPROXIMATE MWM ALGORITHMS 292.2 Approximate MWM AlgorithmsIn this setion, we onsider a lass of approximate MWM algorithms. First, we de�nethese algorithms.De�nition 2 ((�,�)-MWM). Let � 2 Z+ and � 2 (0; 1℄. Consider an algorithm A and letqueue-size of swith under this algorithm be Q(m) at time m. Let �A(m) denote the sheduleused by algorithm A at time m. Now, de�ne�(m) = max�2P f(Q(m) � �)� �(Q(m) � �A)g: (2.24)Then algorithm A is alled (�,�)-MWM if (�(m),Q(m)) is jointly stationary and ergodi aswell as limsupm!1E[�(m)℄ � � <1.The above de�nition of (�,�)-MWM algorithm inludes a very wide lass of approximationalgorithms. Before stating properties of these algorithms, we present few examples of suhalgorithms that arise naturally.2.2.1 Examples of (�,�)-MWMWe present two examples of suh approximation algorithms. There are many other ap-proximations that naturally arise, either due to simpli�ation of MWM algorithm or due tostruture of the problem. In partiular, all the algorithms presented in the Chapter 3 belongto this lass.Example 1. Consider a bath MWM algorithm. Suppose due to the slow logi of a swith,MWM algorithm an ompute shedule every K times slots. Thus, algorithm uses queue-sizewhih may be at most K time slots old to ompute new shedule. Further, the same sheduleis used for K time slots. Now sine at most one arrival an our to eah input and at mostone arrival an happen to eah output, the weight of a mathing or shedule hange at mostby KN in K time slots. Further, the queue-size matrix used to ompute a new mathing analso be di�erent from atual queue-size matrix by KN pakets. Hene, the weight of sheduleused by bath MWM is at most 2KN less than the weight of MWM. That is, bath MWM is(2KN ,1)-MWM.Example 2. Consider a well-known greedy maximum weight mathing algorithm. The algo-rithm �nds shedule as follows:



30 CHAPTER 2. MAXIMUM WEIGHT MATCHING1. Sort all n2 queue-sizes in dereasing order.2. Pik the largest queue-size and math orresponding input-output pair.3. Remove all edges inident on this input-output pair.4. Repeat steps 1-3 till no more inputs-outputs are left unmathed.It is well known that the weight of greedy maximum weight mathing algorithm is at leasthalf the weight of maximum weight mathing shedule for the same queue-size. Thus, greedymaximum weight mathing is (0,0:5)-MWM algorithm.2.2.2 Properties of (�,�)-MWMWe state the following theorem haraterizing the throughput and average queue-size of(�,�)-MWM algorithms.Theorem 2. Consider a swith operating under a (�,�)-MWM algorithm. Let the arrivalproess be Bernoulli with admissible arrival rate-matrix �. Then, the swith is strongly stableif �� < �. Further, when �� < �, the stationary average queue-size is bounded above asXij E[Qij ℄ � n(n+ �)�� �� : (2.25)Proof. The proof is very similar to that of Theorem 1. Let the (�,�)-MWM algorithm underonsideration be denoted by A. As in proof of Theorem 1, we �rst prove the strong stability ofalgorithm A and then obtain bound on average queue-size. Now, reall the quadrati Lyapunovfuntion, whose value at time m isL(Q(m)) = Q(m) �Q(m) =Xij Q2ij(m): (2.26)To prove the strong stability under Bernoulli IID arrival proess with rate-matrix � suh that�� < �, we will show that under these onditions, for all time m,E[L(Q(m + 1)) � L(Q(m))jQ(m)℄ � ��kQ(m)k1 +B; (2.27)where � and B are positive onstants.



2.2. APPROXIMATE MWM ALGORITHMS 31Following the arguments of the proof of Theorem 1, similar to (2.11), we obtainE [L(Q(m+ 1)) � L(Q(m))jQ(m)℄ � 2(Q(m) � ��Q(m) � �A(m)) + 2n; (2.28)where �A(m) is the shedule used by algorithm A at time m.By de�nition of (�,�)-MWM, A has the property thatE[�(m)℄ � �; (2.29)where �(m) = �max�2P (Q(m) � �)�Q(m) � �A(m): (2.30)Now the arrival rate-matrix � is suh that �� < �. As before, we an upper bound �omponent-wise as � � ��0� n2Xk=1�k�k1A ; (2.31)where for all k, �k 2 P, �k 2 R+ and Pk �k = 1.From (2.28)-(2.31) leads to the following.E [L(Q(m+ 1)) � L(Q(m))jQ(m)℄ � �2(�� ��)max�2P (Q(m) � �) + 2� + 2n:(2.32)We have used stationarity of �(m) in the above inequality.Using inequality (2.15) along with (2.32), we onludeE[L(Q(m+ 1)) � L(Q(m))jQ(m)℄ � �2(�� ��)n kQ(m)k1 + 2(n+ �): (2.33)Thus, (2.33) satis�es the desired ondition (2.27). This ompletes the proof of strong stabilityof (�,�)-MWM algorithm whenever �� < �.Now, we prove the laimed bound on the average queue-size. Similar to arguments ofTheorem 1 (i.e. (2.17)-(2.20)) yield the following bound on stationary queue-size.Xi;j E[Qij ℄ � n(n+ �)�� �� : (2.34)



32 CHAPTER 2. MAXIMUM WEIGHT MATCHINGThis ompletes the proof of Theorem 2.Similar to Corollary 1, we obtain the following Corollary. We skip the proof as it is exatlythe same as Corollary 1.Corollary 2. Consider a swith operating under (�,�)-MWM algorithm. Let the arrival proessbe Bernoulli with admissible arrival rate-matrix � suh that �� < �. Then, the net stationaryaverage delay is bounded above as E[D℄ � n(n+ �)���(�� ��) : (2.35)2.3 Chapter Summary and DisussionIn this hapter, we studied the throughput and delay property of sheduling algorithmsbased on MWM algorithm under Bernoulli IID arrival proess. We �rst stated the knownstability result about MWM. We obtained bound on the average delay for MWM. Motivatedby the de�nition of approximation algorithms, we de�ne (�; �)-MWM algorithms. We hara-terized their throughput region and obtained bounds on average delay. The main tool that weutilized to analyze throughput and delay of algorithms is based on the assoiated Lyapunovfuntion. The method developed in this hapter, espeially to bound average delay, is quitegeneral in its sope of appliation. Though, it requires further work to obtain sharper bounds.Next, we explain the sope of the method and disuss its weakness.The method is quite general. Given a stable algorithm for whih a Lyapunov funtion isknown, the above method gives the bound on average \disrete derivative" of the Lyapunovfuntion as long as the algorithm is MWM with respet to the weight that is equal to the\disrete derivative" of Lyapunov funtion. This in turn an possibly lead to bounds on averagedelay. We explain this via the following example.Example 3. Consider MWM-2 algorithm where weight of edge (i,j) in swith bipartite graphis Q2ij(m) at time m. Equivalently, MWM-2 hooses ��2(m) as shedule at time m, where��2 = argmaxfXi;j Q2ij�ij : � 2 Pg:For this algorithm, onsider the following ubi Lyapunov funtion, whose value at time m is



2.3. CHAPTER SUMMARY AND DISCUSSION 33given as L(Q(m)) = Xi;j Q3ij(m): (2.36)Consider the disrete derivative of this ubi Lyapunov funtion. After substitution and sim-pli�ation (similar to that in the proofs of Theorems 1 and 2), we obtainL(Q(m+ 1)) � L(Q(m)) = Xi;j 3Q2ij(m)Æij(m) + 3Qij(m)Æ2ij(m) + Æ3ij(m); (2.37)where Æij(m) = Aij(m + 1) � Dij(m). Considering two ases: (i) Q� = maxi;j Qij > 2�n�and (ii) Q� = maxij Qij > 2�n� , for any � > 1 and � = (1 � ��). Now sine MWM-2hooses shedule that maximizes the weight, where weight is quadrati queue-size, we obtainthe following rude bound on (2.37).L(Q(m+ 1)) � L(Q(m)) � 1fQ�> 2�n2� g0��3�(1� 1=�)n Xi;j Q2ij(m)1A+ 12�n3=�+ 2n� 0��3�(1� 1=�)n Xi;j Q2ij(m)1A+ 12�n3=�+ 2n: (2.38)This in turn will lead to the following bound on stationary queue-size.Xi;j E[Q2ij ℄ � 4�n3 + 2n=3(1� ��)(1� 1=�) : (2.39)Certainly, (2.39) an imply bound on Pi;j E[Qij ℄. Moreover, the bound (2.39) itself is inter-esting.The weakness of this method is the same as the strength: its too general. Due to itsgenerality, it provides weaker bounds. To expose the weakness, we obtain a diret bound ona trivial Random algorithm. This bound turns out to be better than that of Theorem 1 !Certainly, we believe the MWM is better than Random algorithm.Example 4. The Random algorithm does the following: every time, pik a mathing � uni-formly at random from all n! mathing of P and use it as the shedule. Under Bernoulli IIDuniform traÆ, the arrival rates are suh that, �ij = ��n ;8i; j. Under Random algorithm, the



34 CHAPTER 2. MAXIMUM WEIGHT MATCHINGprobability that queue (i,j), is servied at any time is 1=n independent of every time. Thus,eah queue Qij(m) has Bernoulli IID arrival proess of rate ��=n and Bernoulli IID servieproess of rate 1=n. The average queue-size of suh a queue is a well-known queuing fat,whih is as follows. E[Q℄ = ��(n� 1)n(1� ��) : (2.40)Summing over all n2 queues, we obtain,Xi;j E[Qij ℄ = n(n� 1)��1� �� : (2.41)A straightforward omparison of bounds from Theorem 1 and (2.41) shows that (2.41) issmaller. We strongly believe that Random is not better than MWM. Thus, exposes weaknessof our method.The main outome of this hapter is the following: MWM and its approximations have verygood throughput and delay property. This makes them very attrative sheduling algorithmsfor the purpose of implementation. Unfortunately, due to the implementation onerns, MWMor its known approximations are not not feasible to implement. In the next hapter, we willpresent new design tehniques to obtain simple-to-implement approximations of MWM.2.4 Bibliographi NotesThe problem of �nding MWM an be posed as a Linear program. Hene, for example,Simplex Algorithm an be used to �nd MWM Dantzig [1963℄. However, it may not �nd MWMsheduling in polynomial time (in n). In 1970s and 1980s, a lot of interesting work was done inthe �eld of Combinatorial algorithms to �nd good algorithm for MWM. Notably, an algorithmbased on the results of Edmonds and Karp �nds MWM in O(n3) time (see works by Edmonds[1965℄ and Edmonds and Karp [1972℄). This algorithm along with many other related networkow algorithms an be found in monograph by Tarjan [1983℄.The result about stability of MWM under Bernoulli IID traÆ was �rst established byMKeown et al. [1996℄. The results of Tassiulas and Ephremides [1992℄ in the ontext of Radiohop networks imply these results. Both of these results used quadrati Lyapunov funtion inorder to ahieve throughput results.



2.4. BIBLIOGRAPHIC NOTES 35The de�nition of (�,�)-MWM is motivated from the lassial notion of ompetitive ra-tio for online algorithm whih was �rst introdued by Sleator and Tarjan [1985℄. Our mainontributions in this Chapter are the method for obtaining bound on average delay and thestudy of (�,�)-MWM. These results are primarily based on work by Shah and Kopikare [2002℄.Initial results on obtaining delay bounds for MWM was done by Leonardi et al. [2001℄ usingsomewhat di�erent method. Though, their results are qualitatively very similar, their methoddoes not extend as well as our method. Another appliation of the method of this hapter anbe found in work by Shah [2003℄.Historially, obtaining bounds on delay or queue-size for omplex queuing system has beenentral to the study of stohasti networks. There are known results in past that utilizedLyapunov funtion to obtain bounds on delay. For example, see works by Hajek [1982℄, Kumarand Kumar [1994℄.



36 CHAPTER 2. MAXIMUM WEIGHT MATCHING



CHAPTER 3
Implementable High-Performane Algorithms

This hapter presents simple-to-implement and high-performane sheduling algorithms forIQ swithes. The results of Chapter 2 show that Maximum Weight Mathing has maximalthroughput and low paket delay. This makes MWM a very attrative algorithm. However,MWM is not implementable for the following reasons: the best known algorithm to �ndMaximum Weight Mathing requires O(n3) operations in the worst ase. For example, for a30 port swith, it will require 27000 operations. Thus, a swith operating at 10Gbps, withpaket size of 50 bytes will be required to do so many operations roughly every 5-10ns. This isinfeasible under urrent tehnology. Further, due bak-traking type routine involved in suhalgorithm, it is not suitable for pipelining. Similar to MWM, other known good algorithmsare very diÆult to implement. This leads us to the following questions: is it possible for analgorithm to ompete with the throughput and delay performane of MWM and yet be simpleto implement? if yes, what feature of the sheduling problem should be exploited?In this hapter, we answer the above questions in aÆrmative by exploiting the followingfeatures: (1) Randomization: in a variety of situations where the salability of deterministialgorithms is poor, randomized algorithms are easier to implement and provide a surprisinglygood performane. (2) Using memory: the state of the swith, that is queue-lengths, hangevery little during suessive time slots. Hene, a heavy mathing will ontinue to be heavy over37



38 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSa few time slots, suggesting that arrying some information, or retaining memory, between it-erations should help simplify the implementation while maintaining a high level of performane.(3) Using arrivals: sine the inrease in queue-lengths is entirely due to arrivals, knowledge ofreent arrivals an be useful in �nding a heavy mathing. (4) Hardware parallelism: �ndingheavy mathings essentially involves a searh proedure, requiring a omparison of the weightof several mathings. The natural struture on the spae of mathings allows use of parallelismin hardware to ondut this searh eÆiently.The rest of the hapter presents algorithms exploiting the above observations and novelmethods to analyze their performane. The Setion 3.1 disusses use of randomization andmemory to obtain a very simple stable algorithm. We show that randomization alone is notuseful to obtain stable algorithm. But, ombining randomization with memory yields a stablealgorithm. A derandomization of this algorithm is also stable. Though, these simple algorithmsare stable, they have very poor average delay ompared to MWM. To improve delay, we presentalgorithms LAURA, SERENA and APSARA in Setion 3.2. We study throughput and delayproperties of these algorithms theoretially and via extensive simulation study. Our resultsshow that all of these algorithms perform very ompetitively with respet to MWM. In Setion3.3, we disuss implementation details of these algorithms. Finally, we present bibliographinotes related to this hapter in Setion 3.4.3.1 Stable Randomized AlgorithmsRandomized algorithms are partiularly simple to implement beause they work on a fewrandomly hosen samples rather than on the whole state spae. The MWM �nds, fromamongst the n! possible permutations of P, that permutation whose weight is the highest. Anobvious randomization of MWM yields the following algorithm, whih we denote by Algo1: Ateah time m, let the permutation used by Algo1 be the heaviest of d (d > 1) permutationshosen uniformly at random from P.For simpliity, we want to have small d. Unfortunately, the following theorem shows thatAlgo1 is not stable, even when d = �(n).Theorem 3. For any d � n, where  > 0, Algo1 is not stable.Proof. Consider the queue at input i for output j. This queue is served, that is, input i ismathed to output j at time m, only if input i is mathed to output j by at least one of the



3.1. STABLE RANDOMIZED ALGORITHMS 39d randomly hosen permutations or mathings. Consider the following.pij = Pr(i is mathed to j in one of the d random s)= 1� Pr(i is not mathed to j in any of the d random mathings)= 1� Pr(i is not mathed to j in one random mathing)d= 1��1� 1n�d� 1��1� 1n�n for d � n! 1� e�:Therefore, the servie rate available for pakets from input i to output j is at most 1�e� < 1.And, as soon as �ij > 1� e�, we have that the swith is unstable under Algo1.Remark: Note that the above theorem has a muh stronger impliation: Any shedulingalgorithm that only uses d = O(n) random mathings annot ahieve 100% throughput.Further, there is no assumption about the distribution of the paket arrival proess, only arate assumption. This adds strength to the next algorithm, Algo2, due to Tassiulas [1998℄.3.1.1 Algo2: Randomized Algorithm with MemoryThe Algo2 uses randomization with memory. It is desribed as follows.Algo2:(a) Let �(m) be the shedule used at time m.(b) At time m+1 hoose a mathing �r(m+1) uniformly at random from the set of all n!possible mathings.() Let �(m+ 1) = arg max�2f�(m);�r(m+1)g � �Q(m+ 1).The following theorem states that Algo2 is stable.Theorem 4. Algo2 is stable under any Bernoulli IID arrival proess with admissible arrivalrate-matrix � and the average queue-size is bounded above asXij E[Qij ℄ � n(n+ n!)1� �� : (3.1)



40 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSProof. By de�nition, the number of pakets arriving in a time slot is at most n and the numberof pakets departing in a time slot is at most n. Hene, weight of a permutation an hangeby at most 2n in a time slot.Under algorithm Algo2, at time m, let �(m) denote the shedule used and Q(m) be thequeue-size matrix. Let the orresponding MWM shedule be ��(m) at time m, that is,��(m) = argmax�2P � �Q(m):From the above observation, for any ` � m, it is easy to see thatj��(`) �Q(`)� ��(m) �Q(m)j � 2n(m� `): (3.2)Due to the use of memory in Algo2, it is easy to see that�(m) �Q(m) � �(m� 1) �Q(m� 1)� 2n: (3.3)Let, M = inff` � 0 : �(m� `) = ��(m� `)g:Combining (3.2) and (3.3), we obtain�(m) �Q(m) � ��(m) �Q(m)� 4Mn: (3.4)Due to independent drawing of random permutation every time under Algo2, M is upperbounded by a Geometri random variable with probability 1=n!. Hene,E[M ℄ � n!: (3.5)From (3.4) and (3.5), we obtain that Algo2 is (n!,1)-MWM. Hene, the statement of Theorem4 follows from the Theorem 2 of Chapter 2.3.1.2 Algo3: Derandomization of Algo2The algorithm Algo2 uses external randomization. Next, we onsider a derandomizationof this algorithm, whih we all Algo3. Before presenting the algorithm we need the oneptof a Hamiltonian walk on a P. Consider a omplete graph with n! nodes, eah orresponding



3.1. STABLE RANDOMIZED ALGORITHMS 41to a distint � 2 P. Let H(k) denote a Hamiltonian walk on this graph; that is, H(k) visitseah of the n! distint nodes exatly one during times k = 0; : : : ; n!�1. We extend H(k) fork � n! by de�ning H(k) = H(k mod n!). One simple algorithm for suh a Hamiltonian walkis desribed, for example, in Chapter 7 of Nijenhuis and Wilf [1978℄. This is a very simplealgorithm that requires O(1) spae and O(1) time, to generate H(k + 1) given H(k). Underthis algorithm H(k) and H(k+1) di�er in exatly two edges. Consider the following exampleof this algorithm.Example 5. Let n = 3. The algorithm generates the following Hamiltonian walk on P: H(0) =(1; 2; 3)�; H(1) = (1; 3; 2); H(2) = (3; 1; 2); H(3) = (3; 2; 1); H(4) = (2; 3; 1); H(5) =(2; 1; 3), H(6) = H(0), and H(7) = H(1), and so on.Now, we desribe the algorithm.Algo3:(a) Let �(m) be the shedule used at time m.(b) Let H(m) 2 P be permutation orresponding to the Hamiltonian walk on the graphorresponding to P.(b) Let �(m+ 1) = arg max�2f�(m);H(m+1)g � �Q(m+ 1).Next, we state the properties of Algo3, very similar to that of Algo2.Theorem 5. Algo3 is stable under any Bernoulli IID arrival proess with admissible arrivalrate-matrix � and the average queue-size is bounded above asXij E[Qij ℄ � n(n+ n!)1� �� : (3.6)Proof. The proof is very similar to that of Theorem 4. Under algorithm Algo3, at time m,let �(m) denote the shedule used and Q(m) be the queue-size matrix. Let the orrespondMWM shedule be ��(m) at time m, that is,��(m) = argmax�2P � �Q(m):�Here, by � = (�(1); �(2); �(3)), we mean that i is mathed to �(i), for i = 1; 2; 3, under permutation �.



