Delay Analysis of Switches in Heavy Traffic

Shashibhushan Borade

6.454 - Area I Graduate Seminar
December 8 , 2004



Plan of Action

Heavy traffic scaling: some basics

Origin of Brownian motion

Idea of State-space collapse

Switches and Maximum weight matching algorithms

Stability analysis using fluid scaling
Characterizing steady state under fluid scaling

Delay analysis using heavy traffic scaling
— Only one (input/output) port in heavy traffic [Stolyar'04]
— All ports in heavy traffic [Shah'04]



Brownian motion

Single-queue single-server system

Notation

e Arrivals form a renewal process of rate A
e Inter-arrival times {A;} have mean 1/)\, variance a?
e All packets have same size 1/u

e — Sum arrivals up to time i: N(4)
— Total time for k arrivals: T(k) = Z’f Aj
— Remaining work after time k: D(k)

e Direct D(k) analysis is difficult: Instead imagine a system with
always active server

e This imaginary work at time k: W(k) = N(k)/u — k (can be
negative)



Brownian motion
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Definition of Brownian motion

r2t
A.

B(t) = lim B"(t)
r— 00

By central limit theorem, B(t) ~ N (0, o?t)

Independent increments over disjoint intervals

B(t2) — B(t1) ~ N(0,02|ta — t1])

B(t) is called a standard Brownian motion By ,2(t)

B(t) 4+ 0t + ¢ is Brownian motion with drift § and shift c



Heavy traffic

Assume work arrivals rate equals the server capacity: \/p =1
Heavy traffic scaling: shrink time by 2 and space by r

N(r?t)/pu — rt

r

w”(t) = W(r?t)/r =

Difficult to directly analyze imaginary work after time k

Analyzing imaginary work after k arrivals is easier:
V(k) = W(T(k)) = k/p— 35, A

Heavy traffic scaling of V (k)

P — As)

v’ (t) = W(T(r2t))/'r =

Note that 1/u— A; arei.i.d. and E [1/u— A;]=1/u—1/A=0).

Hence v"(t) tends to a Brownian motion B ,2(?)



Coming back to w(t) from uv(t)

Intuition: Distribution after large number of arrivals should be similar
to that after large time

e Limit theorem for renewal processes:

2 2

N(r=t) a5y ong T(r“t) a.s.
r2t r2t

e Rewrite w"(t) to use this fact

1 / N(r2t) r2t r2t
wi(t) = r ( 7(“2t ) L =T T(r2t)>

1/

Hence w"(t) also tends to a Brownian motion

e Actual work D(k) is given by: D(k) = W (k) — ming<;<x W (1)

=d (t) =w"(t) — min w" (1)
T€([0,t]

Thus actual remaining work d(t) is a reflected Brownian motion

Remark If A/ =1 — 9§, Brownian motion of w(t) has drift —co and
d(t) = 0 at all times,



State-space collapse

A two-queue single-server system

Unit size packets arrive at queue 7 at rate \; — two independent
renewal processes

Server serves one queue at a time- one packet takes unit time
Heavy traffic: work arrival rate (A1 + A2) -1 = 1.

Queue-lengths at time k are Q(k) = [Q1(k), Q2(k)].
Queue-lengths in heavy traffic scaling: q"(t) = Q(r?t)/r



State-space collapse

Let ¢"(to) = [a,b] and let [c,d] be such that c+d = a +b.

e Queue-state can be shifted to [c¢,d] instantaneously. Proving for
lc,d] = [0,a + b] is enough.

e Server starts serving first queue till its empty.

gl (t) | Qi(r?t) | Actual time needed | Heavy traffic time needed
a ra 0 0

Ala rAia ra a/r

A%a rA%a r\i1a Aia/r

Aa r\3a rA?a Aa/r
0 ~ 0 ~ e TN

During this time, Ifii = ra new packets arrived in second queue.

‘Thus new queue-length ¢35 equals b+ a.

Time required (in heavy traffic scaling), %1_631 vanishes as r — oo.



State-space Collapse

Any two states of the same sum queue-length are equivalent, as
they can be switched instantly.

Hence the system is completely described by qi(t) + g2(t).

Equivalent to a single queue system in heavy traffic = qi1(t) + g2(t)
is a reflected Brownian motion

More generally, let the stability constraint is: > &\ < c

In heavy traffic, i.e. > &\, = ¢, instant switch between g and ¢ if
> &iqi =Y &idi.

