Delay Analysis of Switches in Heavy Traffic

Shashibhushan Borade

6.454 - Area I Graduate Seminar

December 8, 2004

Plan of Action

Heavy traffic scaling: some basics

- Origin of Brownian motion
- Idea of State-space collapse

Switches and Maximum weight matching algorithms

- Stability analysis using fluid scaling
- Characterizing steady state under fluid scaling
- Delay analysis using heavy traffic scaling
- Only one (input/output) port in heavy traffic [Stolyar'04]
- All ports in heavy traffic [Shah'04]

Brownian motion

Single-queue single-server system

Notation

- Arrivals form a renewal process of rate λ
- Inter-arrival times $\left\{A_{i}\right\}$ have mean $1 / \lambda$, variance a^{2}
- All packets have same size $1 / \mu$
- - Sum arrivals up to time $i: N(i)$
- Total time for k arrivals: $T(k)=\sum_{1}^{k} A_{j}$
- Remaining work after time $k: D(k)$
- Direct $D(k)$ analysis is difficult: Instead imagine a system with always active server
- This imaginary work at time $k: W(k)=N(k) / \mu-k$ (can be negative)

Brownian motion

Definition of Brownian motion

$$
B^{r}(t)=\frac{\sum_{1}^{r^{2} t} \Delta_{i}}{r} \quad B(t)=\lim _{r \rightarrow \infty} B^{r}(t)
$$

- By central limit theorem, $B(t) \sim \mathcal{N}\left(0, \sigma^{2} t\right)$
- Independent increments over disjoint intervals
- $B\left(t_{2}\right)-B\left(t_{1}\right) \sim \mathcal{N}\left(0, \sigma^{2}\left|t_{2}-t_{1}\right|\right)$
- $B(t)$ is called a standard Brownian motion $\mathcal{B}_{0, \sigma^{2}}(t)$
- $B(t)+\theta t+c$ is Brownian motion with drift θ and shift c

Heavy traffic

- Assume work arrivals rate equals the server capacity: $\lambda / \mu=1$
- Heavy traffic scaling: shrink time by r^{2} and space by r

$$
w^{r}(t)=W\left(r^{2} t\right) / r=\frac{N\left(r^{2} t\right) / \mu-r^{2} t}{r}
$$

- Difficult to directly analyze imaginary work after time k
- Analyzing imaginary work after k arrivals is easier:

$$
V(k)=W(T(k))=k / \mu-\sum_{i=1}^{k} A_{i}
$$

- Heavy traffic scaling of $V(k)$

$$
v^{r}(t)=W\left(T\left(r^{2} t\right)\right) / r=\frac{\sum_{1}^{r^{2} t}\left(1 / \mu-A_{i}\right)}{r}
$$

Note that $1 / \mu-A_{i}$ are i.i.d. and $\left.E\left[1 / \mu-A_{i}\right]=1 / \mu-1 / \lambda=0\right)$.
Hence $v^{r}(t)$ tends to a Brownian motion $\mathcal{B}_{0, a^{2}}(t)$

Coming back to $w(t)$ from $v(t)$

Intuition: Distribution after large number of arrivals should be similar to that after large time

- Limit theorem for renewal processes:

$$
\frac{N\left(r^{2} t\right)}{r^{2} t} \xrightarrow{\text { a.s. }} \lambda \text { and } \frac{T\left(r^{2} t\right)}{r^{2} t} \xrightarrow{\text { a.s. }} 1 / \lambda
$$

- Rewrite $w^{r}(t)$ to use this fact

$$
w^{r}(t)=\frac{1}{r}\left(\frac{N\left(r^{2} t\right)}{r^{2} t} \frac{r^{2} t}{\mu}-T\left(r^{2} t\right) \frac{r^{2} t}{T\left(r^{2} t\right)}\right)
$$

Hence $w^{r}(t)$ also tends to a Brownian motion

- Actual work $D(k)$ is given by: $D(k)=W(k)-\min _{0 \leq i \leq k} W(i)$

$$
\Rightarrow d^{r}(t)=w^{r}(t)-\min _{\tau \in[0, t]} w^{r}(\tau)
$$

Thus actual remaining work $d(t)$ is a reflected Brownian motion Remark If $\lambda / \mu=1-\delta$, Brownian motion of $w(t)$ has drift $-\infty$ and $d(t)=0$ at all times.