42 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSAs observed in the proof of Theorem 4, the weight of a shedule hanges by at most 2nin suessive time slots. Hene,j��(m) �Q(`)� ��(m) �Q(m)j � 2n(m� `): (3.7)Let, M = inff` � 0 : H(m� `) = ��(m)g:By property of Algo3,�(m�M) �Q(m�M) � H(m�M) �Q(m�M)= ��(m) �Q(m�M)� ��(m) �Q(m)� 2nM; (3.8)where the last inequality follows from (3.7).Due to the use of memory in Algo3, it is easy to see that�(m) �Q(m) � �(m�M) �Q(m�M)� 2nM: (3.9)Combining (3.8) and (3.9), we obtain�(m) �Q(m) � ��(m) �Q(m)� 4Mn: (3.10)Sine H(�) overs all permutations in n! time, M � n!. Hene, from (3.10) we obtain thatAlgo3 is (n!,1)-MWM. Hene, the statement of Theorem 4 follows from the Theorem 2 ofChapter 2.
3.1.3 Delay of Algorithms Algo2 and Algo3The above algorithms, Algo2 and Algo3 are extremely simple and Theorems 4 and 5 provetheir stability. But the delay indued by these algorithms are too large. We present an examplesimulation study to exhibit this laim.



3.1. STABLE RANDOMIZED ALGORITHMS 43Simulation SetupWe desribe the simulation setup, whih is used for all the simulation results presented inthe rest of the hapter.Swith: Number of ports, n = 32. Eah VOQ an store up to 10,000 pakets. Exess paketsare dropped.Input TraÆ: All inputs are equally loaded on a normalized sale, and � 2 (0; 1) denotes thenormalized load. The arrival proess is Bernoulli IID. Let jkj = (k mod n). The followingload matries are used to test the performane of algorithms.1. Uniform: The arrival rate-matrix � is suh that, �ij = �=n 8i; j. This is a very friendlytype of traÆ.2. Diagonal: The arrival rate-matrix � is suh that: �ii = 2�=3, �iji+1j = �=3 8i and �ij = 0for all other i; j. This is a very skewed loading, in the sense that input i has paketsonly for outputs i and ji+ 1j. This traÆ loading tests algorithms very well.Performane measures: We ompare the average queue-lengths indued by di�erent algo-rithms. The simulations are run until the estimate of the average delay reahes the relativewidth of the on�dene interval equal to 1% with probability � 95%. The estimation of theon�dene interval width uses the bath means approah.ResultsFigure 3.1 plots the average queue-size indued under Algo2 and MWM under DiagonaltraÆ pattern. The Y-axis is the average queue-size (logarithmi sale) and the X-axis is theload �. The �gure shows that MWM has very low average queue-size even when � is near 1.On the ontrary, Algo2 has very large average queue-size even at � = 0:4 and it beomes toolarge beyond � = 0:4 and hene not plotted in the �gure. The �gure also plots performaneof known heuristis iSLIP and iLQF for omparison. Note that though these heuristis areknown to be unstable, they perform muh better than Algo2, exposing its poor performane.For ompleteness, we note that all algorithms perform equally well under Uniform traÆ.
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Figure 3.1: Performane of Algo2 under Diagonal traÆ.3.2 Low Delay AlgorithmsThe Algo2 and Algo3 suggest that ahieving 100% throughput is not diÆult. On theontrary, to redue delay, an algorithm has to do extra work. In this setion, we desribethree di�erent algorithms that respetively use parallelism, randomization and the informationin arrivals to ahieve 100% throughput and low delay.3.2.1 APSARA: Use of ParallelismAs noted in the introdution, determining the maximum weight mathing essentially in-volves a searh proedure, whih an take many iterations and be time-onsuming. Sine ourgoal is to design high-performane shedulers for high speed swithes, algorithms that involvetoo many iterations are unattrative.We wish to design a high-performane sheduler that only requires a single iteration. There-fore, we must devise a fast method for �nding good shedules. One method for speeding upthe sheduling proess is to searh the spae mathings in parallel. Fortunately, the spae ofmathings has a nie ombinatorial struture whih an be exploited for onduting eÆientsearhes. In partiular, it is possible to query the \neighbors" of the urrent mathing inparallel and use the heaviest of these as the mathing for the next time slot. This observation



3.2. LOW DELAY ALGORITHMS 45inspires the APSARA algorithm, whih employs two ideas: (1) Use of memory, and (2) ex-ploring neighbors in parallel, where neighbors are de�ned suh that it is easy to ompute themusing hardware parallelism.De�nition 3 (Neighbor). Given a permutation �, a permutation �0 is said to be a neighborof � i� there exists i1; i2 2 f1; : : : ; ng, suh that the following is satis�ed: (1) �(i1) = �0(i2),(2) �(i2) = �0(i1) and (3) �(i) = �0(i), for i 6= i1; i2. The set of all neighbors of � is denotedN (�), whose ardinality is �n2�.APSARA: The Basi AlgorithmLet �(m) be the mathing determined by APSARA at time m. Let H(m+1) the mathingorresponding to the Hamiltonian walk at time m + 1. At time m + 1 APSARA does thefollowing:(i) Determine N (�(m)) and H(m+ 1).(ii) Let M(t+ 1) = N (�(m)) [ fH(m+ 1)g [ f�(m)g.(iii) The shedule at time m+ 1 is given by:�(m+ 1) = arg max�02M(m+1)�0 �Q(m+ 1):APSARA requires the omputation of the weight of neighbor mathings. Eah suh om-putation is easy to implement sine a neighbor �0 di�ers from the mathing �(m) in exatlytwo edges. However, omputing the weights of all �n2� neighbors requires a lot of spae inhardware for large values of n.APSARA-L: Deterministi ApproximationTo redue the number of neighbors from �n2� to n, we onsider the following neighbor-set.De�nition 4 (Linear-Neighbor). Given a permutation �, a permutation �0 is said to be alinear-neighbor of � i� there there exists i 2 f1; : : : ; ng suh that the following is satis�ed:(1) �(i) = �0((i mod n) + 1), (2) �((i mod n) + 1) = �0(i) and (3) �(j) = �0(j), for j 6= i.The set of all neighbors of � is denoted NL(�), whose ardinality is n.



46 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSDenote by APSARA-L the version of the basi APSARA algorithm when neighbors arehosen from NL(�).APSARA-R(K): Randomized ApproximationSuppose hardware onstraints only allow us to query K neighbors. Let NK(�) denotethe set of K permutations piked uniformly at random from the set N (�). The randomizedversion of APSARA algorithm, denoted by APSARA-R, works with NK(�) to determine itsshedule. Note that, if K = �n2� then APSARA-R defaults to APSARA.Remark: Note that, APSARA (and its variants) generate all the mathings in the neighbor-hood set oblivious to the urrent queue-lengths. The queue-lengths are only used to seletthe heaviest mathing from the neighborhood set. It is therefore possible that the mathingdetermined by APSARA, while being heavy, is not of maximal size. That is, there exists aninput, say i, whih has pakets for an output j, but the mathing hosen by algorithm, bothi and j are onneted via empty (0 weight) edges. To overome this unneessary idleness,one possible way is the following: omplete the mathing determined by APSARA in a round-robin order over the input-output ports that are empty. This version of the algorithm is alledMaxAPSARA.Properties of APSARAThe APSARA algorithm and its variants are stable as stated below.Theorem 6. The algorithms APSARA, APSARA-L and APSARA-R are all stable underBernoulli IID arrival proess with admissible arrival rate-matrix �. Further, the average queue-size is bounded as Xi;j E[Qij ℄ � n(n+ n!)1� �� : (3.11)Proof. All versions use the Hamiltonian walk, H(�) and are based on using memory. Therefore,the proof of Theorem 5 implies the statement of Theorem 6.Theorem 6 does not suggest why APSARA and its variants should do muh better thanAlgo2 or Algo3. The following property indiates why APSARA should be better.



3.2. LOW DELAY ALGORITHMS 47Theorem 7. Let �(m) denote the shedule obtained by APSARA at time m. If �(m) =�(m� 1), that is the shedule does not hange from time m� 1 to time m, then�(m) �Q(m) � 12 max�2P � �Q(m): (3.12)Proof. Without loss of generality, let the identity permutation be the one that maximizes� �Q(m) for all � 2 P, that is, identity permutation is the maximum weight mathing at timem. As noted before, �(m) is the permutation hosen by APSARA and �(m) = �(m� 1).Now, onsider any i 2 f1; : : : ; ng. By de�nition, �(m) onnets i to �(m)(i). Let I1 =fi : i = �(m)(i)g. Let I2 = f1; : : : ; ng � I1. Now, for all i 2 I1,Qi�(m)(i)(m) = Qii(m): (3.13)Now onsider i 2 I2. Sine �(m) = �(m� 1), by the property of APSARA, it follows thatQi �(m)(i)(m) +Q��1(m)(i) i(m) � Qii(m): (3.14)Now summing over i, from (3.13) and (3.14), it is easy to dedue thatXi Qi�(m)(i)(m) +Q��1(m)(i)i(m) � Xi Qii(m): (3.15)Sine �(m) is a permutation, Xi Qi�(m)(i)(m) =Xi Q��1(m)(i)i(m). Further, by de�nition�(m) �Q(m) = Xi Qi�(m)(i)(m): (3.16)From (3.15), (3.16) and realling that identity permutation orresponds to the maximumweight mathing at time m, the statement of the Theorem 7 follows.Simulation ResultsWe study performane of APSARA and its variants via extensive simulation study. Thesimulation setup is idential to the one desribed in Setion 3.1.3 of this hapter.Figure 3.2 ompares the average queue-sizes indued by APSARA, MWM, iSLIP (withn iterations) and iLQF (with n iterations) under Diagonal traÆ. The �gure suggests that



48 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSAPSARA and MaxAPSARA perform very ompetitively with MWM under all loadings. Onthe other hand, both iLQF and iSLIP inur severe paket losses and large delays under heavyloading. We also note that under low loads, APSARA deviates from MaxAPSARA. The reasonis as follows: sine APSARA is not maximal, it may ause few queues to idle and at smallloads maximality is really what is important (as showed by iSLIP and iLQF's performane).Note that, the di�erene is negligible { its no more than 10 pakets on average. The �gurealso shows that though APSARA-L has only 32 neighbors, it performs quite well omparedto APSARA, whih uses �322 � = 496 neighbors. Separately, the randomized variant APSARA-R(32) does not perform as well as APSARA-L. Other study leads us to reommend thefollowing: when the number of allowable neighbors K � n, only then use randomized versionof APSARA-R(32).
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Figure 3.2: Performane of APSARA under Diagonal traÆ.
3.2.2 LAURA: Use of Problem StrutureAs shown in Setion 3.1, the Algo2 provides 100% throughput. However, its delay perfor-mane is quite poor. This is mainly beause of the following reason: every time, Algo2 seletsone of the two mathings (one random and the other from previous time) in its entirety ratherthan seleting heavy edges from both while satisfying mathing onstraints. The algorithmLAURA is mainly based on this observation. It uses a proedure alled Merge to obtain a



3.2. LOW DELAY ALGORITHMS 49heavier mathing than given two mathing by seleting heavier edges from both mathings.As we shall see, the Merge proedure leverly uses the struture of the problem, leading toa very simple implementation. In addition, a non-uniform random sampling is used to biasa random sample towards heavier mathings. Thus, the main features used in the design ofLAURA are: (1) use of memory, (2) non-uniform random sampling, and (3) a Merge proedureto obtain a better mathing.LAURA AlgorithmLet �(m) be the mathing used by LAURA at time m. At time m + 1 LAURA does thefollowing:(a) Generate a random mathing �r(m+ 1) using the Random proedure.(b) Use �(m+ 1) = Merge(�r(m+ 1); �(m)) as the shedule for time m+ 1.Now we desribe the Random and Merge proedures.The Random ProedureLet F�(�) denote the minimal set of edges in the mathing � arrying at least a fration� (0 � � � 1) of its weight. We shall all � the seletion fator.Random is the following iterative proedure: Initially, all inputs and outputs are markedas unmathed. The following steps are repeated in eah of I iterations, where I is typiallylog2 n:(i) Let i be the urrent iteration number. Let k � n be the number of unmathed input-output pairs. Out of the k! possible mathings between these unmathed input-outputpairs, a mathing �i(k) is hosen uniformly at random.(ii) If i < I, retain the edges orresponding to F�(�i(k)) and mark the nodes they over asmathed. If i = I, then retain all edges of �i(k).The Merge ProedureConsider a swith bipartite graph with Q matrix as its edge weights. Given two mathings�(1) and �(2), de�neS(�(1); �(2)) = f� 2 P : �ij = 1 only if �(1)ij = 1 or �(2)ij = 1g:
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Figure 3.3: An example of Merge proedure.The Merge proedure, when applied to �(1) and �(2), it returns a mathing ~� suh that~� = arg max�2S(�(1);�(2))f� �Qg: (3.17)The Merge �nds suh mathing using only 2n addition and subtration. It is desribed asfollows: Color the edges of �(1) as red and the edges of �(2) as green. Start at output nodej1 and follow the red edge to an input node, say i1. From input node i1 follow the (only) greenedge to its output node, say j2. If j2 = j1, stop. Else ontinue to trae a path of alternatingred and green edges until j1 is visited again. This gives a \yle" in the subgraph of red andgreen edges.Suppose the above yle does not over all the red and green edges. Then there exists anoutput j outside this yle. Starting from j repeat the above proedure to �nd another yle.In this fashion �nd all yles of red and green edges. Suppose there are ` yles, C1; :::; C`at the end. Then eah yle, Ci, ontains two mathings: Gi whih has only green edges,and Ri whih has only red edges. For eah yle Ci, the Merge hooses Ri if the sum of thequeue-size orresponding to these edges is higher than that of the Gi. Else, Merge hooses



3.2. LOW DELAY ALGORITHMS 51Gi. It is easy to show that the �nal mathing as hosen above is preisely the one laimed in(3.17). Figure 3.3 illustrates the Merge proedure.Properties of LAURAThe following theorem is about the throughput and delay property of LAURA.Theorem 8. The algorithm LAURA is stable under Bernoulli IID arrival proess with admissiblearrival rate-matrix �. Further, the average queue-size is bounded asXi;j E[Qij ℄ � n(n+ n!)1� �� : (3.18)Proof. Consider the following two fats about LAURA: (1) The probability of LAURA hoosingmaximum weight mathing shedule is at least 1=n!, every time, independent of everythingelse and (2) LAURA uses memory.Now, in the proof of Theorem 4, we showed that Algo2 is (n!,1)-MWM using the abovetwo properties. Hene, Theorem 2 of hapter 2 implies the statement of Theorem 8.Simulation ResultsWe study the performane of LAURA via extensive simulation study. The simulation setupis idential to the one desribed in Setion 3.1.3 of this hapter.We set the seletion fator � = 0:5, and the number of iterations I = 5 = log2 n, forn = 32. The average queue-size indued under algorithm LAURA is ompared with that ofthe MWM, iSLIP, iLQF and Algo2 algorithms under Diagonal traÆ. The results are shownin Figure 3.4. The algorithms LAURA and MaxLAURA (whih is maximal version of LAURA)perform quite ompetitively with respet to MWM. We see that iSLIP and iLQF su�er largepaket losses at high loads. Strangely enough, although Algo2 is provably stable (as opposedto iSLIP and iLQF), its performane in terms of average baklog is the worst.The Impat of MergeIn this setion we study the role of the Merge proedure in LAURA for obtaining good delayperformane. For this purpose, we onsider the following two algorithms: Algo2 as desribedin Setion 3.1 and its variant using Merge, denoted by Algo4. At time m+ 1, the Algo4 uses
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Figure 3.4: Performane of LAURA under Diagonal traÆ.
shedule �(m+ 1) = Merge(�r(m+ 1); �(m)), where �(m) is shedule used at time m and�r(m+ 1) is a mathing hosen uniformly at random at time m+ 1.Figure 3.5 show the average queue lengths for these two algorithms under Diagonal traÆ.We note that both algorithms behave almost the same under Uniform traÆ, and thus theMerge proedure does not make a big di�erene to the performane under this traÆ. Whenthe traÆ is not Uniform, as shown in Figure 3.5, Algo4 performs muh better ompared toAlgo2. This shows that the use of the Merge proedure is essential for obtaining good delayperformane under non-uniform traÆ.Learning Time: Merge v/s MaxThe main reason behind ahieving 100% throughput for algorithms like Algo2 and Algo4 isthe �nite amount of time (on average) that it takes for these algorithms to obtain a mathingwhose weight is omparable to that of MWM. But the learning time an be drastially di�erentand it diretly a�ets the delay performane of the underlying sheduling algorithm.We now make a omparison of the learning time of Algo4, whih uses Merge proedure,with that Algo2, whih uses Max proedure. First we present the simulation study underdi�erent senarios and then present analytial results to understand the observed behavior
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Figure 3.5: An illustration of impat of Merge on Performane.
under a simple model.Comparison Algo2 and Algo4: SimulationSimulation setting: A random weighted bipartite graph is reated by hoosing the weight ofeah edge aording to independent and identially distributed random variables with mean1. We onsider three di�erent distributions : (a) Exponential, (b) Uniform on [0; 2℄, and ()Bimodal on f0:1; 9:1g with probabilities f0:9; 0:1g. Both algorithms Algo2 and Algo4 start withthe same random initial mathing and subsequently they are provided with the same randommathings. Both the algorithms run till they obtain a mathing whose weight is at least apre-determined fration f of the weight of MWM on the same graph. The average numberof iterations taken by an algorithm to ahieve this weight is used as a measure of its learningtime. When an algorithm takes more than 10000 iterations to learn this weight, we simplyreport the number of iterations as 10000.Results: For eah f 2 [0:1; 0:9℄, and for eah distributions, we obtain the average numberof iterations over 100 sample runs. The results are plotted in the Figure 3.6. The X-axisis the fration f while Y-axis the average number of iterations taken to learn the frationf by algorithm. \Uni" represent uniform, \Bi" represents Bimodal and \Exp" representsExponential. Results show that for all distributions, both algorithms manage to learn quiklywhen f � 0:2. But as f grows the average number of iterations taken by Algo2 is very high
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Figure 3.6: Learning time: Algo2 v/s Algo4.ompared that of Algo4. We also note that learning time gets worse as the variane of theedge-weight distribution inreases; i.e. Uniform is easier to learn than Exponential distributionwhih is easier to learn than Bimodal distribution.Comparison of Algo2 and Algo4: Analytial ModelAnalytial Model: The simulation study showed that Algo4 learns \good" mathing a lotquiker ompared to Algo2 under di�erent edge-weight distributions. It is not easy to obtainsuh qualitative result analytially for any general edge-weight distribution. As our interest is indetermining learning time of algorithm for MWM, we onsider a simpli�ed model in whih theedges of MWM are assigned weight 1(a large enough value) and all other edges are assignedweight 0. Without loss of generality we assume that the MWM is the identity mathing. Thusthe edge-weight matrix of the bipartite graph has 1 on n entries of the main diagonal and 0in remaining n2 � n positions. We ompare the performane of the Algo2 and Algo4 in thisontext. Eah time both algorithms are provided the same random mathing. The MWM islearned when all edges of the identity mathing are learned by the algorithm.Performane of Algo2: First observe that the mathing retained by Algo2 at the end of timem is the mathing with the most of edges in ommon with the identity mathing, among allrandom mathings hosen till time m. An edge i of a mathing is said to be �xed if input iis mathed to output i. Note that all the elements of the identity mathing are �xed. The