Matrix case EX < ¢ : state-space collapse to more than one
dimensions



Switch properties

Input ports / Switch crossbar
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e Unit size packets arrive at each queue (4,7) at rate Ay

e Connects each input port to only one output port and vice versa:
any permutation (or matching) = denotes one such choice

e At most one packet can be served at each (input/output) port in
unit time.

d A <1 oand > A <1 Vi,
k k

Any matrix X\ satisfying these constraints is a stable rate matrix



Switch dynamics

e Queue-state at time k is Q(k)
e Arrivals at time k are A(k) (a matrix)
e Departures in interval [k, k+ 1) be D(k)
Qk+1) =Q(k) = D(k) + A(k + 1)
e The matching chosen between [k, k + 1) be 7 (k)
A packet departs only if it existed: D;;(k) = mi;(k)1{q,, (k)>0}
e Total arrivals up to time k: A(k) = S.F_ | A®49)
e Total departures up to time k: D(k) = Zf;ll D(i)

o Pr(k): Number of times matching = was used up to time k.

Diy(k) = 3" w510, (k) >0} (Pr(k +1) = Pr (k)



Switch Dynamics in Fluid Scaling

Complete description of switch operation: X (k) = (Q(k), A(k), D(k), P(k))

e Fluid scaling Shrink space and time both by r: X" (t) = X (r?t)/r.
Limit of X7 (¢) is the fluid limit (¢) = (§(¢), a(t), d(t), p(t)).

e Convert discrete-time dynamics to fluid dynamics. Almost surely,

&ij (t) = )\ijt i.e. &(t) = M\t
gty = M —d()
dij(t) = D mijlig,w>o0y pa(t)
Define service rate o(t) = > wpz(t)
Gij(t) = Xij —o4;(t) if  gi; >0
= (Aij — O'Z'j(t))—l_ it (jij =0

(A water container with input tap of rate \;; and output tap rate o(t)).

Matrix shorthand for above function is: §(t) = (A — o(t))T1d=01,



Maximum Weight Matching Algorithms

A maximum weight matching algorithm (called MWM-f) chooses a
matching 7*, which maximizes the weight

A

> miif(Qig) = f(Q) -7 = ay(m, Q) over all &
]

Assume the weight function f is a strictly increasing continuous
function and f(0) equals zero.

We want optimal matchings for Q(.) be also optimal for Q(.)/r.
Hence for (z1,--- ,zn) and (z1,--- ,xyn) in R,

Zf(:m) > Zf(yi) & Zf(&ci) > Zf((iyi) V6 > 0

We will show that all such algorithms are stable. Thus even without
knowing the arrival rate A\, switch becomes stable.

By stability, we mean ¢(0) = 0 implies ¢(t) = 0 for all ¢ when X is stable
rate matrix. (Empty containers remain empty).

Thus d(t) = a(t) at all times.



Stability analysis

Some properties of the service rate o(t) for MWM-f

e At any time ¢t and queue-state ¢(t), suboptimal matchings are not
being used, so px(t) =0 for them.

e Hence the service rate

o(t) = Z 771577 (t) = Z 71'157T (t)

mweT*(t)
where 7*(t) denotes the set of optimal matchings at time t.

e Hence we have (Proof on white-board):

f(q@)) - o(t) = a}(q(t))

Note that for all matchings n: f(§(t)) - n < oz}'i(cj(t))



Using Lyapunav theory

Consider this (Lyapunav) function of the queue-state ¢
X
L@ =3 F(ay) (= F(d)-1) where F(z) = /0 f(y) dy
(2%]

e L(4(t)) cannot increase over time. (Proof on board)

e Note that L(¢g(0)) =0 if §=0. Now L(g(t)) can not increase nor
decrease below 0.

e L(G(t)) remains zero forever, so does ¢(t). Stability proved.



MWM-f: Steady States in Fluid Scaling

A queue-state ¢ is a steady state (or an invariant state) if ¢(to) = ¢q
implies all future 4(t) =q. ( e.g. ¢ =0 as proved earlier)

e Only steady state is 0 state if no port in heavy traffic.
(Everything is drained out finally.)

e If an input/output port is in heavy traffic, its sum queue-length
cannot decrease.
(Again, imagine a water container with input tap rate 1).