State-space collapse

A two-queue single-server system

- Unit size packets arrive at queue i at rate λ_{i} - two independent renewal processes
- Server serves one queue at a time- one packet takes unit time
- Heavy traffic: work arrival rate $\left(\lambda_{1}+\lambda_{2}\right) \cdot 1=1$.
- Queue-lengths at time k are $Q(k)=\left[Q_{1}(k), Q_{2}(k)\right]$.
- Queue-lengths in heavy traffic scaling: $q^{r}(t)=Q\left(r^{2} t\right) / r$

State-space collapse

Let $q^{r}\left(t_{0}\right)=[a, b]$ and let $[c, d]$ be such that $c+d=a+b$.

- Queue-state can be shifted to $[c, d]$ instantaneously. Proving for $[c, d]=[0, a+b]$ is enough.
- Server starts serving first queue till its empty.

$q_{1}^{r}(t)$	$Q_{1}\left(r^{2} t\right)$	Actual time needed	Heavy traffic time needed
a	$r a$	0	0
$\lambda_{1} a$	$r \lambda_{1} a$	$r a$	a / r
$\lambda_{1}^{2} a$	$r \lambda_{1}^{2} a$	$r \lambda_{1} a$	$\lambda_{1} a / r$
$\lambda_{1}^{3} a$	$r \lambda_{1}^{3} a$	$r \lambda_{1}^{2} a$	$\lambda_{1}^{2} a / r$
\cdots	\cdots	\cdots	\cdots
0	≈ 0	$\approx \frac{r a}{1-\lambda_{1}}$	$\frac{1}{r} \frac{a}{1-\lambda_{1}}$

During this time, $\frac{r a \lambda_{2}}{1-\lambda_{1}}=r a$ new packets arrived in second queue.
Thus new queue-length q_{2}^{r} equals $b+a$.
Time required (in heavy traffic scaling), $\frac{1}{r} \frac{a}{1-\lambda_{1}}$ vanishes as $r \rightarrow \infty$.

State-space Collapse

- Any two states of the same sum queue-length are equivalent, as they can be switched instantly.
- Hence the system is completely described by $q_{1}(t)+q_{2}(t)$.
- Equivalent to a single queue system in heavy traffic $\Rightarrow q_{1}(t)+q_{2}(t)$ is a reflected Brownian motion
- More generally, let the stability constraint is: $\sum \xi_{i} \lambda_{i} \leq c$
- In heavy traffic, i.e. $\sum \xi_{i} \lambda_{i}=c$, instant switch between q and \hat{q} if $\sum \xi_{i} q_{i}=\sum \xi_{i} \hat{q}_{i}$.
- Matrix case $\xi \lambda \leq c$: state-space collapse to more than one dimensions

Switch properties

- Unit size packets arrive at each queue (i, j) at rate $\lambda_{i j}$
- Connects each input port to only one output port and vice versa: any permutation (or matching) π denotes one such choice
- At most one packet can be served at each (input/output) port in unit time.

$$
\sum_{k} \lambda_{i k} \leq 1 \quad \text { and } \quad \sum_{k} \lambda_{k j} \leq 1 \quad \forall i, j
$$

Any matrix λ satisfying these constraints is a stable rate matrix

Switch dynamics

- Queue-state at time k is $Q(k)$
- Arrivals at time k are $A(k)$ (a matrix)
- Departures in interval $[k, k+1)$ be $D(k)$

$$
Q(k+1)=Q(k)-D(k)+A(k+1)
$$

- The matching chosen between $[k, k+1)$ be $\pi(k)$

A packet departs only if it existed: $D_{i j}(k)=\pi_{i j}(k) 1_{\left\{Q_{i j}(k)>0\right\}}$