3.2. LOW DELAY ALGORITHMS 55learning time of an algorithm in this ontext is simply the time taken to learn the edges of theidentity permutation. Therefore, the probability distribution of the number of �xed edges ina randomly hosen permutation an given us the distribution of the �xed elements learnt byAlgo2 till time m. This distribution is well-studied in the literature in various ontexts. Weprove some required results about this distribution for the sake of ompleteness.Let Ai denote the event that ith element is �xed in a randomly hosen permutation �r.Let P nk denote the probability that exatly k elements are �xed in �r. First, let us omputeP n0 , the probability that no element is �xed.P n0 = Pr(\ni=1Ai )= 1� Pr([ni=1Ai)(a)= 1� nXj=1(�1)j+1�nj�(n� j)!n!= nXj=0(�1)j 1j! � e�1;where (a) is a diret appliation of the Inlusion-Exlusion priniple. In general, for all k,P nk = �nk�P n�k0 (n� k)!n!= O� 1k!� :Hene, Qnk , the probability that a randomly hosen permutation has at least k �xed elements,is given as Qnk = Xj�k P nj= O0�Xj�k 1j!1A= O� 1k!� : (3.19)This leads to the following Lemma.Lemma 1. The algorithm Algo2 takes �(k!) time to learn k �xed elements.



56 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSPerformane of Algo4: Now, we onsider Algo4. We will show that the order of the learningtime for Algo4 is signi�antly smaller than that of Algo2. Reall that under algorithm Algo4,mathing �(m + 1) at time m + 1 is obtained by merging a random mathing �r(m + 1)hosen at time m + 1 with �(m) hosen at time m. The Merge proedure onsiders yleswith edges alternatively belonging to �(m) and �r(m+1). This is the same as onsidering theyli deomposition of a random permutation. Now, for eah yle Merge proedure eitherpiks all edges from �(m) or all edges from �r(m + 1). Hene it is important to know thedistribution of yles in a random permutation. This distribution is well-studied. Let K(m) bethe random number of yles indued by the yli deomposition of �(m) and �r(m+1) andlet Cl(m); 1 � l � K(m) be the length of the lth yle. Let us remind ourselves that K(m)and Cl(m); 1 � l � K(m) are IID random variables aross time m. Now, it is well-known thatK(m) is sharply onentrated around its mean loge n. Though the distribution of yle-lengthsCl(m) is not onentrated around its mean n= loge n, for simpliity we assume the following:there are loge n yles eah of length n= loge n. It an be shown that this assumption givesweaker upper bound on learning time of Algo4. Next we ompute the bound on iterationstaken by Algo4 to learn almost all elements of MWM in this ontext.
Let X(m) be the number of �xed elements in �(m), that is elements of MWM alreadylearnt by �(m) by time m. We would like to lower bound the probability of the event that thenumber of �xed elements will inrease in �(m+1) given X(m). Consider the following event:�r(m+1) ontains a �xed element and it belongs to a yle whih does not ontain any of theX(m) �xed elements of �(m). In this ase the Algo4 will pik elements of �r(m+ 1) for thisyle. This in turn inreases the number of �xed elements in �(m+ 1) to at least X(m) + 1.Hene whenever this event happens the number of �xed elements of �(m+1) inreases. Nextwe ompute the probability of this event.
The probability that there are k �xed elements in �r(m + 1) is O(1=k!) as omputedabove. The X(m) �xed elements of �(m) are distributed among loge n yles uniformly atrandom. A yle ontains n= loge n elements of �r(m + 1) and �(m) eah. Consider one ofthe �xed element of �r(m+1). Now, the probability that the yle ontaining a �xed element



3.2. LOW DELAY ALGORITHMS 57of �r(m+ 1) does not ontain any of X(m) element is:p = �n�X(m)n= loge n�� nn= loge n�� �1� X(m)n � nloge n (3.20)From the above disussion, on average the inrease in X(m+1) from X(m) is lower boundedas: E[X(m+ 1)�X(m)℄ � Xk�1 1k!kp= Xk�0 1k!p� (1�X(m)=n)n= log n� exp��X(m)logn � : (3.21)Let y(s) = E[X(sn)℄=n. Then, we obtain the following di�erential equation for large n:dy(s)ds = exp�� y(s)log n� :The solution of this equation is given bylognn �exp�ny(s)log n �� 1� = s: (3.22)From (3.22), we obtain logn�exp�X(m)logn �� 1� = m: (3.23)The (3.23) leads to the following Lemma.Lemma 2. The algorithm Algo4 takes 
�log n�expn klog no� 1�� time to learn k �xed ele-ments.Comparison of Algo2 and Algo4 Under Analyti Model: Let T2(n) and T4(n) denote theaverage time it takes for Algo2 and Algo4 to learn n �xed elements under the above desribedanalyti model. Then, results of Lemma 1 and Lemma 2 imply that T2(n) = �(n!) while



58 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMST4(n) = �(log n exp(n= log n)), whih yields the following Theorem.Theorem 9. Under the simple analytial model desribed above, the average time it takes forAlgo2 and Algo4 for learn MWM, denoted by T2(n) and T4(n) respetively, are related asT2(n) = 
�T4(n)log2 n� : (3.24)Theorem 9 indiates the drasti di�erene between the learning time of the algorithmsusing Merge and Max. This in turn provides redibility to the Merge proedure.3.2.3 SERENA: Use of Arrival InformationThe SERENA algorithm an be seen as a variant of LAURA in the sense that it does notuse external non-uniform random sampling proedure. Instead it uses arrival information toobtain a new mathing every time. In summary, SERENA has the following three features:(1) use of memory, (2) use of arrival information to obtain new mathing, and (3) Mergeproedure.SENENA AlgorithmNow, we desribe the algorithm. As before, let �(m) be the mathing used by SERENAat time m. Reall that A(m + 1) = [Aij(m + 1)℄ is the arrival matrix at time m + 1. Thatis, Aij(m+ 1) = 1 denotes that a paket arrived at input i for output j at time m+ 1. Thealgorithm �nds shedule at time m+ 1 as follows.(a) Compute mathing �A(m + 1) by applying proedure Arr-Mathing on arrival matrixA(m+ 1), whih uses queue-size matrix Q(m+ 1).(b) The shedule at time m+ 1 is �(m+ 1) = Merge(�(m); �A(m+ 1)).ARR-MATCHING ProedureThe proedure Arr-Mathing obtains a mathing from a given arrival matrix A = [Aij ℄.By de�nition, A is suh that eah of the Ai� 2 f0; 1g for all i, that is, eah input an have atmost one arrival. But, more than one pakets (possibly n in the worst ase) an arrive for thesame output, that is, A�j 2 f0; : : : ; ng for all j. This struture suggests one possible simple



3.2. LOW DELAY ALGORITHMS 59way to obtain good mathing is as follows: (1) if there is no j suh that A�j > 1, then Ais a possibly sub-mathing. Let �A be this mathing. Connet the inputs and outputs thatare not mathed under �A in any order. This yields the mathing; (2) otherwise, there arej1; : : : ; jk; k � n=2 suh that A�jl � 2; l = 1; : : : ; k. Now we reate �A as follows. Initially, set�A = [0℄. For all l = 1; : : : ; k, do the following: Set �Ailjl = 1, whereil = arg max1�i�nfQijlAijlg:In the �A, thus obtained, will have some inputs and outputs suh that they are not onneted(i.e. orresponding rows and olumns do not have any entry equal to 1). Connet thesein an arbitrary fashion and obtain a omplete mathing. This ompletes the desription ofArr-Mathing. The Figure 3.7 explains how the Arr-Mathing for a partiular example.Properties of SERENAThe following theorem states the throughput and delay property of SERENA.Theorem 10. The algorithm SERENA is stable under Bernoulli IID arrival proess with ad-missible arrival rate-matrix �. Further, the average queue-size is bounded asXi;j E[Qij ℄ � n(n+�)1� �� ; (3.25)where � = � 1��(1���)�n.Proof. We will show that under Bernoulli IID traÆ with admissible arrival rate-matrix �, thePSfrag replaements * *101010
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Figure 3.7: An example of Arr-Mathing proedure.



60 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSalgorithm SERENA is (�,1)-MWM. Then, a diret appliation of Theorem 2 of Chapter 2 willimply the statement of Theorem 10.Now, we will show that SERENA is (�,1)-MWM. If we show that the probability of SER-ENA piking MWM as shedule at any given time is lower bounded by 1=�, then by thearguments used in the proof of Algo2, we immediately obtain that SERENA is (�,1)-MWM.Hene, we are left will showing that the probability of SERENA piking MWM as shedule atany given time is lower bounded by 1=�.Consider any time m. Let ��(m) be the maximum weight mathing at this time m. Wewish to lower bound the probability of the event that SERENA uses ��(m) as its shedule.Now, onsider ��(m). Let there be k,0 � k � n, input-output pairs that are mathed under��(m) suh that the edges between them have arrival rate 0. If there are none suh input-output pair then neglet them in the remainder of the disussion. Without loss of generality,let these inputs and outputs be numbered 1; : : : ; k. Now onsider the following event: (1) nopakets arrive at inputs 1; : : : ; k, and (2) pakets arrive at inputs k+1; : : : ; n preisely for theoutputs that are onneted by ��(m). This event will imply that Arr-Mathing will produea mathing that is maximum weight mathing, and hene SERENA will use maximum weightmathing as a shedule. Now the probability of (1) is at least (1� ��)k and probability of (2)is (��)n�k Sine 0 � k � n, this probability is stritly larger than (����)n. Thus, we showedthat SERENA uses maximum weight mathing as its shedule with probability 1=� as desired.This ompletes the proof of Theorem 10.Simulation ResultsWe study the performane of SERENA via extensive simulation study. The simulationsetup is idential to the one desribed in Setion 3.1.3 of this hapter. We ompare theperformane of SERENA with the MWM, iSLIP and iLQF algorithms under the DiagonaltraÆ. The results are shown in Figure 3.8. The algorithms SERENA and MaxSERENA (themaximized version of SERENA) perform quite ompetitively with respet to MWM.3.2.4 ImplementationIn this setion, we disuss implementation of all the three algorithms { APSARA, LAURAand SERENA.APSARA: All versions of APSARA involve a Hamiltonian walk. As noted in setion 3.1,
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Figure 3.8: Performane of APSARA under Diagonal traÆ.
�nding next permutation in the Hamiltonian walk requires onstant number of operations.Moreover, we �nd that pratially, we do not need Hamiltonian walk. All simulation resultsremain unhanged when we ignore Hamiltonian walk. Thus, Hamiltonian walk is a purelytheoretial tool used in Theorems to provide stability. Thus, while the walk is extremely simpleto implement, we do not onsider it either in implementation or in performane evaluationThe main feature of APSARA is that it an be implemented in a parallel arhiteture veryeÆiently. Figure 3.9 shows a shemati for the implementation of APSARA with K modules.As shown in the Figure 3.9, the old mathing �(m) and the new arrivals, A(m + 1), areused to ompute the weights of the K neighbor mathings in parallel. Arrival information isrequired to update at most n queues. Computing weight of eah neighbor involves 2 additionsand 2 subtrations. The new mathing, �(m + 1) is the one with highest weight among allthe K neighbors and the �(m). Computing the maximum an be done in logK time withO(K) hardware spae. The above omputation an be easily pipelined as a loss of very littleperformane.LAURA: There are two tasks performed in LAURA: (1) Non-uniform random sampling and (2)Merge proedure. Under non-uniform random sampling, I random permutations are hosen,eah of whih may require O(n log n) oin-ips (or equivalent omputation). The standardparameter setting is suh that I = log2 n. Hene, the operations involved in non-uniformrandom sampling is O(n log22 n). Two, Merge proedure. The Merge proedure essentially



62 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSinvolves n addition and n subtrations. Thus, it takes preisely 2n operation. Hene, netamount of work in LAURA is O(n log22 n)+2n. We note that, if ost of randomness is ignoredthen non-uniform sampling will require omputation of O(nI) = O(n log n) operations just toselet useful edges. Though, algorithm LAURA is simple, it does not seem simple enough.Certainly, it an be very useful algorithm given enough resoures.SERENA: The algorithm SERENA performs two main tasks: (1) Arr-Mathing proedureand (2) Merge proedure. As disussed above, the Merge proedure requires preisely nadditions and n subtrations. The Arr-Mathing is required to resolve onits between edgesat output side. This requires at most n omparisons. The Arr-Mathing is required to mathunmathed input-output nodes. This is done in any arbitrary fashion. A round-robin algorithm(or algorithms like Wave Front Arbiter) requires O(n) operations. Thus, SERENA algorithmis truly very simple and does not require any external randomization.3.2.5 Simulation Under Correlated TraÆThe algorithms { APSARA, LAURA and SERENA { try to learn the weight of the MWMshedule using di�erent tehniques. Depending on the arrival proess, the rate at whihalgorithms an learn the weight may hange, whih in turn may hange their performane.The simulation study in Setion 3.2 was based on friendly, ompletely independent (and heneno orrelation) Bernoulli IID arrival proess. We study the hange in performane of algorithmswhen there is a strong orrelation in arrival proess. Intuitively, temporal orrelation in traÆould help an algorithm to learn quiker and ahieve better performane. We verify our intuitionwith simulation results.The simulation setup is idential to the one desribed in Setion 3.1.3 exept that arrivalproess is orrelated. We desribe the model to generate orrelated arrival proess. The traÆis generated aording to orrelated \bursty" traÆ, with burst parameter B. Let � be thearrival rate-matrix. The ell arrival proess at eah input i is haraterized by a two-stateON-OFF model. Every input has its own two state (ON and OFF) Markov hain. At any timeslot, input i jumps from ON to OFF state with probability � 1B�i�� and jumps from OFF to ONstate with probability � 1B(1��i�)�. When i is in OFF state, it does not generate any paket.When i is in ON state it generates pakets. Now, when i is in ON state for ontiguous timeslots, it generates pakets only for one output, whih is hosen to be j with probability �ij=�i�at random when i enters ON state from OFF state.



3.3. CHAPTER SUMMARY AND DISCUSSION 63Under the above simulation setup, the Figure 3.10 shows the mean queue-length of algo-rithms of interest as a funtion of the average burst-size, B. Note that, B = 1 orrespond tothe results of Bernoulli IID traÆ, whih is plotted in Figure 3.12.All the three proposed algorithms behave loser to the MWM as the average burst size(i.e. the degree of orrelation in the traÆ) inreases. Correlation an indeed help, sine theorrelation among subsequent maximum weight mathings is aptured by the memory retainedin the previous mathing.3.3 Chapter Summary and DisussionThe results of the previous hapter suggested that MWM (and its approximations) performvery well. But, it is not feasible to implement the MWM or its known approximations. Thismotivated us to seek implementable approximation of MWM that perform very well. In thishapter, we present novel design approahes to obtain simple-to-implement approximationalgorithms of MWM. We exploited the following general features of the swith shedulingproblem in designing suh algorithms: (i) the use of memory, (ii) the randomized weightaugmentation, (iii) the randomness and the information provided by reent arrivals, and (iv)parallelism that naturally arise due to struture of the spae of permutations.We developed three algorithms { APSARA, LAURA and SERENA { to exploit the above-mentioned features. We analyzed their throughput and delay properties theoretially and foundthat they are all stable. An extensive simulation study demonstrated that the algorithmsapproximate the performane of MWM very well. We learly spelled out the implementationdetails of these algorithms. We strongly believe that these algorithms are implementable inthe urrent ore-routers at a very little implementation ost.The design methods of this hapter are quite general. They an be applied for a largelass of problems in networking (and other systems setting) where the "ontinuity of state"is observed.The results of this hapter show that it is not very diÆult to obtain an approximationalgorithm of the MWM in a stohasti setting, that is, when the weights of underlying bipartitegraph are hanging by little every time in a stohasti manner. An interesting theoretialquestion that arises from this work is as follows: what is the inherest omplexity of �ndingthe Maximum Weight Mathing exatly (not approximately) when little hange happen in theweight of bipartite graphs. Is it still O(n3) or an we do really better. We believe that when