Let input port 1 be in heavy traffic for example, i.e.

G.(6) > M. —o1.(t) =1 — 01.(t) = 0

e Two constraints on any trajectory (i)
— L(g(t)) cannot increase over time.

— For ports in heavy traffic, ¢;.(t) or ¢;.(t) cannot decrease.



MWM-f: Steady States in Fluid Scaling

L(q) is a strictly convex function of queue-state

Any future state §(t) for initial state ¢ lies in a convex region

g;-(t) > g;.and §.;(t) > q.; at heavy traffic ports

L(¢) has a unique minima for a given initial state

Since L(q(t)) keeps decreasing, it lands at the minima eventually.

e If initial state itself is that minima, its a steady state.

Theorem 1 q is a steady state if and only if q itself is the solution to
the optimization problem based on q

min L(r) S.t. r;. > q;., r.; > q.; at heavy traffic ports

e Time of convergence to a steady state: For arbitrarily small
e > 0 and any initial state ¢(0), the queue-state ¢(t) goes within an
e-neighborhood of a steady state ¢ within some finite time T'(e).



Heavy traffic scaling

e Recall heavy traffic scaling: z"(t) = X (r?t)/r
e The fluid scaling was X7 (t) = X(rt)/r, hence =" (t) = X" (rt).
Each instant in heavy traffic scaling is a long period in fluid scaling.

e Fluid process “shortly” converges to a steady state.

Hence every instant of heavy traffic scaling is in some steady state.

(Different instants can be in different steady states.)



More precisely...

For studying heavy-traffic scaling over interval [0,T], divide it into
r intervals.

Expand each interval r times and get a fluid scaling process in [0, T]
This fluid process is essentially always in steady state if T'> T'(e).

Hence the heavy traffic scaling is also in steady state (esentially
always).

Caution: In heavy traffic, steady state does not mean the same as
in fluid scaling.

— Queue-states are a reflected Brownian motion in heavy
traffic scaling

— Now a steady state simply means a solution to the
optimization problem in Theorem 1



State space collapse again

This optimization problem is described by g;.(t) and q.;(t) at heavy
traffic ports.

Corresponding steady state is the unique solution of this problem.
Thus g;.(t) and g.;(t) at heavy traffic ports completely describe q(t).

Hence state-space dimension collapses to the number of ports in
heavy traffic from n2.



Single port in heavy traffic

Say input port 1 is in heavy traffic.

Given q1.(t) = a, determine the entire state q(?).

min ) " F(g;;) such that ¢i. >a
i,

Make all rows zero other than the first.

Since L(g) is a symmetric convex function, choose all first row
entries equal i.e. a/n. (Jensen’s inequality)

More generally, if neither input port ¢ nor output port 5 are in
heavy traffic, ¢;;(t) = 0 at all times.

Recall that ¢;.(t) performs a reflected Brownian motion.



Cost minimization

Let each unit time cost >, . F(Qi;(k))

We saw MWM-f minimizes this cost at all times in heavy traffic
(hence coarser) scaling.

In practice, minimizing delay is often of interest: minimize
Zz’,j Qij (k)
f(x) =10 2 29 should be used.

This f is not strictly increasing, as needed for stability.

MWM-3 Algorithms
Choose the m maximizing = - QP for some 3 > 0.
MWM-0 is same as maximum size matching (unstable).

MWM-1 is the traditional maximum weight matching—
queue-lengths directly used as weights.



All ports in heavy traffic

MWM-0+ algorithm

Slight modification of MWM-0
For small values of 3: ij ~ 1+ BlogQ;;
Empty queues weigh 0 and non-empty are almost 1.

Amongst all maximum size matchings, choose the one with
maximum > log Qe, i.e. matching with maximum product of
queue-lengths.

MWM-0+ is optimal in heavy traffic scaling.



Delay analysis using state-space collapse space

Let g(t) denote the state-vector: vector of all ¢;.(t) and q.;(%).

e For MWM-0+, the state ¢(t) lies in entire R3™.
e Hence it never idles, so delay optimal.
e For MWM-1, the state vector ¢(t) lies in a proper subspace §; of
RQn
ke
e Hence idling happens and delay is larger than MWM-0+ (contrary
to a queueing folklore)

e For 33 > 31, state-space of MWM-(32 is contained in state-space of
MWM-35. Hence MWM-35 has larger delay.