- Total arrivals up to time $k: \bar{A}(k)=\sum_{i=1}^{k} A(i)$
- Total departures up to time $k: \bar{D}(k)=\sum_{i=1}^{k-1} D(i)$
- $\bar{P}_{\pi}(k)$: Number of times matching π was used up to time k.

$$
D_{i j}(k)=\sum_{\pi} \pi_{i j} 1_{\left\{Q_{i j}(k)>0\right\}}\left(\bar{P}_{\pi}(k+1)-\bar{P}_{\pi}(k)\right)
$$

Switch Dynamics in Fluid Scaling

Complete description of switch operation: $X(k)=(Q(k), \bar{A}(k), \bar{D}(k), \bar{P}(k))$

- Fluid scaling Shrink space and time both by $r: X^{r}(t)=X\left(r^{2} t\right) / r$. Limit of $X^{r}(t)$ is the fluid limit $\hat{x}(t)=(\hat{q}(t), \hat{a}(t), \hat{d}(t), \hat{p}(t))$.
- Convert discrete-time dynamics to fluid dynamics. Almost surely,

$$
\begin{aligned}
& \hat{a}_{i j}(t)=\lambda_{i j} t \quad \text { i.e. } \quad \hat{a}(t)=\lambda t \\
& \hat{q}(t)=\lambda t-\hat{d}(t) \\
& \dot{\hat{d}}_{i j}(t)=\sum_{\pi} \pi_{i j} 1_{\left\{\hat{q}_{i j}(t)>0\right\}} \quad \dot{p}_{\hat{\pi}}(t) \\
& \text { Define service rate } \sigma(t)=\sum_{\pi} \pi \dot{p}_{\hat{\pi}}(t) \\
& \dot{\dot{q}}_{i j}(t)=\lambda_{i j}-\sigma_{i j}(t) \\
& \text { if } \quad \hat{q}_{i j}>0 \\
&=\left(\lambda_{i j}-\sigma_{i j}(t)\right)^{+} \quad \text { if } \quad \hat{q}_{i j}=0
\end{aligned}
$$

(A water container with input tap of rate $\lambda_{i j}$ and output tap rate $\sigma(t)$).
Matrix shorthand for above function is: $\dot{\hat{q}}(t)=(\lambda-\sigma(t))^{+[\hat{q}=0]}$.

Maximum Weight Matching Algorithms

A maximum weight matching algorithm (called MWM-f) chooses a matching π^{*}, which maximizes the weight

$$
\sum_{i j} \pi_{i j} f\left(Q_{i j}\right)=f(Q) \cdot \pi \triangleq \alpha_{f}(\pi, Q) \text { over all } \pi
$$

Assume the weight function f is a strictly increasing continuous function and $f(0)$ equals zero.

We want optimal matchings for $Q($.$) be also optimal for Q() /$.$r .$ Hence for $\left(x_{1}, \cdots, x_{n}\right)$ and $\left(x_{1}, \cdots, x_{n}\right)$ in \mathcal{R}_{+}^{n},

$$
\sum_{i} f\left(x_{i}\right) \geq \sum_{i} f\left(y_{i}\right) \Leftrightarrow \sum_{i} f\left(\delta x_{i}\right) \geq \sum_{i} f\left(\delta y_{i}\right) \quad \forall \delta>0
$$

We will show that all such algorithms are stable. Thus even without knowing the arrival rate λ, switch becomes stable.

By stability, we mean $\hat{q}(0)=0$ implies $\hat{q}(t)=0$ for all t when λ is stable rate matrix. (Empty containers remain empty).
Thus $\hat{d}(t)=\hat{a}(t)$ at all times.

Stability analysis

Some properties of the service rate $\sigma(t)$ for MWM- f

- At any time t and queue-state $\hat{q}(t)$, suboptimal matchings are not being used, so $\dot{\hat{p}}_{\pi}(t)=0$ for them.
- Hence the service rate

$$
\sigma(t)=\sum_{\pi} \pi \dot{\hat{p}}_{\pi}(t)=\sum_{\pi \in \pi^{*}(t)} \pi \dot{\hat{p}}_{\pi}(t)
$$

where $\pi^{*}(t)$ denotes the set of optimal matchings at time t.