64 CHAPTER 3. IMPLEMENTABLE HIGH-PERFORMANCE ALGORITHMSall the weights are distint most of the time, then the omplexity an be signi�antly redue.3.4 Bibliographi NotesThe basi randomized algorithm, Algo2 was �rst proposed by Tassiulas and Ephremides[1992℄. The proof of stability of Algo2 presented in this hapter, is quite di�erent from theproof by Tassiulas and Ephremides [1992℄. The algorithms { APSARA, LAURA and SERENA{ were published by Giaone et al. [2003℄. The related work to the results of this hapteran be found in the works by Shah et al. [2001℄, Giaone et al. [2001℄ and Giaone et al.[2002℄.A lot of work has been done in the past to obtain simple-to-implement high performanesheduling algorithms and in partiular approximations to MWM. Among ommerially avail-able routers, mainly variants of the three maximal type mathing algorithms are implemented.These three algorithms are iSLIP, Parallel Iterative Mathing (PIM) and Wave Front Arbiter(WFA). The iSLIP algorithm was proposed by MKeown [1995℄. A detailed exposition oniSLIP and its variants an be found in work by MKeown [1999℄. The PIM algorithm wasproposed by Anderson et al. [1993℄. It originated during the design of AN2 swithes of formerDEC. The WFA algorithm was proposed by Tamir and Chi [1993℄. These algorithms, thoughvery simple to implement, are rather poor in performane. For example, simulation resultspresented in this hapter exposes the weakness of iSLIP algorithm.Among other known approximations, the greedy Maximum Weight Mathing algorithm,also alled iLQF was formally studied by MKeown [1995℄. The iLQF algorithm is (0,0:5)-MWM. It provides lower throughput and high delay (see simulations of this hapter). Manyother algorithms have been proposed, for example RPA was proposed by Marsan et al. [1999℄,MUCS by H.Duan et al. [1997℄ et. None of these algorithm ompare well with the algorithmproposed in this hapter.
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Figure 3.9: A shemati for the implementation of APSARA.
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Figure 3.10: Performane under ON/OFF traÆ with input load 0:9.
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Figure 3.11: Comparison of APSARA, LAURA and SERENA: Diagonal traÆ.
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CHAPTER 4
Fluid Models, Heavy TraÆ and Delay

In the previous two hapters, we studied Maximum Weight Mathing and its approxima-tion algorithms. The Chapter 2 showed that under Bernoulli IID arrival proess, MWM andits approximations have good throughput and delay properties. The implementation onernsmotivated design of simple approximations to MWM that have omparable performane toMWM. The Chapter 3 presented various design methods to obtain approximation to MWM.These methods are general enough in the sense of they an be used to design good approxi-mation to MWM even when weight are di�erent from queue-sizes. This naturally leads to thefollowing questions: (1) what are all possible weight for whih MWM stable? (2) among allsuh stable MWM, what weight seletion minimizes the average queue-size or delay?In this hapter, we present answers to both of the above questions. To answer the �rstquestion, we de�ne a general lass of MWM algorithm, denoted by MWMf. The MWMfalgorithm hooses maximum weight mathing as shedule, where weight of an edge (i,j) isf(Qij) instead of queue-size Qij for some real valued funtion f . As a speial ase, whenf(x) = x, MWMf beomes the usual MWM. We haraterize the lass of funtions f underwhih MWMf is stable. To answer the seond question, we study MWMf under the speial lassof funtions parametrized by � 2 R+ . The funtion orresponding to parameter � is f(x) =x�. Again, for � = 1, the algorithm orresponds to MWM. The algorithm orresponding67



68 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYto parameter � is denoted by MWM-�. We haraterize an optimal algorithm among allpossible sheduling algorithm (not only among MWMf algorithms) as the limiting algorithm,MWM-0+, whih is obtained as � ! 0+. The MWM-0+ is a Maximum Weighted MaximumSize Mathing. That is, among all Maximum Size Mathings, it serves the one that hasmaximum weight (weight is logarithm of queue-size). We also �nd that the usual MWM isnot optimal and thus ontraditing the long standing folk-lore in the swithing ommunityabout the optimality of MWM. We use similar methods to resolve the Conjeture 1 stated inChapter 1.To obtain the above laimed answers we use uid model tehnique and heavy traÆ analysisof swithes. We �rst present useful de�nition and notation for this hapter in Setion 4.1.We present formal uid model of a swith in Setion 4.2. Then, we use the uid model toprove stability MWMf lass of algorithms. In Setion 4.3 we study uid models of swithunder MWMf algorithm when swith is loaded ritially, that is, one or more of n inputs and noutputs are loaded to its apaity. This setion requires us to prove ombinatorial propertiesof MWMf algorithms in order to haraterize the spae of �xed points of ritial uid model.The results of 4.3 are of partiular interest as they are essential in obtain the behavior ofsystem under heavy traÆ. In Setion 4.4, we introdue the set up of heavy traÆ salingfor a swith. We de�ne and haraterize the \state spae ollapse" spae of a swith usingresults of Setion 4.3. Using the state spae ollapse haraterization of MWMf algorithmand in partiular MWM-�, we obtain the optimality of MWM-0+ under heavy traÆ in Setion4.5. Further, we present explanation for Conjeture 1. Finally, Setion 4.6 presents disussion,sope of the method developed in this hapter and hapter summary.4.1 PreliminariesThe MWM algorithm hooses shedule ��(m) as a shedule at time m, where ��(m) issuh that it satis�es ��(m) = argmax�2P f� �Q(m)g: (4.1)Equivalently, (4.1) an be interpreted in terms of umulative servie vetor (S�(m))�2P asfollows: S�(m) > 0 ) � �Q(m) � � �Q(m); 8 � 2 P: (4.2)



4.2. FLUID MODEL AND STABILITY OF MWMF 69Now we de�ne a generalized Maximum Weight Mathing algorithm. Consider any funtionf : R+ ! R+ . Then, MWMf algorithm hooses the shedule so that the following is alwayssatis�ed: S�(m) > 0 ) � � f(Q(m)) � � � f(Q(m)); 8 � 2 P; (4.3)where reall that f(Q(m)) = (f(Qij(m)))ij . Thus, at time m MWMf hooses a maximumweight mathing as the shedule with weight of edge (i,j) as f(Qij(m)). In this hapter, weonsider funtions f that satisfy the following ondition.Condition 1. The funtion f : R+ ! R+ is a stritly inreasing ontinuous funtion withf(0) = 0. Further, for any (x1; : : : ; xn) and (y1; : : : ; yn) in Rn+Xi f(xi) �Xi f(yi) implies Xi f(Æxi) �Xi f(Æyi); 8 Æ > 0: (4.4)Some examples of funtion that satisfy ondition 1 are f(x) = x2, f(x) = log x et. Aspeial sub-lass of MWMf algorithms of our interest are the lass of algorithms parametrizedby � 2 R+ and denoted by MWM-� algorithms. An MWM-� uses f(x) = x� as its weightfuntion.4.2 Fluid Model and Stability of MWMfIn this setion we �rst introdue the uid model of a swith. We desribed what we meanby uid model of a swith. For the ease of understanding, the formal desription of uid modelassoiated with the swith is presented �rst. Then, we provide justi�ation. Finally, we useuid model to prove the stability of MWMf algorithm.4.2.1 Fluid Model of a SwithAs desribed in hapter 1, the dynamis of a swith an be desribed ompletely by thetuple X (m) = ( �A(m);D(m); Q(m); S(m)); m 2 Z+: The uid saling of swith is de-veloped essentially to study the behavior of system at the \rate" level. Under the uidsaling, instead of looking at X (m), the fous is in studying the behavior of the tuple



70 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYx(t) = (a(t); d(t); q(t); s(t)); t 2 R+ , wherex(t) = limr!1 X (rt)r ; (4.5)where X (t) = (1� t+ bt)X (bt) + (t� bt)X (bt + 1):Note that, as de�ned above, x(t) represents one of possibly many limit points. One doesnot require existene of a unique �xed point, as generally one proves properties for all limitpoints.From Assumption 1, inter-arrival times are IID. Hene by Strong Law of Large Numbers(or ergodi theorem) for IID variable,limm!1 1m �A(m) = �; with probability 1: (4.6)This in turn implies that, with probability 1,a(t) = �t: (4.7)Now, we are ready to desribe the dynamis of the swith and the orresponding uidmodel equations. The uid model equations are essentially the equations that govern theevolution of quantities of x(t). Though, these uid model equations are intuitively lear, theformal justi�ation is not straightforward. The formal justi�ation is given later. Similar to thetreatment in Chapter 1, we onsider the dynamis of a swith in two separate omponents:(i) Algorithm-independent dynamis, and (ii) Algorithm-dependent dynamis.
Algorithm-independent DynamisThe quantities Q(�); �A(�) and D(�) are related by the following basi queueing equation.Q(m) = Q(0) + �A(m)�D(m)= �A(m)�D(m); (4.8)



4.2. FLUID MODEL AND STABILITY OF MWMF 71sine Q(0) = 0 from Assumption 2. In eah time slot, at most one of the permutation isserved and we are interested in non-idling swithes. Hene,X�2PS�(m) = m: (4.9)Clearly, D(m) and fS�; � 2 Pg are related to eah other. Spei�ally,Dij(m) = X�2P mX̀=1 �ij1Qij(`)>0 (S�(`)� S�(`� 1)) ; 8 i; j: (4.10)Equivalently,Dij(m)�Dij(m� 1) = X�2P�ij1Qij(m)>0 (S�(m)� S�(m� 1)) ; 8 i; j: (4.11)
Next, we desribe the orresponding dynamis of uid saled swith. The basi uidquantities (q(t); d(t); a(t); s(t)) are absolutely and hene di�erentiable almost everywhere w.r.t.the Lebesgue measure. We will talk about uid model equations as the di�erentiable t. Theequations analogous to (4.8)-(4.10) are the following.q(t) = �t� d(t); (4.12)X�2Ps�(t) = t; (4.13)_dij(t) = X�2P�ij1qij(t)>0 _s�(t): (4.14)We de�ne additional notation, whih will be useful in further exposition. The n� n matrix ofinstantaneous servie rates, �(t), is �(t) = X�2P� _s�(t): (4.15)Then the equations (4.12) and (4.14) an be re-written as follows:_qij(t) = 8<:�ij � �ij(t) if qij > 0��ij � �ij(t)�+ otherwise (4.16)



72 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYThe above equations an be written in the following ompat form._q(t) = ��� �(t)�+[q=0℄: (4.17)Algorithm-dependent DynamisThe above are the basi equations whih govern a swith, regardless of the sheduling al-gorithm. For a spei� sheduling algorithm there may be additional equations. The algorithmdeides whih permutations are hosen for servie, that is, fS�(�); � 2 Pg. We desribe thedynamis for MWMf algorithm. Under the MWMf algorithm, the equation (4.3) is satis�ed,whih is the following.S�(m+ 1) = S�(m) if � � f(Q(m)) < max�2P � � f(Q(m)); m 2 Z+: (4.18)The orresponding uid model equation is given by_s� = 0 if � � f(q) < max�2P � � f(q): (4.19)4.2.2 Justi�ation of Fluid ModelIn this setion, we present justi�ation of uid model equations (4.12)-(4.14) and (4.19).We �rst introdue some de�nitions and notations. We want to study the limiting quantityx(t), where x(t) = limr!1 X (rt)r ; (4.20)where X (t) = (1� t+ bt)X (bt) + (t� bt)X (bt + 1):Equivalently, we wish to study limr!1 xr(t) where, for r 2 R+xr(t) = X (rt)=r:In partiular, we wish to study x(t) over a time interval [0; T ℄, where T 2 R+ a �nite onstant.Eah xr(t) has assoiated probability measure �r(�). Our interest is in studying the limitingmeasure �(�) obtained as the limit of �r(�) as r !1. Basi questions are: what is the spae



4.2. FLUID MODEL AND STABILITY OF MWMF 73on whih �r(�) is de�ned? are limit points of �r(�) probability measures? if yes, an we obtaintheir haraterization ? Answering these questions is equivalent to showing that the limits ofxr(�) satisfy uid model equations.Now we proeed towards studying limits of �r(�). The spae of �r(�) is the set of all valuestaken by xr(t) as r ! 1 over a �nite time [0; T ℄. For this we need following de�nition. Asequene of funtions ff r; r 2 R+g where f r : [0; T ℄! R+ , is said to onverge uniformly onompat intervals (u.o..) to a funtion f : [0; T ℄! R+ iflimr!1 jf r � f jT = 0;where the jf r � f jT is the sup-norm de�ned asjf r � f jT = sup0�t�T jf r(t)� f(t)j:Next, we note the following properties of X (�); xr(�) whih prove their Lipshitz ontinuity.1. At most one paket an arrive at an input in a time slot. Hene, for all i; jjAij(m+ `)�Aij(m)j � `; 8m; ` ) jarij(t+ s)� arij(t)j � s; 8t; s: (4.21)2. At most one paket an depart from an input (as well as output) in a given time slot.Hene, for all i; jjDij(m+ `)�Dij(m)j � `; 8m; ` ) jdrij(t+ s)� drij(t)j � s; 8t; s: (4.22)3. Everytime one of the mathing is sheduled to transfer unit paket. Thus, for all � 2 PjS�(m+ `)� S�(m)j � `; 8m; ` ) jsr�(t+ s)� sr�(t)j � s; 8t; s: (4.23)4. From (4.21) and (4.22), we obtain that for all i; j,jQij(m+ `)�Qij(m)j � `; 8m; ` ) jqrij(t+ s)� qrij(t)j � s; 8t; s: (4.24)From (4.21)-(4.24), we obtain that X (�); xr(�) are 4-tuple of Lipshitz ontinuous funtionson [0; T ℄. Thus, the probability measure �r(�) is on the spae of Lipshitz funtions. Now, we



74 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYlaim the following Lemma.Lemma 3. For any sequene rk " 1, the sequene of measures �rk is tight.Proof. The support set of measure �r, for any r 2 R+ , is a 4-tuple of funtions whih are (i)Lipshitz ontinuous and hene equiontinous, (ii) uniformly bounded and (iii) with ompatdomain [0; T ℄ and image ontained in Rd+ , for some �nite integer d. Hene, Arzela-Asolli'sTheorem implies that the losure of the support is ompat on the spae of funtions (withdomain [0; T ℄ and range Rd+) endowed with topology indued by metri of sup-norm. Thisin turn implies that for any sequene rk " 1, the sequene of measures �rk is tight. Thisompletes the proof of Lemma 3.From Lemma 3 and Prohorov's Theorem, we obtain that for any sequene of tight measures�rk on a metri spae, there exists a onvergent subsequene �rkj suh that �rkj ! �; here� is a probability measure with the same support. Next we study the measure �. In partiular,we show that � onentrates all of its mass on solution of uid model equations. As before,we divide the treatment in algorithm independent and algorithm dependent parts.Algorithm-independent uid modelWe will show that� ( fx(�) satis�es equations (4.12)-(4.14)g ) = 1:Reall that inter-arrival times are IID (Assumption 1) and hene as shown in (4.7) with prob-ability 1, limr!1ar(t) = �t: (4.25)Sine �rkj ) �, �(a(t) = �t) = 1:From (4.25) and swith dynamis implies, with probability 1,limr!1 qr(t) + dr(t) = �t; (4.26)



4.2. FLUID MODEL AND STABILITY OF MWMF 75Hene, q(t); d(t) satisfy (4.26) with probability 1, under �. This in turn implies that, x(�)satis�es (4.12) with probability 1 under �. The equation (4.13) is satis�ed trivially sine allalgorithms under onsideration are non-idling. The only remaining equation is (4.14).Fix i; j. We need to show that, under �, with probability 1, when qij(t; !) > 0,_dij(t) =X�2P�ij _s�(t):By ontinuity of qij(�), there exists a Æ > 0, suh that a = mint02[t;t+Æ℄ qij(t0) > 0 if qij(t) > 0.Then for any large enough j, we haveqrkjij (t0) � a=2 for t0 2 [t; t+ Æ℄ and rkja=2 > 1:Thus, qij(rkj t0) > 1 for t0 2 [rkj t; rkj (t+ Æ)℄:Thus, for interval [rkj t; rkj (t + Æ)℄, the queue qij(�) is non-empty. Hene in this interval,departure from qij(�) mathes the amount of servie it was given, that is,dij(rkj t+ 1)� dij(rkj t) = X�2P�ij �s�(rkj t+ 1)� s�(rkj t)� : (4.27)By de�nition, rkjdrkjij (�) = dij(rkj �). Hene, from (4.27) we obtain,drkjij (t+ rkj )� drkjij (t)1=rkj = X�2P�ij �s�(t+ 1=rkj )� s�(t)1=rkj � : (4.28)Now by letting j !1, we obtain_dij(t) =X�2P�ij _s�(t):Thus, x(�) satis�es (4.14) with probability 1 under �. Hene, we have shown that under�, (4.12)-(4.14) are satis�ed with probability 1.



76 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYAlgorithm-dependent uid modelNext, we justify algorithm dependent uid equations (4.19) for MWMf algorithm. ForMWMf algorithm, the swith obeys the following equations.S�(m+ 1) = S�(m) if � � f(Q(m)) < max�2P � � f(Q(m)); m 2 Z+: (4.29)Consider any r and t. By de�nition, qr(t) = Q(rt)=r. Hene, from the Condition 1 weobtain � � f(Q(rt)) < max�2P � � f(Q(rt)) ) � � f(qr(t)) < max�2P � � f(qr(t)): (4.30)Now onsider a time t and the sequene frkjg. From (4.29) and (4.30), we obtainsrkj (t+ 1=rkj ) = srkj (t) if � � f(qrkj ) < max�2P � � f(qrkj ); t 2 R+ : (4.31)Diving both sides of equation on the left in (4.31) by rkj and letting j !1, gives the desiredequation as follows. _s� = 0 if � � f(q) < max�2P � � f(q):We onlude the following result.Lemma 4. Given � > 0 and T , for r large enough there exists a solution of uid modelequations, x(�), suh that Pr(jxr(�)� x(�)jT > �) < �:4.2.3 Stability of MWMfNow, we will use uid model to prove stability of MWMf algorithm. In order to use uidmodel equations to prove stability, we �rst de�ne notion of weak stability of uid model.De�nition 5 (Weak Stability). The uid model of a swith operating under a shedulingalgorithm is said to be weakly stable if for every solution of uid model equations x(�) is suhthat q(t) = [0℄ for all t � 0, whenever q(0) = [0℄.The following theorem relates notion of weak stability with the rate-stability of algorithm.Theorem 11. A swith operating under sheduling algorithm is rate-stable if the orrespondinguid model is weakly stable.



