
Delay Analysis of Switches in Heavy Traffic

Shashibhushan Borade

6.454 - Area I Graduate Seminar

December 8 , 2004

Plan of Action

Heavy traffic scaling: some basics

• Origin of Brownian motion

• Idea of State-space collapse

Switches and Maximum weight matching algorithms

• Stability analysis using fluid scaling

• Characterizing steady state under fluid scaling

• Delay analysis using heavy traffic scaling

– Only one (input/output) port in heavy traffic [Stolyar’04]

– All ports in heavy traffic [Shah’04]

Brownian motion

Single-queue single-server system

Notation

• Arrivals form a renewal process of rate λ

• Inter-arrival times {Ai} have mean 1/λ, variance a2

• All packets have same size 1/µ

• – Sum arrivals up to time i: N(i)

– Total time for k arrivals: T (k) =
Pk

1 Aj
– Remaining work after time k: D(k)

• Direct D(k) analysis is difficult: Instead imagine a system with

always active server

• This imaginary work at time k: W (k) = N(k)/µ− k (can be

negative)

Brownian motion

N(k)

3

5

2

4

1

W(k)

1 83 6 7

1

-1

-2

2

2

4

3

1

D(k)

5

Definition of Brownian motion

Br(t) =

Pr2t
1 ∆i

r
B(t) = lim

r→∞B
r(t)

• By central limit theorem, B(t) ∼ N (0, σ2t)

• Independent increments over disjoint intervals

• B(t2)−B(t1) ∼ N (0, σ2|t2 − t1|)
• B(t) is called a standard Brownian motion B0,σ2 (t)

• B(t) + θt+ c is Brownian motion with drift θ and shift c

Heavy traffic

• Assume work arrivals rate equals the server capacity: λ/µ = 1

• Heavy traffic scaling: shrink time by r2 and space by r

wr(t) = W (r2t)/r =
N(r2t)/µ− r2t

r

• Difficult to directly analyze imaginary work after time k

• Analyzing imaginary work after k arrivals is easier:

V (k) = W (T (k)) = k/µ−Pk
i=1 Ai

• Heavy traffic scaling of V (k)

vr(t) = W (T (r2t))/r =

Pr2t
1 (1/µ−Ai)

r

Note that 1/µ−Ai are i.i.d. and E [1/µ−Ai] = 1/µ− 1/λ = 0).

Hence vr(t) tends to a Brownian motion B0,a2 (t)

Coming back to w(t) from v(t)

Intuition: Distribution after large number of arrivals should be similar

to that after large time

• Limit theorem for renewal processes:

N(r2t)

r2t

a.s.→ λ and
T (r2t)

r2t

a.s.→ 1/λ

• Rewrite wr(t) to use this fact

wr(t) =
1

r

�
N(r2t)

r2t

r2t

µ
− T (r2t)

r2t

T (r2t)

�
Hence wr(t) also tends to a Brownian motion

• Actual work D(k) is given by: D(k) = W (k)−min0≤i≤kW (i)

⇒ dr(t) = wr(t)− min
τ∈[0,t]

wr(τ)

Thus actual remaining work d(t) is a reflected Brownian motion

Remark If λ/µ = 1− δ, Brownian motion of w(t) has drift −∞ and

d(t) = 0 at all times.

State-space collapse

A two-queue single-server system

• Unit size packets arrive at queue i at rate λi – two independent

renewal processes

• Server serves one queue at a time- one packet takes unit time

• Heavy traffic: work arrival rate (λ1 + λ2) · 1 = 1.

• Queue-lengths at time k are Q(k) = [Q1(k), Q2(k)].

• Queue-lengths in heavy traffic scaling: qr(t) = Q(r2t)/r

State-space collapse

Let qr(t0) = [a, b] and let [c, d] be such that c+ d = a+ b.

• Queue-state can be shifted to [c, d] instantaneously. Proving for

[c, d] = [0, a+ b] is enough.

• Server starts serving first queue till its empty.

qr1(t) Q1(r2t) Actual time needed Heavy traffic time needed

a ra 0 0

λ1a rλ1a ra a/r

λ2
1a rλ2

1a rλ1a λ1a/r

λ3
1a rλ3

1a rλ2
1a λ2

1a/r

· · · · · · · · · · · ·
0 ≈ 0 ≈ ra

1−λ1
1
r

a
1−λ1

During this time, raλ2
1−λ1

= ra new packets arrived in second queue.

Thus new queue-length qr2 equals b+ a.

Time required (in heavy traffic scaling), 1
r

a
1−λ1

vanishes as r →∞.

State-space Collapse

• Any two states of the same sum queue-length are equivalent, as

they can be switched instantly.

• Hence the system is completely described by q1(t) + q2(t).