4.2. FLUID MODEL AND STABILITY OF MWMF 77Proof. Assume that uid model is weakly stable. Hene, given q(0) = [0℄, q(t) = [0℄ for allt > 0. This means that for all the solutions of uid model equations, we have orrespondingd(t) = �t from equation (4.12) for all t > 0. Thus, there is a unique solution to uid modelequation, given by (q(t); d(t); a(t)) = ([0℄; �t; �t) for all t > 0.Now onsider the ase when t = 1, that is, d(1) = �. Now by Lemma 4, uniqueness ofuid model solutions and realling the de�nition of uid saling, we obtain that,limr!1 D(r)r = d(1)= �; (4.32)with probability 1. Restriting r to integers, we obtain that the departure proess also has rate� over disrete time, that is, the swith is rate-stable. This ompletes the proof of Theorem11.
Now we use the Theorem 11 to prove stability of MWMf. For this, we need to show thatuid model is weakly stable. For this purpose, we �rst de�ne the following Lyapunov funtion:L(q) = F (q) � [1℄ =Xi;j F (qij) where F (x) = Z xy=0 f(y) dy: (4.33)Though, L depends on the funtion f , we do not expliitly mention f in its notation. Thede�nition of L will be lear from the ontext. Now, onsider the following Lemma whih showsthat L is indeed a Lyapunov funtion of MWMf algorithm.Lemma 5. For a swith operating under the MWMf algorithm with admissible arrival rate-matrix �, for any uid model solution q(t) 6= [0℄, ddt L(q(t)) < 0.Proof. Reall that q(t) is absolutely ontinuous, and note that L(�) is ontinuous; thus thederivative exists wherever the derivative d=dt q(t) exists, whih is almost everywhere. At suht, let w�(f(q(t)) = max�2P � � f(q(t)):



78 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYNow onsider the following.ddtL(q(t)) = f(q(t)) � (�� �)+[q(t)=0℄= f(q(t)) � (�� �(t)) sine f(z) = 0 whenever z = 0 (4.34)(a)� f(q(t)) �0��� 24 n2Xk=1�k�k35� �(t)1A= ��0� n2Xk=1�kf(q(t)) � �k1A� w�(f(q(t))) from equation (4.19) (4.35)� �(1� ��)w�(f(q(t))): (4.36)The (a) follows from the fat that admissible doubly stohasti rate-matrix � an be boundedomponent-wise as � � ��Pn2k=1 �k�k, where �k 2 R+ ; Pk �k = 1. Now sine q(t) 6= [0℄,w�(f(q(t))) > 0. For admissible �, �� < 1. Hene from (4.36) we obtain ddtL(q(t)) < 0. Thisompletes the proof of Lemma 5.Next, onsider the following Lemma whih will be useful to prove weak stability of uidmodel equations under MWMf.Lemma 6. Let f : R+ ! R+ be an absolutely ontinuous funtion with f(0) = 0. Assumethat ddtf(t) � 0 for almost every t (w.r.t. Lebesgue measure) suh that f(t) > 0 and f isdi�erentiable at t. Then, f(t) = 0 for almost every t � 0.Proof. For almost every t � 0, f2(t) � f2(0) = 2 R t0 f(s) ddsf(s)ds � 0, sine f(s) ddsf(s) � 0a.e. in [0; t℄. Now f(0) = 0 and f(t) � 0 imply that f(t) = 0 for almost every t.Now we state the result about rate-stability of MWMf algorithm.Theorem 12. Under any arrival proess satisfying Assumption 1 with admissible rate-matrix�, the swith operating under MWMf algorithm is rate-stable.Proof. From Theorem 11, it is suÆient to prove weak stability of uid model equations inorder to prove rate-stability of the swith operating under MWMf. Lemmas 5 and 6 implythat L(q(t)) = 0 for almost every t if q(0) = 0. By de�nition of L(�), this immediately impliesthat q(t) = 0 for almost every t when q(0) = 0. That is, the swith is weakly stable underMWMf algorithm. This ompletes the proof of Theorem 12.



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 794.3 Equilibrium Analysis of Fluid ModelIn the previous setion, we obtained uid model orresponding to a swith operating underMWMf algorithm. We used the uid model solutions to prove rate stability of MWMf algo-rithms under arrival proess when rate-matrix is admissible. Now, we study the uid modelsolutions when some of the ports are ritially loaded, that is,jfi : �i� = 1g [ fj : ��j = 1gj � 1:In partiular, we are interested in haraterizing invariant state of uid model equations, for-mally de�ned as follows.De�nition 6 (Invariant State.). Consider a swith operating under an algorithm A with arrivalrate matrix �. We all a state p 2 M + as an invariant if the following holds for all uid modelsolutions of suh a swith: q(t) = p ) q(s) = p; 8s � t:Reall that when � is admissible, i.e. �� < 1, the invariant state is q(t) = [0℄ as shownin Theorem 12. In this setion, when one or more ports of swith are ritially loaded, weseek to obtain (i) haraterization of invariant states of uid model equations of a swith, and(ii) time taken for the onvergene to invariant states, starting from any initial state. In thissetion, we obtain answers to both (i) and (ii) under MWMf algorithm. We �nd that a stateq is an invariant state if and only if it is the solution to a ertain optimization problem whosethe input data the set of workloads qi� and q�j of the initial state.4.3.1 Preliminary Results about MathingsReall that the Birkho�-von Neumann theorem says that the set of doubly stohastimatries S forms a onvex set, with the permutation matries P as extreme points. Thus anydoubly stohasti matrix a an be written asa =X�2P�� where eah � � 0 and X� � = 1:Furthermore, if the entries of a are all rational, then the � may be hosen to be rational.



80 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYMany of our results onern maximum weight mathings. Given a weight matrix q 2 M �,letM(q) be the set of maximum weight mathings, and letM(q) be the matrix whih indiateswhih entries are involved in a maximum weight mathing:M(q)ij = 8<:1 if �ij = 1 for some � 2M(q)0 otherwiseThe set M(q) exhibits an important losure property:Lemma 7. Let � 2 P, and suppose M(q)ij = 1 whenever �ij = 1. Then � 2M(q).Proof. De�ne the matrix a by a = X�2M(q) �:It is easy to see that a� � has non-negative entries, and that its row and olumn sums are allequal, so by the Birkho�-von Neuman deompositiona = � +X�2P��where eah � � 0 and P � = jM(q)� 1j.Letm be the weight of a maximum weight mathing. By onstrution of a, q�a = jM(q)jm.On the other hand, by maximality, it must be that q � � � m and q � (a� �) � jM(q) � 1jm.If either of these inequalities are strit we get that jM(q)jm < jM(q)jm, a ontradition.Hene q � � = m, and so � 2M(q).Let � be doubly sub-stohasti. It an be augmented to form a doubly stohasti matrix�+ �, where the matrix � satis�es�ij > 0 if �i� < 1 and ��j < 1:We will all suh an � the matrix of arrival rates that is omplementary to �. (One wayto obtain suh an � is to start with �ij = " for the entries spei�ed above, where " =n�1mini(1 � �i�) ^minj(1 � ��j), and then to add the `de�it' amount of load aording tothe transport algorithm.)�Here q denotes any positive weight matrix and not neessarily the queue-size matrix.



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 81Lemma 8. For given �, let q; r 2 M be suh that qij = rij = 0 whenever �ij = 0. Let,ri� � qi� if �i� = 1 and r�j � q�j if ��j = 1; 8 i; j:Then there exists a doubly stohasti matrix � 2 S, a positive matrix " 2 M + , and a durationt > 0 suh that r = q + t(�� �) + ": (4.37)Suppose that in addition ri� � qi� and r�j � q�j 8 i; j:Then for any augmentation �+ of �, there exist �, t and " as above suh thatr = q + t(�+ � �) + ": (4.38)Proof. We will �rst prove (4.37). The proof of (4.38) is very similar.Let � = ��Æ(r�q) for suÆiently small Æ > 0. We will show that � is doubly sub-stohastimatrix with non-negative entries.First, we'll show that all entries of � are non-negative, that is, �ij � 0. Now, if �ij > 0,then by hoosing Æ small enough, �ij an be made positive; else if �ij = 0 then trivially byonstraints on q; r, we obtain �ij = 0. Thus, � 2 M + .Next, we show that � is doubly stohasti, that is, �i� � 1; ��j � 1; 8i; j:. Consider �i�:either �i� < 1, in whih ase �i� < 1 for suÆiently small Æ; or �i� = 1, in whih ase ri� � qi�and �i� � 1. Similarly, ��j � 1; 8 j.Now, � is doubly sub-stohasti non-negative matrix. Hene, there exists an augmentationof �, i.e. there exists a doubly stohasti matrix � for whih � � � omponent-wise. Thenq + Æ�1(�� �) � q + Æ�1(�� �) = r:This proves (4.37).The proof of (4.38) is similar, with � = �+ � Æ(r � q). It makes use of the fat that�+ij = 0 implies �ij = 0.



82 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAY4.3.2 The Basi Maximum Weight MathingWe will start with some analysis of the equilibrium states of the basi Maximum WeightMathing algorithm, MWM-1. We will only give partial results, beause this algorithm is fullydesribed in setion 4.3.3 as a speial ase of the generalized MWMf algorithm. Nonetheless,it is useful to build up some intuition by working with a speial ase|we have found thatthe results desribed in this setion are intuitively appealing, even though they are in somesense restritive. Additionally, the results of this setion highlight some of the interestingombinatorial haraterization of invariant state of the MWM-1 algorithm. In the rest of thepaper, whenever we use MWM, we mean MWM-1 unless spei�ed.Consider a single server serving many queues. The server deides whih queue to serveevery time. Under a work onserving poliy when the arrival rate is no more than the servierate, the net work does not inrease. Further, under the longest queue �rst poliy, the sizeof the longest queue does not inrease when arrivals and servies are deterministi (i.e. onuid sale). Based on this, in the ontext of a swith, one would expet the weight ofmaximum weight mathing to be non-inreasing under admissible deterministi arrivals. Next,we present an example (prompted by disussions with Frank Kelly and Mark Walters) thatontradits this expetation. This should aution us against making any strong laims aboutoptimality of MWM algorithm.Example 6. Let the matrix of arrival rates be
� = 15 0BBBBBBB� 1 1 1 1 11 41 41 41 4

1CCCCCCCA(where blank entries are to be read as 0). Suppose that at some point in time the systemreahes the state q = 0BBBBBBB� 6 11 11 11 1111 911 911 911 9
1CCCCCCCA



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 83The weight of the maximum-weight mathing here is m(q) = 49. There are four mathingswhih have this weight. One an show that the MWM algorithm will serve these four, in equalproportion in this example, giving servie matrix
� = 14 0BBBBBBB� 1 1 1 11 31 31 31 3

1CCCCCCCA and �� � = 120 0BBBBBBB� 4 �1 �1 �1 �1�1 1�1 1�1 1�1 1
1CCCCCCCAwhih will be applied until the system reahes the state

r = 0BBBBBBB� 10 10 10 10 1010 1010 1010 1010 10
1CCCCCCCAThe maximum-weight mathing here is m(r) = 50. In other words, under the operation ofMWM, the weight of the maximum-weight mathing has inreased.One an also show that, one the system has reahed state r, it will remain in that statethereafter.The key idea in this setion is of invariant states. Consider a swith with doubly sub-stohasti arrival rates �.Theorem 13. Suppose � > 0 in eah omponent. If q is an invariant state then it is theunique solution to the linear program MWM+-LP(q), whih is tominimize m(r) = max�2P � � r over r 2 M +suh that ri� � qi� if �i� = 1, andr�j � q�j if ��j = 1Conversely, if q solves MWM+-LP(q) then it is an invariant state.(This restrition on � is neessary. Example 6 is a ase where some omponent of � isequal to zero, and the system does not minimize the maximum weight mathing. In ases



84 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYlike this, the results that follow are not appropriate. Setion 4.3.3 deals with this in a moresophistiated way.)The intuition behind the result is as follows. The MWM algorithm only o�ers servie tomathings whih have maximum weight. If this inludes only some of the queues, then thosequeues have more servie than arrivals, so they derease, whih pulls downm(q). This explainsthe objetive funtion. If some row i has �i� = 1 then the total servie rate for that row isequal to the total arrival rate, so qi�, the workload at input i, an never derease, it an onlyinrease (but, subjet to this, the workload an be rearranged among the queues in row i).Otherwise the total servie rate is greater than the total arrival rate, whih means that theworkload an also derease. This explains the onstraints.In proving the theorem, it is helpful to use a more expliit haraterization of invariantstates.De�nition 7 (MWM+-endstate.). We say that q is an MWM+-endstate if1. Every queue is involved in some maximum weight mathing, i.e. M(q)ij = 1 for all i; j,i.e. M(q) = P.2. If �i� < 1 and ��j < 1 then qij = 0.Lemma 9. If � > 0, then q is an invariant state if and only if q is an MWM+-endstate.Proof. The Theorem 15 relates invariant state and endstate in the ontext of general MWMfalgorithm. Taking f(x) = x, and restriting to the ase of � > 0, Theorem 15 immediatelyimplies the Lemma.Now we are ready to prove the Theorem 13.Proof of Theorem 13. Lemma 10 shows that if q solves MWM+-LP(r) then q satis�es bothrequirements of an endstate. Hene Lemma 9 implies the onverse of Theorem 13, i.e. if qis a solution of MWM+-LP(r) for some r, then q is an invariant state. Next, we proeed toprove that if q is an invariant state then it satis�es MWM+-LP(q).Now suppose q is an endstate and onsider MWM+-LP(q). First, a solution exists, sinethe objetive is a ontinuous funtion, and we an take the domain to be ontained in thebounded set fr : rij � m(q)g.



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 85Now let r be any solution to MWM+-LP(q), r 6= q. By Lemma 11 given below, ri� � qi�and r�j � q�j for all i and j. Hene by Lemma 8 we an writer = q + t(�+ � �) + "for some doubly stohasti �, where t > 0 and either �+ 6= � or " > 0 in some omponent.If �+ 6= �, then by Lemma 12 there is some mathing � with � �(�+��) > 0, whih impliesthat � � r > � � q. By assumption, q is an endstate, and so all mathings (and mathing � inpartiular) have maximum weight for q, thus m(r) > m(q), whih ontradits the optimalityof r. Otherwise �+ = � and " > 0 in some omponent, in whih ase it is easy to see thatm(r) > m(q), the same ontradition.Thus r = q. Therefore q is the unique solution to MWM+-LP(q).Lemma 10. Suppose q solves MWM+-LP(r) for some r. Then all mathings are maximumweight mathings for q; furthermore, if �i� < 1 and ��j < 1 then qij = 0.Proof. Suppose that not all mathings are maximum weight mathings for q. By Lemma 7,there is some queue whih is not part of any maximum weight mathing. Without loss ofgenerality, suppose it is q11, i.e. suppose M(q)11 = 0. De�ne the matrixÆ = 0BBBBB� "(n� 1) �" � � � �"�"... "(n� 1)�1�"
1CCCCCAand let q0 = (q + Æ)+Sine all the row and olumn sums of Æ are equal to 0, q0 is feasible for MWM+-LP(r). Wewill now argue that m(q0) is stritly less than m(q), ontraditing the optimality of q.Consider any � whih is a maximum weight mathing for q. Suppose that �i1 = �1j = 1,i.e. that � mathes input port i to output port 1, and input port 1 to output port j. Byassumption, q11 is not part of any maximum weight mathing, so i 6= 1 and j 6= 1. Therefore� must omprise qi1 from the �rst olumn, q1j from the �rst row, and n� 2 queues from theremaining rows and olumns. We will argue below that at least one of qi1 and q1j is stritly



86 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYpositive. If this is so, (and if " is suÆiently small), we �nd that� � q0 � � � q + (n� 2) "n� 1 � "< � � q:(The inequality omes from the fat that one of qi1 and q1j may be 0.) Therefore m(q0) <m(q).It remains to show that at least one of qi1 and q1j is stritly positive. Suppose not. Considerthe mathing � whih is like � exept that �11 = �ij = 1 and �i1 = �1j = 0. In words, � is like� exept that it maps input 1 to output 1, and input i to output j. The weight of mathing� is � � q = � � q � �qi1 + q1j�+ �q11 + qij� � � � q:(The inequality omes from the fat that the two queues qi1 and q1j are both 0.) Thereforeq11 is part of a maximum weight mathing, whih ontradits our premise. Thus it annot bethat both the queues are 0.Now, we will show that if �i� < 1 and ��j < 1 then qij = 0. Suppose not. Let q0 be like q,but with q0ij = 0. Then q0 is feasible for MWM+-LP(r), and sine no queues have inreased,m(q0) � m(q). If m(q0) < m(q) then q is not optimal, a ontradition. If m(q0) = m(q), thenq0 also solves MWM+-LP(r), so by the above all mathings in q0 have maximal weight. Andyet there is some mathing � (any mathing involving q0ij will do) for whih � � q0 < m(q0), aontradition. Thus qij = 0.Note that we an hoose the matrix Æ, whih leads to a derease in the maximum weight,as a funtion of only q. Now, if we knew �, we ould hoose a servie matrix � suh that��� � Æ, and hene ahieve a strit derease in m(q) (unless q is already an endstate). Thismeans that m(q) is a Lyapunov funtion for some sheduling algorithm (though probably notfor any online sheduling algorithm).Lemma 11. Let q be an endstate, and let r solve MWM+-LP(q). Then ri� � qi� and r�j � q�jfor all i and j (not just for the ritially loaded ports).Proof. Without loss of generality, assume there are ritial ports. By assumption q is anendstate, and by Lemma 10 r is too. The two requirements of an endstate imply that any



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 87endstate s must be of the form
s = 0BBBBBBBBBBB�

x1 + y1 � � � xC + y1 y1 y1 � � �... . . . ... ... ...x1 + yR � � � xC + yR yR yR � � �x1 � � � xCx1 � � � xC 0... ...
1CCCCCCCCCCCAWe have arranged the rows and olumns so that the �rst R input ports and the �rst C outputports are ritial. To see that it must have this form, onsider a permutation � for whih�ij = �kl = 1 where input port i and output port j are both subritial, and onsider also thepermutation � whih is like � but with �il = �kj = 1 instead of �ij = �kl = 1. Sine s is anendstate, sij = 0, and both � and � are maximum weight mathings, henesij + skl = skl = sil + skj:By onsidering various possibilities for k and l we arrive at the above general form for s.Let the terms in this representative matrix be x1; : : : and y1; : : : for r, and u1; : : : andv1; : : : for q. Let x = x1 + � � �+ xC et.Suppose the result of the lemma is false. Then (without loss of generality) u > x. Whatdoes this mean for y?First, write down the equations whih ome from the fat that r is feasible for MWM+-LP(q): (n�R)x+ (Rx+ Cy) � (n�R)u+ (Ru+ Cv)(n� C)y + (Rx+ Cy) � (n� C)v + (Ru+ Cv)Rearranging, we obtain Rx+ Cy > Ru+CvRx+ ny � Ru+ nv =) y > v



88 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYand hene (n� C)y + (Rx+ Cy) > (n� C)v + (Ru+ Cv)i.e. RXi=1 x+ nyi > RXi=1 u+ nvi:Thus there is some i � R for whih x+ nyi > u+ nvi (4.39)and in partiular yi > n�1(u� x) + vi � 0: (4.40)Consider a new state r0 whih is like r exept thaty0i = yi � "for " > 0 suÆiently small. By (4.39) and (4.40), r0 is feasible for MWM+-LP(q). Certainlym(r0) � m(r), sine " > 0; but by optimality of r, m(r0) � m(r); hene m(r0) = m(r), sor0 is optimal. Sine r0 is optimal, by Lemma 10 all mathings in r0 have maximum weight.However there is some mathing � (any mathing for whih �i (C+1) = 1 will do) whih hadmaximum weight for r, but for whih� � r0 < � � r = m(r) =m(r0):This ontradits the fat that all mathings in r0 have maximum weight. So it annot be thatu > x.Applying the same argument to olumns, it annot be that v > y. This ompletes theproof.Lemma 12. Let " 2 S(0). If " is not identially zero, there exists some permutation � suhthat � � " > 0.Proof. Suppose not. Then � � " � 0 for all �.



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 89Suppose that ��" = 0 for all �. Sine " 2 S(0), it has a Birkho�-von Neuman deomposition" =X� �� where X� � = 0:Therefore " � " =X� �� � " = 0;whih ontradits the assumption that " is not identially zero.Therefore � � " < 0 for some �. Now onsider the family of permutations �k de�nedby �k(i) = �(i) + k mod n. Certainly � = �0; and it is easy to see that the matrix � =�0 + � � � + �n�1 is identially equal to 1. Thus � � " = 0. Sine �0 � " < 0 by assumption, itmust be that �k � " > 0 for some k.4.3.3 MWMfIn this setion we will prove results about ritially loaded uid model solutions of theMWMf algorithm. We will exhibit a Lyapunov funtion for the system state, and we willharaterize invariant states as the solution to an optimization problem whose objetive is theLyapunov funtion.First reall some notation. The weight funtion f is stritly inreasing real valued funtionwith f(0) = 0, satisfying Condition 1. Let q 2 M + be a state of the system. Let M(f(q)) bethe set of maximum weight mathes on f(q), and let M(f(q)) be the matrix whih indiateswhih queues are involved in some maximum weight mathing. Let � be the doubly sub-stohasti matrix of arrival rates. Let m(f(q)) be weight of the maximum weight mathing,m(f(q)) = max�2P � � f(q):Let � be a omplementary arrival matrix, that is, a matrix � 2 M + suh that �+ = �+ � isdoubly stohasti, and furthermore �ij > 0 whenever �i� _ ��j < 1. It must be that �ij = 0whenever �i� = 1 or ��j = 1. For MWMf algorithm we again use the following Lyapunovfuntion. L(q) = F (q) � 1 =Xi;j F (qij) where F (x) = Z xy=0 f(y) dy: (4.41)Though, L depends on the funtion f , we do not expliitly mention f in its notation. The



90 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYde�nition of L will be lear from the ontext. De�ne the onvex optimization problem MWMf-CP(q) to be minimize L(r) over r 2 M +suh that ri� � qi� if �i� = 1r�j � q�j if ��j = 1rij = 0 if �ij = 0Note that the objetive funtion is stritly onvex as f(�) is stritly inreasing funtion on R+ .De�ne B(q) 4= fr 2 M + : rij � q��; 8i; jg:It is easy to see that we an take the domain of r to be ontained B(q) for the purpose ofoptimization. By de�nition, B(q) is bounded and hene the optimization problem has a uniquesolution. Thus, optimization problem MWMf-CP(q) an be seen as a map from q 2 M + toM + . This leads to the following de�nition of Lifting Map.De�nition 8 (Lifting Map). The lifting map �f : M + ! M + , maps q to the unique solutionof optimization problem MWMf-CP(q), denoted by �f (q).Next, we state the haraterization of invariant state under MWMf algorithm and itsrelation to the Lyapunov funtion L.Theorem 14. For a swith operating under the MWMf algorithm,(a) For any uid model solution q(t), ddt L(q(t)) � 0,(b) q is an invariant state if and only if it solves MWMf-CP(q), and(b) q(t) is an invariant state if and only if ddt L(q(t)) = 0.Proof. We present the proof of the (a) �rst, followed by (b) and ().Proof of (a): ddt L(q(t)) � 0. Reall that q(t) is absolutely ontinuous, and note that L(�) isontinuous; thus the derivative exists wherever the derivative d=dt q(t) exists, whih is almost



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 91everywhere. At suh points,ddtL(q(t)) = f(q) � (�� �)+[q=0℄= f(q) � (�� �) sine f(z) = 0 whenever z = 0� f(q) � (�+ � �) sine � � �+ (4.42)= f(q) � �+ �m(f(q)) by the uid model equation (4.19)=X�2P�f(q) � � �m(f(q)) by deomposition of �+� m(f(q))�m(f(q)) sine m(f(q)) is maximum weight (4.43)= 0:Proof of (b): q invariant , q solves MWMf-CP(q).(() Suppose that q solves MWMf-CP(q). Let q(t) be any uid model solution with q(0) = q.Now d=dtL(q(t)) � 0 by (a). Now, we laim that q(t) is a feasible solution to MWMf-CP(q)for all t. If this is so then d=dtL(q(t)) = 0 by optimality of q, and eah q(t) is also an optimalsolution. But the optimum is unique. Hene q(t) = q for all q, i.e. q is invariant.We still need to verify that q(t) is feasible for all t. Aording to the uid equations,_q(t) = ��� �(t)�+[q(t)=0℄If �i� = 1 then _qi�(t) � �i� � �i�(t) = 0:Thus, qi�(t) � qi�(0); similarly for q�j(t). Also, if �ij = 0 then_qij(t) � 0and so (as qij = 0) qij(t) = 0. Thus q(t) is a feasible solution to MWMf-CP(q).()) Now suppose that q is an invariant state. Let q(0) = q. Then, d=dtL(q(t)) = 0. Henethe (4.42) and (4.43) must be equalities, whih implies thatf(q) � � = m(f(q)):Now let r be any feasible solution to MWMf-CP(q) and suppose r 6= q. By Lemma 8, we an



92 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYwrite r = r0 + " where r0 = q + t(�� �):where � is doubly stohasti, t > 0 and " � 0; and either � 6= � or " > 0 in some omponent.Consider the family of states s(u) = q + u(�� �); u 2 [0; t℄giving s(0) = q and s(t) = r0. It is the ase thatdduL(s(u)) ���u=0 = f(q) � (�� �)= f(q) � �� f(q) � �= m(f(q))� f(q) � � by (4.3.3)� m(f(q))�m(f(q)) by deomposing � into permutations= 0:Now, L(q(u)) is stritly onvex as a funtion of u, so if � 6= � then L(r0) = L(q(t)) >L(q(0)) = L(q), and sine L is inreasing, L(r) = L(r0 + ") > L(q). Otherwise � = � and" > 0 in some omponent, so again L(r) = L(r0 + ") > L(q). We have shown that if r 6= qthen m(f(r)) > m(f(q)), i.e. that q solves MWMf-CP(q).Proof of (): q(t) is not invariant , ddt L(q(t)) < 0.(() This is equivalent to the statement that if q(t) is invariant then ddt L(t) = 0, whih is trueby de�nition of invariant state.()) This is equivalent to the statement that q 4= q(t) is not invariant and the derivative isequal to zero. As we argued above, f(q) � � = m(f(q)) and hene q solves MWMf-CP(q). Aswe argued in (a), if q solves MWMf-CP(q) then it is an invariant state. This ompletes theproof of ().Thus, we have proved (a)-() as laimed above.Next we present an alternative haraterization of invariant states. We de�ne MWMf-endstate as follows.De�nition 9 (MWMf-endstate.). A state q is an MWMf-endstate if1. M(f(q))ij = 1 if �ij > 0,



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 932. M(f(q))ij = 1 if both �i� < 1 and ��j < 1,3. qij = 0 if both �i� < 1 and ��j < 1.Note that, for � > 0 in all omponents and f(x) = x, the MWMf-endstate is the sameas MWM+-endstate as de�ned in the previous setion. Next, we state the result that relatesMWMf-endstate and an invariant state of MWMf algorithm.Theorem 15. A state q is an MWMf-endstate if and only if it is an invariant state for MWMfalgorithm.Proof. From Theorem 14, q is invariant if and only if for q(t) = q, ddt L(q(t)) = 0. Henefrom (4.42) and (4.43), q is invariant if and only if f(q) � � = m(f(q)). Hene it is suÆientto prove that q is an MWMf-endstate if and only if f(q) � � = m(f(q)).q is an MWMf-endstate ) f(q) � � =m(f(q)). First writef(q) � � = f(q) � �+ � f(q) � �;where as before � is omplementary matrix and �+ is doubly stohasti, meaning that it hasa deomposition �+ =X�2P�� where P � = 1 and eah � � 0:By property (3) of MWMf-endstate and the property of � that �ij > 0 if and only if �i: < 1and �:j < 1 yields f(q) � � = 0. Hene, we are only required to show f(q) � �+ = m(f(q)) inorder to prove that q is invariant.Consider �+. If �+ij > 0 then there are two possibilities:1. �ij = �+ij > 0 then by property (1) of an MWMf-endstate, M(f(q))ij = 1.2. �ij < �+ij then �ij > 0 in whih ase M(f(q))ij = 1 by property (2) of MWMf-endstate.Thus, �+ij > 0 impliesM(f(q))ij = 1. Now in the deomposition of �+, if � > 0 then �+ij > 0whenever �ij = 1 and so by the above M(q)ij = 1. Thus, if � > 0 then � 2 M(f(q)) byLemma 7, i.e. f(q) � � = m(f(q)). Thereforef(q) � �+ =X�2P�f(q) � � = m(f(q)):Thus, if q is an MWMf-endstate then f(q) � � =m(f(q)).



94 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYq is not an MWMf-endstate ) f(q) � � <m(f(q)). If q is not an MWMf-endstate then oneof the three properties of MWMf-endstate must fail.1. If property (1) of MWMf-endstate fails, then M(f(q))ij = 0 and �ij > 0 for some i; j.Thus �+ij > 0, and so in the deomposition of �+ there must be some � 62 M(f(q))with � > 0. Sine this � is not a maximum weight mathing, f(q) � � < m(f(q)), andso f(q) � � � f(q) � �+ < m(f(q)):2. If property (2) of MWMf-endstate fails, then M(f(q))ij = 0 and �ij > 0 for some i; j.Thus, �+ij > 0 with the same onsequenes as above.3. If property (3) of MWMf-endstate fails, then qij > 0 and �ij > 0 for some i; j. Thusf(q) �� > 0. Also f(q) ��+ � m(f(q)), from the deomposition of �+ and the fat thatf(q) � � � m(f(q)) for all �. Henef(q) � � � m(f(q))� f(q) � � < m(f(q)):From above, if q is not an MWMf-endstate then f(q) � � < m(f(q)).The last result of this setion onerns the speed of onvergene. Its relevane will notbeome lear until we ome to prove a heavy traÆ limit theorem. First some notation. De�neD(q) = fr 2 M + : L(r) � L(q)g:Note that if q(0) = q, then by Theorem 14(a), q(t) 2 D(q). Given q(0) = q, Theorem 14implies that q(t) onverges to an invariant state. Let 1 2 M + denote the matrix with allentries 1. Then D(1) is a losed and bounded (and hene ompat) set in M + . Consider thefollowing de�nitions: I = fq 2 D(1) : �f (q) = qg;and I(Æ) = fq 2 D(1) : 9r 2 I s.t. kr � qk < Æg:Note that both I and I(Æ) \ D(1) are losed and bounded set. Further, I as well as I(Æ)are stritly ontained inside D(1) for small enough Æ. Now onsider a funtion g : M + ! R+



4.3. EQUILIBRIUM ANALYSIS OF FLUID MODEL 95where g(q) = m(f(q))� f(q) � �:Note that, given f and �, g is a funtion on M + and g(q) = � ddt L(q(t)) for q(t) = q. Further,g(q) > 0 for q 2 I(Æ) \ D(1) from Theorem 14. Now g is a funtion and hene it ahievesin�mum inside the losed and bounded set I(Æ)\D(1), whih is stritly positive. Let �(Æ) > 0be this in�mum of g. Finally, de�neT (�) = infft � 0 : q(0) 2 D(1); q(t)��f (q(t)) � �g:Now we state the following result.Lemma 13. For any given � > 0, there exists a Æ(�) > 0 suh thatT (�) � L(1)�(Æ(�)) : (4.44)Proof. Reall de�nition �f (�). The �f (�) is uniformly on a bounded set D(1). Hene, for any� > 0, there exists 0 < Æ(�) � �2 suh that for q1; q2 2 D(1),kq1 � q2k < Æ(�) ) k�f (q1)��f (q2)k < �2 :Consider any q1 2 I(Æ(�)). From de�nition, there exists an r 2 I suh thatkq1 � rk < Æ(�) ) k�f (q1)��f (r)k < �=2: (4.45)But �f (r) = r and Æ(�) < �2 by de�nition. Hene,kq1 ��f (q1)k < �: (4.46)The (4.46) implies that T (�; q) is bounded above by the time it takes for q(t) to reah I(Æ(�))given q(0) = q. Now if q 2 I(Æ(�)) then trivially (4.44) is satis�es. If q =2 I(Æ(�)), then for allt suh that q(t) =2 I(Æ(�)), ddt L(q(t)) = �g(q(t)) < ��(Æ(�)):Sine L(q(t)) � L(q) � L(1), we obtain the (4.45).



96 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAY4.4 Heavy TraÆ and State Spae CollapseIn this setion state our result of State Spae Collapse of IQ Swith operating underMWMf algorithm under Heavy TraÆ regime. We �rst de�ne the Heavy TraÆ saling andsome required notations.
4.4.1 Heavy TraÆ SalingConsider a sequene of IQ swith systems, indexed by r 2 R+ , satisfying Assumptions 1and 2. The arrival rate matrix of rth system, �r, is�r = �� 1r�; (4.47)where � 2 M + is a �xed onstant matrix. The (4.47) suggests that,limr!1�r = �:Additionally, � is suh that one or more of 2n ports (inputs and outputs) are ritially loaded,i.e. jfi : �i: = 1g [ fj : �:j = 1gj 6= 0: (4.48)Let X r(m); m 2 Z+ be the tuple desribing dynamis of the rth system. Under Heavy TraÆsaling, our interest is in studying the following saled quantity.x̂r(t) = X r(r2t)r ; t 2 R+ ; (4.49)where, as before, for any t 2 R+ ,X r(t) = (1� t+ bt)X r(bt) + (t� bt)X r(bt+ 1):Let xr(�) denote the uid saled quantity of rth system, as de�ned in (4.20). Thenx̂r(t) = xr(rt): (4.50)



4.4. HEAVY TRAFFIC AND STATE SPACE COLLAPSE 97In the above notation, we ignore partiular randomness !. When required we will use notationx̂r(t; !).For a matrix q 2 M + , de�ne workload vetor w(q) asw(q) = [q1: : : : q(n�1): q:1 : : : q:(n�1) q::℄:Essentially, the omponents of w(q) to n � 1 row-sum, n � 1 olumn-sum and net sum forthe n� n matrix q. Intuitively, if q is a queue-size matrix for a swith, then the omponentsof the work-load vetor are: work at eah of the n� 1 input ports, work at eah of the n� 1output ports and the total work in the swith.Now we obtain haraterization of the State Spae Collapse under MWMf algorithm. Thefollowing theorem makes the preise statement.Theorem 16. Consider a family of IQ swith systems, indexed by r 2 R+ , satisfying Assump-tion 1-2, equation (4.48) and operating under the MWMf sheduling algorithm satisfyingCondition 1. Let x̂r(�); r 2 R+ be de�ned as in (4.49). Then for any �nite T � 0,jq̂r(�)��f (q̂r(�))jTjq̂r(�)jT _ 1 ! 0; in probability as r !1: (4.51)Here, j � jT denotes sup-norm of a funtion de�ned on [0; T ℄.The Theorem 16 motivates the following de�nition of State Spae Collapse spae ofMWMf algorithms.De�nition 10 (State Spae Collapse Spae). Consider a swith of size n operating underMWMf algorithm under � suh that all input and output ports are ritially loaded. We allq 2 M + an invariant state i� q = �f (q). Corresponding to an invariant state q, the workloadvetor w(q) = [q1�; : : : ; qn�1�; q�1; : : : ; q�n�1; q��℄, is alled feasible workload vetor. The spaeof all feasible workload (� R2n�1+ ) is alled the State Spae Collapse Spae of MWMf algorithmand it is denoted by SSC(n,MWMf).Theorem 16, as stated above, obtains weak state spae ollapse (see Bramson [1998℄for de�nition) for all MWMf algorithm. The state spae ollapse is alled weak, beause thejq̂r(�) ��f (q̂r(�))jT goes to 0 on the sale of (jq̂r(�)jT _ 1). Hene, unless shown otherwise,if jq̂r(�)jT grow to 1, then it is not possible to onlude from Theorem 16 that the state ofthe limiting q̂r(�) lives in the state spae ollapse spae. As we shall see later, this property



98 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYbeomes ruial in obtaining delay optimal algorithm. Motivated by this, we state the followingresult for MWM-� algorithms.Theorem 17. Consider a family of IQ swith systems, indexed by r 2 R+ . Let the arrivalproess be Bernoulli IID in addition to satisfying Assumption 1-2 and equation (4.48). Further,the operates under MWM-� sheduling algorithm for � 2 R+ . Let x̂r(�); r 2 R+ be de�nedas in (4.49). Then for any �nite T � 0,���q̂r(�)��f (q̂r(�))���T ! 0; in probability as r !1: (4.52)4.4.2 Proof of Theorem 16 on Weak State Spae CollapseTo prove Theorem 16, we �rst establish relation between heavy traÆ saling of systemand uid saling of system. Then we use results of setion 4.2 about the equilibrium behaviorof ritially loaded uid model equations to obtain the state spae ollapse haraterization.Heavy TraÆ and Fluid Models. We wish to study the limiting proess x̂(�) over some �nitetime interval [0; T ℄. For the rth system (r 2 R+), the heavy traÆ saled version x̂r(�) isrelated to the uid saled version xr(�) asx̂r(t) = xr(rt):Hene to study the x̂r(�) on interval [0; T ℄, we de�ne the following saled system: for m =0; : : : ; brT  xr;m(t) = (ar;m(t); dr;m(t); qr;m(t); sr;m(t));where ar;m(t) = Ar(tzr;m + rm)�Ar(rm)zr;m (4.53)dr;m(t) = Dr(tzr;m + rm)�Dr(rm)zr;m (4.54)sr;m(t) = Sr(tzr;m + rm)� Sr(rm)zr;m (4.55)qr;m(t) = Qr(tzr;m + rm)zr;m (4.56)



4.4. HEAVY TRAFFIC AND STATE SPACE COLLAPSE 99and zr;m = jQr(rm)j _ r: (4.57)To study the x̂r(�) over �nite interval [0; T ℄, that is, to study the original system X (�) overtime interval [0; r2T ℄, we study xr;m(�) over a �nite interval [0; L℄; L � 1, for all m � brT  asthis range overs the whole interval [0; r2T ℄. The xr;m(�) is saled like uid saling. We wishto show that any limit point of xr;m(�) as r " 1 obeys uid model equations (4.12)-(4.14)and (4.19). Now sine �r ! � and for every r 2 R+ , rth system satis�es Assumption 1, weobtain limr!1ar;m(t) = �t; almost surely. (4.58)Given (4.58) and noting that zr;m � r, it is easy to hek that xr;m(�) satis�es equations(4.29)-(4.31). This leads to the result similar to Lemma 4.Lemma 14. Given � > 0 and L, for large enough r there exists a solution of uid modelequations, xm(�), suh that Pr(jxr(�) � xm(�)jT > �) < �:Next we state useful properties of xr;m(�) as follows.Lemma 15. Given � > 0, L and T , for any m < rT let xm(�) be one of the limit of xr;m(�).Then for large enough r and T (�) � t � L,Pr(jqr;m(t)��f (qr;m(t))j > 3�) < �: (4.59)Further, under Assumption 2,Pr(jqr;0(�)��fqr;0(�)jL > 3�) < �: (4.60)Proof. We �rst prove (4.59). From ontinuity of 4f , for � > 0 there exists Æ(�) > 0 suhthat for any q1; q2 � L ? 1,jq1 � q2j < Æ(�) ) j4f (q1)�4f (q2)j < �: (4.61)



100 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYFrom Lemma 14, for r large enough there exists a solution to uid model equations, qm(�),so that Pr(jqr;m(�)� qm(�; !)jL > minf�; Æ(�)g) < �: (4.62)Now, by de�nition qr;m(0) � 1 and hene qm(0) � 1. Hene by Lemma 13, for t � T (�),jqm(t)�4f (qm(t))j � �: (4.63)From (4.62) and (4.63) we obtain that for t � T (�),Pr(jqr;m(t)�4f (qm(t))j > 2�) < �: (4.64)Combining (4.61), (4.62) and (4.64), we an obtain (4.59).Next, we prove (4.60). From Assumption 2, the system starts empty, that is, qm(0) =4f (qm(0)) = 0. Hene, from (4.59) we trivially obtain (4.60).
Towards The Completion of Proof. Now, we use properties of xr;m(�) to study x̂r(�) and obtainthe proof of Theorem 16. We �rst state the following Lemma whih is a diret onsequeneof Lemma 15.Lemma 16. Fix � > 0, L and T . For r 2 R+ and m � brt, de�ne yr;m = zr;m=r. Then, forlarge enough r Pr(jq̂r(t)��f q̂r(t)j > 3�yr;m) < �; (4.65)for yr;mT (�) +mr � t � Lyr;m +mr :Further, under Assumption 2,Pr(jq̂r(�)��f q̂r(�)j�L > 3yr;0�) < �; (4.66)where �L = Lyr;0=r.