• Equivalent to a single queue system in heavy traffic ⇒ q1(t) + q2(t)

is a reflected Brownian motion

• More generally, let the stability constraint is:
P
ξiλi ≤ c

• In heavy traffic, i.e.
P
ξiλi = c, instant switch between q and q̂ ifP

ξiqi =
P
ξiq̂i.

• Matrix case ξλ ≤ c : state-space collapse to more than one

dimensions

Switch properties

1 2 3

Output ports

Input ports Switch crossbar

Q
33

 Connection point

• Unit size packets arrive at each queue (i, j) at rate λij

• Connects each input port to only one output port and vice versa:

any permutation (or matching) π denotes one such choice

• At most one packet can be served at each (input/output) port in

unit time. X
k

λik ≤ 1 and
X
k

λkj ≤ 1 ∀i, j

Any matrix λ satisfying these constraints is a stable rate matrix

Switch dynamics

• Queue-state at time k is Q(k)

• Arrivals at time k are A(k) (a matrix)

• Departures in interval [k, k + 1) be D(k)

Q(k + 1) = Q(k)−D(k) +A(k + 1)

• The matching chosen between [k, k + 1) be π(k)

A packet departs only if it existed: Dij(k) = πij(k)1{Qij(k)>0}

• Total arrivals up to time k: Ā(k) =
Pk
i=1 A(i)

• Total departures up to time k: D̄(k) =
Pk−1
i=1 D(i)

• P̄π(k): Number of times matching π was used up to time k.

Dij(k) =
X
π

πij1{Qij(k)>0}(P̄π(k + 1)− P̄π(k))

Switch Dynamics in Fluid Scaling

Complete description of switch operation: X(k) = (Q(k), Ā(k), D̄(k), P̄ (k))

• Fluid scaling Shrink space and time both by r: Xr(t) = X(r2t)/r.

Limit of Xr(t) is the fluid limit x̂(t) = (q̂(t), â(t), d̂(t), p̂(t)).

• Convert discrete-time dynamics to fluid dynamics. Almost surely,

âij(t) = λijt i.e. â(t) = λt

q̂(t) = λt− d̂(t)

˙̂
dij(t) =

X
π

πij1{q̂ij(t)>0} ṗπ̂(t)

Define service rate σ(t) =
X
π

πṗπ̂(t)

˙̂qij(t) = λij − σij(t) if q̂ij > 0

= (λij − σij(t))+ if q̂ij = 0

(A water container with input tap of rate λij and output tap rate σ(t)).

Matrix shorthand for above function is: ˙̂q(t) = (λ− σ(t))+[q̂=0].

Maximum Weight Matching Algorithms

A maximum weight matching algorithm (called MWM-f) chooses a

matching π∗, which maximizes the weightX
ij

πijf(Qij) = f(Q) · π ∆
= αf (π,Q) over all π

Assume the weight function f is a strictly increasing continuous

function and f(0) equals zero.

We want optimal matchings for Q(.) be also optimal for Q(.)/r.

Hence for (x1, · · · , xn) and (x1, · · · , xn) in Rn+,X
i

f(xi) ≥
X
i

f(yi)⇔
X
i

f(δxi) ≥
X
i

f(δyi) ∀δ > 0

We will show that all such algorithms are stable. Thus even without

knowing the arrival rate λ, switch becomes stable.

By stability, we mean q̂(0) = 0 implies q̂(t) = 0 for all t when λ is stable

rate matrix. (Empty containers remain empty).

Thus d̂(t) = â(t) at all times.

Stability analysis

Some properties of the service rate σ(t) for MWM-f

• At any time t and queue-state q̂(t), suboptimal matchings are not

being used, so ˙̂pπ(t) = 0 for them.

• Hence the service rate

σ(t) =
X
π

π ˙̂pπ(t) =
X

π∈π∗(t)
π ˙̂pπ(t)

where π∗(t) denotes the set of optimal matchings at time t.

• Hence we have (Proof on white-board):

f(q̂(t)) · σ(t) = α∗f (q̂(t))

Note that for all matchings π: f(q̂(t)) · π ≤ α∗f (q̂(t))

Using Lyapunav theory

Consider this (Lyapunav) function of the queue-state q̂

L(q̂) =
X
i,j

F (q̂ij) (= F (q̂) · 1) where F (x) =

Z x

0
f(y) dy

• L(q̂(t)) cannot increase over time. (Proof on board)

• Note that L(q̂(0)) = 0 if q̂ = 0. Now L(q̂(t)) can not increase nor

decrease below 0.

• L(q̂(t)) remains zero forever, so does q̂(t). Stability proved.

MWM-f: Steady States in Fluid Scaling

A queue-state q is a steady state (or an invariant state) if q̂(t0) = q

implies all future q̂(t) = q. (e.g. q = 0 as proved earlier)

• Only steady state is 0 state if no port in heavy traffic.