4.4. HEAVY TRAFFIC AND STATE SPACE COLLAPSE 101Proof. The proof follows from Lemma 15. From de�nitionqr;m(t) = 1yr;m q̂r� tyr;m +mr � : (4.67)The Condition 1 regarding weight funtion f(�) and the struture of the optimization problem�f (�) implies �f (�q) = ��fq; for any � 2 R+ : (4.68)Now the statement of Lemma 16 follows from (4.67), (4.68) and Lemma 15.Next, we use Lipshitz property of qr;m(�) to obtain a bound on the rate at whih yr;m aninrease.Lemma 17. For r 2 R+ and m � brT yr;m+1 � 2yr;m: (4.69)Proof. From de�nition (see (4.57)), yr;m = zr;m=r � 1:By the property of a swith that at most one arrival an happen to a queue in a given timeslot, we obtain the following. yr;m+1 = Qr(rm+ r)r _ 1� Qr(mr) + rr _ 1� �Qr(mr)r _ 1�+ 1= yr;m + 1� 2yr;m: (4.70)



102 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYFor a given t 2 [0; T ℄ and r 2 R+ , de�ne mr(t) as follows:mr(t) = arg minm�0�mr � t � Lyr;m +mr � : (4.71)Next we obtain an estimate on mr(t).Lemma 18. Fix � > 0; L, and T and Æ � 1. Then for large enough r and t 2 h ÆLyr;0r ; T i,rt�mr(t) � ÆLyr;mr(t)2 : (4.72)Proof. For t 2 h ÆLyr;0r ; Lyr;0r i, by de�nition mr(t) = 0, whih satis�es (4.72). For t > Lyr;0=r,it follows that mr(t) � 1. By de�nition of mr(t), we obtainrt� (mr(t)� 1) > Lyr;mr(t)�1: (4.73)From Lemma 17, yr;mr(t) � 2yr;mr(t)�1: (4.74)From (4.73) and (4.74), we obtainrt�mr(t) > Lyr;mr(t)2 : (4.75)This ompletes the proof of Lemma 18.Now we are ready to omplete the proof of Theorem 16.Proof. (Theorem 16.) Let T be given. Then for any � > 0, hoose L satisfyingL > 2T (�)Æ :From Lemma 18 and given that L > 2T (�)Æ for all t 2 h ÆLyr;0r ; T i,rt�mr(t) � ÆLyr;mr(t)2� T (�)yr;mr(t): (4.76)



4.4. HEAVY TRAFFIC AND STATE SPACE COLLAPSE 103From de�nition jq̂r(�)jT _ 1 � yr;m; 8m: (4.77)From (4.76),(4.77) and Lemma 16 and we obtainPr(jq̂r(t)�4f (q̂r(t))j > 3�(jq̂r(�)jT _ 1)) < �; (4.78)for t 2 [ÆLyr;0=r; T ℄. Further, when Assumption 2 holds, by Lemma 16 the (4.78) holds fort 2 h0; Lyr;0r i. Now, [0; Lyr;0=r℄[ [ÆLyr;0=r; T ℄ = [0; T ℄. This ompletes the proof of Theorem16.
4.4.3 Proof of Theorem 17: on Strong State Spae CollapseNow, we prove Theorem 17 using some results of Chapter 2 and Theorem 16. Now,in order to prove Theorem 17, given the result of Theorem 16, we only need to show thatlimr!1 jq̂r(�)jT = O(1) in probability. For ease of exposition, we present arguments for � = 1.Exatly the same arguments will work for any positive �nite � 2 R+ .Consider the ase when � = 1. Consider rth system for some large r. Lets go bak tooriginal time-sale from heavy traÆ saling. Consider time interval [0; dr2T e℄. The arrivalrate to the system is �(r) = � � 1r�. Hene, the maximal net load is ��(r) = 1 � �(1=r).Let the Qr(m) denote the queue-size matrix at time m 2 [0; dr2T e℄. To show, jq̂r(�)jT isO(1), it is suÆient to show that the maximum queue-size attained in the interval [0; dr2T e℄ isO(r) (see de�nition (4.49)). Hene, next we show that under Bernoulli IID traÆ with arrivalrate-matrix �(r) suh that ��(r) = 1��(1=r), the maximum queue-size at any queue is O(r)with probability 1� o(1) (where probability saling is in terms of r).Reall proof of Theorem 1 of Chapter 2. The proof used quadrati Lyapunov funtion,L(Q(m)) =Pi;j Q2ij(m). (Here, we drop referene to r in the notation Qr(m) so as to avoidpossible onfusion between exponent 2 and index r.) The inequality (2.16) is reprodued hereas follows. E[L(Q(m+ 1))� L(Q(m))jQ(m)℄ � �2(1� ��)n kQ(m)k1 + 2n: (4.79)



104 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYLet Y (m) = L(Q(m)). Now, by non-negativity of eah of Qij(m),Xi;j Qij(m) � 0�Xi;j Q2ij(m)1A0:5 : (4.80)Now, (4.79), (4.80), (1 � ��(r)) = �(1=r) and notation Y (m) = L(Q(m)), give us thefollowing. E[Y (m+ 1)℄ � E[Y (m)℄� 2nrpY (m) + 2n: (4.81)Now, ignoring the addition term in (4.81), essentially Y (m) is a positive super-martingale (fortehnial ompleteness, one an de�ne preise super-martingale asX(m) = Y (m)1fY (m)>2n4r2g+2n4r21fY (m)�2n4r2g). Hene, by Dubin's inequality(see Chapter 4, Durrett [1995℄) for upross-ing of interval [100n4r2;K100n4r2℄ (applied to super-martingale) starting from Y (0) = 0, givesus that the number of uprossing is at least 1 with probability at most 1=K. That is, given� > 0, the maximum value of Y (m) over interval [0; dr2T e℄ is no more than 100n4r2� withprobability at least 1� �. That is,Pr� max0�m�dr2T e Y (m) = O(r2)� � 1� �; (4.82)for any � > 0. By de�nition, Y (m) =Pi;j Q2ij(m). From the well-known relation between `2and `1 norm, n2Y (m) �Pi;j Qij(m). Hene, we obtain thatPr0� max0�m�dr2T eXi;j Qij(m) = O(r)1A � 1� �; (4.83)This in turn implies that, Pr (jq̂r(�)jT = O(1)) � 1� �: (4.84)This ompletes the proof of Theorem 17 for � = 2. The main ingredient used in this proof isthe Lyapunov drift equation to obtain super martingale. Suh Lyapunov drift is available forall MWM-� by design. Hene, using arguments as above, Theorem 17 an be proved for all� 2 R+ .



4.5. INFERRING PERFORMANCE VIA STATE SPACE COLLAPSE 1054.5 Inferring Performane via State Spae CollapseThe Theorem 16 suggests that under heavy traÆ saling, the saled version of the systemis always in an MWMf endstate. That is, given input and output workload, the queue-sizesare determined by the Lifting Map, �f (�). Thus, in order to determine state of the swith, it issuÆient to trak the input and output workload vetors. This simpliity in the desription ofthe system opens up the possibility of making more re�ned statement about the performane ofalgorithm. To explain this subtle issue, we review some of the well known tehniques and theirfailure to study performane of sheduling algorithm. Then, we will use the state spae ollapseproperty of MWM-� algorithm to obtain the haraterization of a delay optimal algorithm (atthe heavy traÆ sale). We �nd that MWM-�, as � ! 0+, is an optimal algorithm. Weobtain desription of this algorithm at the atual time sale and �nd it very similar to theLongest Port First algorithm proposed by Mekkittikul and MKeown [1998℄. We also �nd thatMWM-1 algorithm is not optimal. Finally, we use the state spae ollapse haraterization toprovide an explanation of Conjeture 1 of Chapter 1.4.5.1 Failure of Known MethodsA large body of literature has been developed for more than past 40 years to understandperformane of queueing systems or networks in a stohasti setting. The motivation ofanalyzing networks in most generality has led to a beautiful development of stohasti networkstheory. The tools developed in stohasti networks theory have been suessful in manysituations to analyze performane of system in terms of throughput (e.g. uid model tehnique,Lyapunov funtion theory, et.) and delay (e.g. queueing theory, theory of large deviations,et.).For the swith system, traditional methods like Lyapunov funtion theory and uid modeltehnique have been suessful as shown in this thesis in the hapters 2, 3 and 4 till now.Thus, as far as throughput performane of algorithms is onerned, traditional approaheshave been extremely suessful.The delay analysis of swith is not well understood. We obtained bounds on average delay inhapter 2 with the help of Lyapunov funtions for Bernoulli IID arrival proess. Unfortunately,as shown in setion 2.3 of hapter 2, these bounds are not tight. Hene, they do not allowomparison of algorithms based on delay performane nor allow haraterization of optimalalgorithm.



106 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYA standard queueing theory approah is useful to analyze delay of a queue when both arrivaland servie distributions are known. In the ase of swith, arrival proess is external and henewell known. But, the servie distribution for any queue strongly depends on the shedulingalgorithm and the deision of sheduling algorithm depends on the whole system. This makesit impossible to haraterize the servie distribution indued by the algorithm. Hene, standardapproah does not work to analyze queueing delay.In the ontext of ATM networks, theory of Large Deviations has been extremely suessful(see books by Dembo and Zeitouni [1998℄ for theory of Large Deviations and book by Ganeshet al. [2004℄ for its appliation to the queueing systems). The main reason for the suesswas the possibility of deoupling large systems into small system. For example, in ase of ann port Output Queued swith, the system an be seen as made of n independent single FIFOqueues with deterministi servie rate. Hene, suh system an be analyzed. For Input Queuedswith, due to dependenies indued by algorithm, suh deomposition is not possible.In stohasti networks, the tool of stohasti oupling has been very well exploited toompare performane of two systems. Suh results do not haraterize exat performane butprovide relative behavior. Though the results are weaker than exat performane harateri-zation, they an be possibly useful in ontext of swith due to their generality of appliation.However, obtaining suh oupling arguments in the ontext of swith requires one to studythe struture of the system in a great detail. We �nd it very diÆult to apply diretly on theatual system.Instead, in the subsequent setions, we apply a modi�ed stohasti oupling to haraterizeoptimal algorithm as well as ompare performane of algorithms by looking at the system inthe heavy traÆ sale. The system in heavy traÆ are easy for this purpose is purely beauseof their state spae ollapse property or equivalently possibility of desribing the omplete stateof the system only via input-output workload vetors.4.5.2 An Optimal AlgorithmIn this setion, we haraterize an optimal algorithm at the heavy traÆ sale. For thispurpose, we will fous on studying state spae ollapse of MWM-� algorithms. We assumethat all input and output ports are ritially loaded. That is,�i� = ��j = 1; 1 � i; j � n:



4.5. INFERRING PERFORMANCE VIA STATE SPACE COLLAPSE 107For simpliity of notation, in the rest of the setion, we use q(t) in plae of q̂(t). Now, wede�ne an optimal algorithm at the heavy traÆ sale.De�nition 11 (Optimal Algorithm). An algorithm A is alled optimal at heavy traÆ saleif under idential arrivals the saled workload vetor w(q(t)) is omponent-wise no more thanthe sale workload vetor of any other algorithm.Next, we state the following haraterization of an optimal algorithm.Theorem 18. The limiting algorithm lim�!0+ MWM-� is an optimal sheduling algorithm inthe sense of De�nition 11 for any n� n swith.To prove the Theorem 18, we will require some Lemmas. Let the limiting algorithmlim�!0+ MWM-� be denoted by A?.We reall some notations before presenting next few Lemmas. In the ontext of n � nswith, let q 2 M + be the queue-size and w(q) 2 R2n�1+ be orresponding workload vetore,where w2n�1(q) = q��;wi(q) = qi�; 1 � i < n; andwj+n�1 = q�j; 1 � j < n:Now, we state the Lemma about State Spae Collapse haraterization of A?.Lemma 19. For any n�n swith, the state spae ollapse spae of algorithm A? is a ompletespae, that is,SSC(n, A?) = fw = (w1; : : : ; w2n�1) 2 R2n�1+ : wi > 0; 8ig: (4.85)Proof. We prove this by ontradition. Suppose the statement of Lemma is not true. Thatis, there exists a workload vetor w = (w1; : : : ; w2n�1) satisfying onditions of (4.85) whih isnot feasible as de�ned in De�nition 10. That is, for any matrix q 2MatrieP with w = w(q)q 6= �A?(w(q));where �A?(�) denotes the lifting map of algorithm of A?. As shown before, there exists asolution to the onvex optimization problem q� = �A?(w) (for ease of understanding, treatA? as an MWM-� algorithm with a �xed but very small �.)



108 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYNow, w(q�) 6= w. In partiular, it must be larger than w in at least two of the omponents(one row and one olumn). Without loss of generality, let w(q�)1 > w1; w�n > wn andw(q�)i � wi otherwise. Now it must be the ase that q�11 = 0. If not, then we an redue q�11either till it beomes 0 or w�1 = w1 or w�n = wn. Thus, q�11 = 0. Now due to w being positivein all omponents, there exists i; j suh that q�1i; q�j1 > 0. Without loss of generality, leti = j = 2. Now, sine q� satis�es the onvex optimization problem, A?-CP(q�) orrespondingto the MWM-0+-CP(�), by Theorem 15 it must be the ase that the weight of all mathingsare equal.Under algorithm A?, the weight of entry (i; j) is lim�!0+ �q�ij��. Now for very small �,�q�ij�� � 1 + � log q�ij: (4.86)Thus, for � ! 0+, essentially the weight is 1 if entry is non-zero and zero otherwise. Nowonsider two mathings: � and �̂ where �(k) = k;8k, while �̂(1) = 2; �̂(2) = 1; �̂(k) =k; k � 3. Then, it is easy to see that the weight of � is stritly smaller than the weight of �̂sine q�11 = 0 while q�12; q�21 > 0. This is a ontradition.Thus, the original assumption of w(q�) 6= w is false. That is, w is a feasible workloadvetor under algorithm A?. This ompletes the proof of Lemma 19.As an immidate orollary of Lemma 19, we obtain the following (whih we state as aLemma).Lemma 20. Under A? algorithm, let q be an invariant state. Then,qij > 0 , qi� > 0 and q�j > 0: (4.87)Proof.()) This is a straightforward impliation: if qij > 0 then qi�; q�j > 0.(() This follows using very similar arguments as used to prove Lemma 19.Lemma 21. Let q be suh that all input workloads and output workloads are non-zero, thatis, qi� > 0; 8i; q�j > 0; 8j: (4.88)Then, under A? all input and output workloads are served at unit rate.



4.5. INFERRING PERFORMANCE VIA STATE SPACE COLLAPSE 109Proof. From Lemma 20, under (4.88), all entries are stritly positive. Hene, whatever math-ing A? hooses to serve, its never going to idle. Hene, by the property of mathing, eahinput is served at unit rate as well as eah output is served at unit rate.Lemma 22. Under heavy traÆ saling, for any sheduling algorithm, the limiting queue-sizesare suh that all input and output workloads are non-zero with probability 1.Proof. Consider any input i. Under heavy traÆ saling, the limiting arrival proess has rate1. Under any sheduling algorithm, the net servie rate is at most 1. Thus, workload at inputi, qi� an be lower bounded by that of an �=D=1 queue with deterministi servie of rate 1. Thewell known results in queueing theory imply that the queue-size of suh a queue under heavytraÆ saling (equivalently, when arrival rate is 1) beomes a reeted Brownian motion. Forsuh reeted Brownian motion, the set of time when it is 0 is measure 0. That is, withprobability 1, the queue-size of suh a queue is non-zero. That is, the workload at input i isnon-zero with probability 1.The similar argument applies for all output workload. This ompletes the proof of Lemma22.Proof of Theorem 18. Consider an n � n swith under heavy traÆ saling. By Lemma 22,under any algorithm the input and output workloads are non-zero with probability 1. Giventhe swith onstraints, no algorithm an serve input workload or output workload at rate morethan 1. In partiular, from Lemma 21, A? serves all input and output workloads at rate 1 withprobability 1. Hene, the input and output workload are minimal under A? algorithm at all thetime under heavy traÆ saling. This ompletes the proof of Theorem 18.4.5.3 MWM-1 is Not OptimalThis setion is dediated to the following theorem, stating that MWM-1 is not optimal.Theorem 19. The algorithm MWM (i.e. MWM-1) is not optimal.To prove the Theorem 19, we need the following state spae ollapse haraterization ofMWM-1.



110 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYLemma 23. For any n� n swith,SSC(n,MWM-1) = fw 2 R2n�1+ : wi + wj+n�1 � w2n�1n ; 1 � i; j � n� 1;(n� 1)w2n�1n � n�1Xk=1wk+n�1 � wi; 1 � i � n� 1;(n� 1)w2n�1n � n�1Xk=1wk � wj+n�1; 1 � j � n� 1;wk � w2n�1; 1 � k � 2n� 1g: (4.89)Proof. Let w 2 R2n�1+ be a workload vetor for a n � n swith. For its feasibility underMWM-1, there must exists a n� n positive matrix q 2 M + suh that��(q) = q and for 1 � i � n� 1, qi� = wi; q�i = wi+n�1; q�� = w2n�1:This implies that given net-work w2n�1, for any feasible w, the orresponding invariant q � (0).Thus, to haraterize SSC(n,MWM-1), we need to haraterize q in terms of w and obtainthe onditions for it being a positive matrix.Given w, from Theorem 15, if � > 0 omponent-wise, the invariant state has the prop-erty that all mathings are of equal weight. Given workload vetor w, the weight of eahmathing will be w2n�1=n. Now, a simple omputation will lead to the following positivityharaterization qij � 0 , qi� + q�j � w2n�1n ; 8 i; j: (4.90)Sine q is an invariant state orresponding to the workload vetor w, it must be that w(q) = w.Hene, by de�nition qi� = wi and q�j = wj+n�1 for 1 � i; j � n � 1; qn� = w2n�1 �Pn�1k=1 wk and q�n = w2n�1 �Pn�1k=1 wk+n�1. Now, replaing these in (4.90) essentially givesthe haraterization of SSC(n,MWM-1) as desribed in (4.89).This ompletes the proof of Lemma 23.Proof of Theorem 19. The Lemma 23 suggests that the SSC(n,MWM-1) is a stritly smallersub-spae of R2n�1+ . There exists arrival proess suh that under algorithm A?, the workloadvetor an take value outside of SSC(n,MWM-1). The MWM-1 algorithm, in suh onditionswill retain its workload vetor inside SSC(n,MWM-1) by idling on some port. Thus, losing



4.5. INFERRING PERFORMANCE VIA STATE SPACE COLLAPSE 111performane. This proves that MWM-1 algorithm will not be optimal as de�ned in De�nition11. This ompletes the proof of 19.4.5.4 An Explanation of Conjeture 1In this setion, we o�er an explanation for the Conjeture 1. In order to do so, we studythe state spae ollapse spae of MWM-� algorithms. We �rst state result omparing thestate spae ollapse spae of MWM-� algorithms for 2� 2 swithes. We strongly believe thatthe following result hold in general for any n� n swith.Lemma 24. For �1; �2 2 R+ , if �1 < �2 thenSSC(2;MWM-�2) � SSC(2;MWM-�1): (4.91)Proof. Let w = (w1; w2; w3) 2 R3+ be a workload vetor for a 2� 2 swith. For its feasibilityunder MWM-�, there must exists a 2� 2 positive matrix q 2 M + suh that��(q) = q and q1� = w1; q�1 = w2; q�� = w3:This implies that given net-work w3, for any feasible w, w1; w2 � w3 and the orrespondinginvariant q � (0). Now q � (0) further onstraints the possible values w1; w2 an take, givenw3. Hene to haraterize SSC(2,MWM-�), we need to �rst haraterize q in terms of w andobtain the onditions for it being positive matrix.Given w, from Theorem 15, if � > 0 omponent-wise, the invariant state has the propertythat both mathings are of equal weight, where weight is �th power of queue-size. Givenworkload vetor w, the input workloads are w1� = w1 and w2� = w3�w1 while output workloadsare w�1 = w2 and w�2 = w3 � w2. This leads to the following positivity haraterizationqij � 0 , wi� + w�j + �w�i� + w��j�1=� � w3: (4.92)Thus, inequalities on the right hand side of (4.92) haraterize the SSC(2,MWM-�). Now,onsider the following known analysis result.Lemma 25. For any x; y 2 R+ and any � � 1,�x� + y��1=� � x+ y: (4.93)



112 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYNow onsider 0 < �1 < �2. Then, for any a; b 2 R+ ,(a�2 + b�2)1=�2 � (a�1 + b�1)1=�1 : (4.94)The (4.94) follows from Lemma 25 by taking x = a�1 and y = b�1 . From (4.92) and (4.94),it is easy to onlude thatSSC(2;MWM-�2) � SSC(2;MWM-�1):This ompletes the proof of the Lemma 24.The Lemma 24 suggests that as � inreases the state spae ollapse spae dereases. Nowthe state of the system (i.e. workload vetor) roams inside the state spae ollapse spae.Every time it hits the boundary, the swith algorithm selets mathing so that the state of thesystem remains inside the state spae ollapse spae by idling on some port. This intuitivelymeans that given the same arrival proess, the swith is more likely to idle for smaller statespae ollapse spae. Hene, from the result of Lemma 24, the swith performane shouldbeome worse as � inreases under the MWM-� algorithm. This o�ers an intuitive explanationto the Conjeture 1 for a 2� 2 swith. Next, we make this intuition rigorous.Ideally, we would like to obtain the result of the following type: the workload of algorithmMWM-�1 is dominated by the workload of MWM-�2 algorithm for �1 < �2 under heavy traÆsaling. Suppose the following was true: the feasibility of all input workloads only dependedon the value of other input workloads (similarly for output workload). Then, using statementof Lemma 24, obtaining the ideal result is a straightforward oupling.Unfortunately, as shown in Lemma 24, the state spae ollapse haraterization is suhthat feasibility of an input workload depends on other input as well as output workloads.Hene, obtaining a oupling is very hard. Hene, in order to ompare algorithms, we onsidera spei� arrival proess with arbitrary starting position. We desribe the setup next.Consider a 2 � 2 swith. Let the arrival proess be determisti with rate � suh that allports are ritially loaded and �ij > 0. For 2� 2 swith, suh a � an be written as� = a�1 + (1� a)�2; a 2 (0; 1);where �1 serves queues (1,1) and (2,2) while �2 serves queues (1,2) and (2,1). Let the initialstate of the swith be any w 2 R3+ . Now, let the swith be operating under algorithm MWMf.



4.5. INFERRING PERFORMANCE VIA STATE SPACE COLLAPSE 113If w 2 SSC(2,MWMf) then the intial swith-state q is suh that q = �f (q) and w(q) = q. Ifw =2 SSC(2,MWMf), then q is the solution to the following optimization problem.minq02M+ max�2P � � f(q0)suh that w(q0) = w:Now, we state the following theorem omparing MWM-� algorithms.Theorem 20. Under the setup desribed above, the workload vetor under algorithm MWM-�1 is omponent-wise dominated by the workload vetor under algorithm MWM-�2 for 0 <�1 < �2.Proof. For ease of exposition, the proof if presented for �1 = 1 and �2 = 2. The argumentsan be easily extended for any 0 < �1 < �2.Consider a w 2 R3+ . From Lemma 24, there are three possibilities:(1) w 2 SSC(2,MWM-1) and w 2 SSC(2,MWM-2).(2) w 2 SSC(2,MWM-1) and w =2 SSC(2,MWM-2).(3) w =2 SSC(2,MWM-1) and w =2 SSC(2,MWM-2).In what follows, we onsider the situation where w1 � w2 � w3=2. All other (total 8)situations an be redued to this by renumbering input/output and hanging input/outputde�nition. Let u(t) and v(t) denote the workloads at time t under algorithms MWM-1 andMWM-2 respetively, with u(0) = v(0) = w. Reall that both reeive arrivals at deterministirate � = a�1 + (1� a)�2; a 2 (0; 1).Case (1). In this ase, the swith starts in the invariant state for both MWM-1 and MWM-2.Hene, by Theorem 14, it remains in the same state forever, that is, u(t) = v(t) = w for allt � 0.Case (2). In this ase, the swith starts in the invariant state for MWM-1 and hene u(t) = wfor all t � 0. On the ontrary, for MWM-2, the swith starts in non-invariant state. As perabove setup, the intial swith state q orresponding to w is suh that it has a unique maximumweight mathing. Due to w1 � w2 � w3=2, �1 will be the maximum weight mathing andorresponding initial state has q11 = 0. Now, MWM-2 will serve �1 at unit rate till bothmathings beome of equal weight. During this time, (i) MWM-2 idles at q11 for (1 � a)fration of the time sine � = a�1 + (1 � a)�2, (ii) MWM-2 inreases v1(t); v2(t) at rate



114 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAY(1� a), and (iii) MWM-2 inreases v3(t) at rate 1� a. Now, on reahing invariant state, theMWM-2 retains this invariant state from then on. Thus, under this ase, u(t) < v(t) for allt > 0.Case (3). In this ase, both algorithms start with initial state that is non-invariant. Bothalgorithms have �1 as unique maximum weight mathing in this initial state and both algorithmsserve �1 at unit rate till they reah invariant state. During this time, both algorithms (i)idle at q11 for (1 � a) fration of the time sine � = a�1 + (1 � a)�2, (ii) they inreaseu1(t); u2(t); v1(t); v2(t) at rate (1 � a), and (iii) inreases u3(t); v3(t) at rate 1 � a. Thus,given u(0) = v(0) = w, both algorithms hange their workload u(t); v(t) in the same diretion.Now, by Lemma 24, SSC(2,MWM-2) � SSC(2,MWM-1):Hene, it must be the ase that u(t) reahes SSC(2,MWM-1) quiker than v(t) reahingSSC(2,MWM-2). Let T1 be the time when u(t) reahes SSC(2,MWM-1). Then, we obtainthat, u(t) = v(t); t � T1; and u(t) < v(t); t > T1.Thus, as shown in ases (1), (2) and (3), u(t) � v(t); for all t � 0 under any initialworkload w 2 R3+ . This ompletes the proof of Theorem 20.4.6 Chapter Summary and DisussionThis hapter was dediated to the study of throughput and delay property of generalizedMaximum Weight Mathing algorithm, denoted by MWMf.We obtained haraterization of all stable weight funtions f . We used uid model teh-niques and Lyapunov funtions theory to analyze throughput of MWMf algorithms. Thethroughput results suggest that a large lass of algorithms provide optimal throughput.This naturally led us to the following question:whih, among all of these throughput op-timal MWMf, is a delay optimal algorithm?. The traditional methods failed in answering thisquestion. In searh of an answer to the above question, we studied the IQ swith under heavytraÆ saling. We obtained the state spae ollapse property for MWMf algorithm via �xedpoints of equilibrium uid model equations. As an aside, we note that the results on equilibriumuid model equations revealed interesting properties of these mathing algorithms.Interestingly, the state spae haraterization of MWM-0+ algorithm allowed us to proveits optimality. Now, the desription of MWM-� algorithm for all � > 0 remains the samefor the system operating at the heavy traÆ sale (or uid sale) and the disrete sale.



4.7. BIBLIOGRAPHIC NOTES 115The approximation (4.86) suggests that, MWM-0+ must do the following: among all possiblemaximum size mathing, hoose the maximum weight (weight is logarithm of queue-size)maximum size mathing. Now, at disrete sale, the queue-sizes are always integer. Further,if queue-sizes are assumed to be bounded above by some onstant, then there exists a smallenough � suh that the above desription beomes exat.This also reminds us of the Longest Port First (LPF) algorithm propose by Mekkittikuland MKeown [1998℄. The LPF algorithm hooses the Maximum Weighted Maximum SizeMathing where weight of an edge (i,j) is the sum of the workload at input i and output j.Based on this, we believe that the Longest Port First algorithm is an optimal algorithm. ThediÆulty in proving this statement is of the tehnial form: the desription of LPF is not easyfor uid model analysis as it involves modeling Maximum Size Mathing.In addition to identifying the optimal algorithm, we used the method to demonstrate thatthe usual Maximum Weight Mathing algorithm is not optimal. This falsi�ed one of thelong standing folk-fore in the swithing ommunity. We also used the methods to provideexplanation to the observation of by Keslassy and MKeown [2001a℄ noted as Conjeture 1in the beginning of the thesis.We believe that the method of this hapter are quite general. In partiular, we believethat methods an be extended to a large lass of sheduling problems where "MWM-type"algorithms are throughput optimal algorithms. For example, framework of Radio-hop networkused by Tassiulas and Ephremides [1992℄. In general, the results of this hapter leads to thefollowing intuitive understanding of optimality of algorithms: an optimal algorithm is the onethat has maximal state spae ollapse spae so as the idling in the system is minimized.4.7 Bibliographi NotesA part of results of Setion 4.2 are published by Shah [2001℄. The results of the Setions4.3, 4.4 and 4.5 are part of a preprint by Shah and Wishik. These results motivated byompanion papers by Bramson [1998℄ and Williams [1998℄.The uid model for a swith was �rst developed by Dai and Prabhakar [2000℄. They usedthe uid model to analyze throughput of MWM and Maximal Mathing algorithms. Fluidmodel tehnique has been very well developed and used in various ontext. See noted byDai [1999℄ for a detailed exposition on this subjet. The work by Stolyar [2004℄ studied ainput queued type swith under heavy traÆ. This work restrits the number of port that are



116 CHAPTER 4. FLUID MODELS, HEAVY TRAFFIC AND DELAYritially loaded to one. This, in turn, obtains one-dimensional state spae ollapse spae forall algorithms and hene an not di�erentiate performane of MWMf algorithms for di�erentweight funtions.The state spae ollapse phenomenon was �rst observed by Whitt [1971℄. A series ofresults were obtained on heavy traÆ analysis of basi queueing systems in the early 1970s,notably by Iglehart and Whitt [1970a℄, Iglehart and Whitt [1970b℄, Iglehart and Whitt [1971℄.This led to a wonderful development of theory of heavy traÆ for omplex queueing systems.For example, works by Harrison [1988℄, Harrison [1995℄, Harrison and Williams [1992℄ andReimann [1984℄. A good referene for the early development of the heavy traÆ theory is thebook by Harrison [1985℄. The results of Bramson [1998℄ and Williams [1998℄ have provideda standard tehnique to obtain state spae ollapse haraterization of systems under heavytraÆ saling. They pioneered the use of equilibrium uid model to obtain the state spaeollapse property.



CHAPTER 5
Conlusions and Future Work

This thesis was about desing and analysis of sheduling algorithms for the IQ swithes.The memory bandwidth requirement is beoming a major bottlenek in designing high-speedswithes. Due to low memory bandwidth requirement, the IQ swith arhiteture is urrentlyvery popular for designing high speed swithes. But, IQ swithes require good sheduling algo-rithm in order to provide good performane. Implementation onerns make simple algorithmsdesirable. But if algorithm is too simple, it may perform rather poorly. Thus, one is requiredto resolve the tension between implementability and performane of sheduling algorithm.Motivated by this hallenge, one part of this thesis (Chapter 3) provided a suite of simpleto implement high performane sheduling algorithms { APSARA, LAURA and SERENA.These algorithms were based on novel design ideas like (i) use of information from past, (ii)use of arrival information, (iii) exploiting problem struture (Merge proedure) and (iv) useof parallelism for searh in the spae of mathings; along with the well-known tehnique ofrandomization. We proved that the proposed algorithms provide 100% throughput and havelow delay. Our simulations showed that they perform very ompetitively relative to knowngood algorithm, MWM. We disussed the implementation details of this algorithm and �ndthat algorithms like APSARA and SERENA are implementable in urrent swithes in ore-routers. 117



118 CHAPTER 5. CONCLUSIONS AND FUTURE WORKThe seond part of this thesis presented novel analysis methods for sheduling algorithms.In Chapter 2, we analyzed throughput and delay property of MWM and its approximations usinga method based on Lyapunov funtions. These methods, though appliable to Bernoulli IIDtraÆ only, provide a great insight and useful bounds on performane of algorithms. Motivatedby the onsideration of general distributions for arrival proess, in the Setion 4.2 of Chapter4, we used uid models to analyze throughput of algorithms. In partiular, we showed thata large lass of MWM-type algorithms have optimal throughput. But, they have di�erentdelay property. Though, theoretial studies have mainly foused on analyzing throughput ofalgorithms, delay or queue-size is a very important metri. In pratie, routers have �nitebu�ers. Hene, it is possible that among two algorithms, an algorithm with theoretiallyhigher throughput (when bu�er-size is in�nite) may provide lower throughput ompared tothe other algorithm in the presene of �nite bu�er! For example, see Figure 3.1 of Chapter 3and ompare performane of stable Algo2 with un-stable iSLIP algorithm at load � = 0:5 andbu�er-size of 1000.This motivated us to study the following question: what is a delay optimal algorithm?,and an we ompare performane of algorithms in terms of delay? Traditional methods werenot useful in answering these questions. We developed a new approah based on heavy traÆtheory to obtain haraterization of a delay optimal algorithm. We found that the folk-lore of Maximum Weight Mathing being optimal is false. Further, our results provided anexplanation to an intriguing empirial observation made by Keslassy and MKeown [2001b℄about monotoniity in the delay property of MWM-� algorithms. Separately, our results onheavy traÆ analysis of swithes are of interest in their own right.5.1 Future WorkThis thesis brings us to a point from whih we an follow two seemingly di�erent paths: (i)Implementation of algorithms in atual swithes, and (ii) Use and further development ofanalyti methods of this thesis.5.1.1 ImplementationAlgorithms desribed in these thesis are very good in performane, veri�ed using theoryand via simulations. The laim, whih we made repeatedly in this thesis, that still remains



5.1. FUTURE WORK 119to be veri�ed is about their implementability. We briey disuss possible appliation of thesealgorithms.The main feature of APSARA algorithm is the possibility of parallel implementation. Itis very well suited for swithes with very large number of ports, sine in suh a situationdesigning entralized sheduler is almost impossible. A possible appliation of this algorithman be sheduling in swithes for large storage-area networks.Among SERENA and LAURA algorithms, due to simpliity, we reommend SERENA forthe purpose of implementation. For simple implementation of Merge proedure, some formof entralized o-ordination is neessary. This makes SERENA partiularly well suited for veryhigh speed swithes with fewer ports.5.1.2 Analyti MethodThough this thesis disusses the design and analysis methods in the ontext of swithsheduling, we believe that they are quite general.For example, the heavy traÆ analysis of sheduling algorithm for IQ swith should beappliable to a large lass of sheduling problems, inluding the setup of Radio hop introduedby Tassiulas and Ephremides [1992℄. The use of State Spae Collapse for haraterizing delayoptimal algorithm in the ontext of swith sheduling is based on a general philosophy. Westrongly believe that it should be useful in many other ontexts.The next natural question is: an we use the state spae ollapse haraterization ofswithes to obtain an estimation of queue-size distribution?The design methods of the thesis are quite general. For example, the idea of using arrivalinformation in algorithm SERENA an be interpreted by a omputer sientist working on onlinealgorithms as \trak the adversary." This idea an prove to be very powerful in the ontextappliations like networking where system state hanges very slowly.
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