(Everything is drained out finally.)

• If an input/output port is in heavy traffic, its sum queue-length

cannot decrease.

(Again, imagine a water container with input tap rate 1).

Let input port 1 be in heavy traffic for example, i.e.P
k λ1k = λ1· = 1.

˙̂q1·(t) ≥ λ1· − σ1·(t) = 1− σ1·(t) = 0

• Two constraints on any trajectory q̂(t)

– L(q̂(t)) cannot increase over time.

– For ports in heavy traffic, q̂i·(t) or q̂i·(t) cannot decrease.

MWM-f: Steady States in Fluid Scaling

• L(q̂) is a strictly convex function of queue-state

• Any future state q̂(t) for initial state q lies in a convex region

q̂i·(t) ≥ qi·and q̂·j(t) ≥ q·j at heavy traffic ports

• L(q̂) has a unique minima for a given initial state

• Since L(q̂(t)) keeps decreasing, it lands at the minima eventually.

• If initial state itself is that minima, its a steady state.

Theorem 1 q is a steady state if and only if q itself is the solution to

the optimization problem based on q

minL(r) s.t. ri· ≥ qi·, r·j ≥ q·j at heavy traffic ports

• Time of convergence to a steady state: For arbitrarily small

ε > 0 and any initial state q̂(0), the queue-state q̂(t) goes within an

ε-neighborhood of a steady state q within some finite time T (ε).

Heavy traffic scaling

• Recall heavy traffic scaling: xr(t) = X(r2t)/r

• The fluid scaling was Xr(t) = X(rt)/r, hence xr(t) = Xr(rt).

Each instant in heavy traffic scaling is a long period in fluid scaling.

• Fluid process “shortly” converges to a steady state.

Hence every instant of heavy traffic scaling is in some steady state.

(Different instants can be in different steady states.)

More precisely...

• For studying heavy-traffic scaling over interval [0, T], divide it into

r intervals.

• Expand each interval r times and get a fluid scaling process in [0, T]

• This fluid process is essentially always in steady state if T � T (ε).

• Hence the heavy traffic scaling is also in steady state (esentially

always).

• Caution: In heavy traffic, steady state does not mean the same as

in fluid scaling.

– Queue-states are a reflected Brownian motion in heavy

traffic scaling

– Now a steady state simply means a solution to the

optimization problem in Theorem 1

State space collapse again

• This optimization problem is described by qi·(t) and q·j(t) at heavy

traffic ports.

• Corresponding steady state is the unique solution of this problem.

• Thus qi·(t) and q·j(t) at heavy traffic ports completely describe q(t).

• Hence state-space dimension collapses to the number of ports in

heavy traffic from n2.

Single port in heavy traffic

• Say input port 1 is in heavy traffic.

• Given q1·(t) = a, determine the entire state q(t).

min
X
i,j

F (q̂ij) such that q̂1· ≥ a

• Make all rows zero other than the first.

• Since L(q̂) is a symmetric convex function, choose all first row

entries equal i.e. a/n. (Jensen’s inequality)

• More generally, if neither input port i nor output port j are in

heavy traffic, qij(t) = 0 at all times.

• Recall that q1·(t) performs a reflected Brownian motion.

Cost minimization

• Let each unit time cost
P
i,j F (Qij(k))

• We saw MWM-f minimizes this cost at all times in heavy traffic

(hence coarser) scaling.

• In practice, minimizing delay is often of interest: minimizeP
i,j Qij(k)

• f(x) = 1{x>0}
∆
= x0 should be used.

This f is not strictly increasing, as needed for stability.

MWM-β Algorithms

• Choose the π maximizing π ·Qβ for some β ≥ 0.

• MWM-0 is same as maximum size matching (unstable).

• MWM-1 is the traditional maximum weight matching–

queue-lengths directly used as weights.

All ports in heavy traffic

MWM-0+ algorithm

• Slight modification of MWM-0

• For small values of β: Qβij ≈ 1 + β logQij

• Empty queues weigh 0 and non-empty are almost 1.

• Amongst all maximum size matchings, choose the one with

maximum
P

logQei i.e. matching with maximum product of

queue-lengths.

MWM-0+ is optimal in heavy traffic scaling.

Delay analysis using state-space collapse space

Let q̃(t) denote the state-vector: vector of all qi·(t) and q·j(t).

• For MWM-0+, the state q̃(t) lies in entire R2n
+ .

• Hence it never idles, so delay optimal.

• For MWM-1, the state vector q̃(t) lies in a proper subspace S1 of

R2n
+ .

• Hence idling happens and delay is larger than MWM-0+ (contrary

to a queueing folklore)

• For β2 > β1, state-space of MWM-β2 is contained in state-space of

MWM-β2. Hence MWM-β2 has larger delay.