- Hence we have (Proof on white-board):

$$
f(\hat{q}(t)) \cdot \sigma(t)=\alpha_{f}^{*}(\hat{q}(t))
$$

Note that for all matchings $\pi: \quad f(\hat{q}(t)) \cdot \pi \leq \alpha_{f}^{*}(\hat{q}(t))$

Using Lyapunav theory

Consider this (Lyapunav) function of the queue-state \hat{q}

$$
L(\hat{q})=\sum_{i, j} F\left(\hat{q}_{i j}\right)(=F(\hat{q}) \cdot 1) \quad \text { where } \quad F(x)=\int_{0}^{x} f(y) d y
$$

- $L(\hat{q}(t))$ cannot increase over time. (Proof on board)
- Note that $L(\hat{q}(0))=0$ if $\hat{q}=0$. Now $L(\hat{q}(t))$ can not increase nor decrease below 0 .
- $L(\hat{q}(t))$ remains zero forever, so does $\hat{q}(t)$. Stability proved.

MWM-f: Steady States in Fluid Scaling

A queue-state q is a steady state (or an invariant state) if $\hat{q}\left(t_{0}\right)=q$ implies all future $\hat{q}(t)=q$. (e.g. $q=0$ as proved earlier)

- Only steady state is 0 state if no port in heavy traffic. (Everything is drained out finally.)
- If an input/output port is in heavy traffic, its sum queue-length cannot decrease.
(Again, imagine a water container with input tap rate 1).
Let input port 1 be in heavy traffic for example, i.e. $\sum_{k} \lambda_{1 k}=\lambda_{1}=1$.

$$
\dot{\hat{q}}_{1} \cdot(t) \geq \lambda_{1} \cdot-\sigma_{1} \cdot(t)=1-\sigma_{1} \cdot(t)=0
$$

- Two constraints on any trajectory $\hat{q}(t)$
- $L(\hat{q}(t))$ cannot increase over time.
- For ports in heavy traffic, $\hat{q}_{i}(t)$ or $\hat{q}_{i}(t)$ cannot decrease.

MWM- f : Steady States in Fluid Scaling

- $L(\hat{q})$ is a strictly convex function of queue-state
- Any future state $\hat{q}(t)$ for initial state q lies in a convex region

$$
\hat{q}_{i \cdot} \cdot(t) \geq q_{i} \text {. and } \quad \hat{q}_{\cdot j}(t) \geq q_{\cdot j} \text { at heavy traffic ports }
$$

- $L(\hat{q})$ has a unique minima for a given initial state
- Since $L(\hat{q}(t))$ keeps decreasing, it lands at the minima eventually.
- If initial state itself is that minima, its a steady state.

Theorem $1 q$ is a steady state if and only if q itself is the solution to the optimization problem based on q

$$
\min L(r) \text { s.t. } r_{i} \geq q_{i \cdot}, r_{\cdot j} \geq q_{\cdot j} \text { at heavy traffic ports }
$$

- Time of convergence to a steady state: For arbitrarily small $\epsilon>0$ and any initial state $\hat{q}(0)$, the queue-state $\hat{q}(t)$ goes within an ϵ-neighborhood of a steady state q within some finite time $T(\epsilon)$.

Heavy traffic scaling

- Recall heavy traffic scaling: $x^{r}(t)=X\left(r^{2} t\right) / r$
- The fluid scaling was $X^{r}(t)=X(r t) / r$, hence $x^{r}(t)=X^{r}(r t)$.

Each instant in heavy traffic scaling is a long period in fluid scaling.

- Fluid process "shortly" converges to a steady state.

Hence every instant of heavy traffic scaling is in some steady state.
(Different instants can be in different steady states.)

More precisely...

- For studying heavy-traffic scaling over interval $[0, T]$, divide it into r intervals.
- Expand each interval r times and get a fluid scaling process in $[0, T]$
- This fluid process is essentially always in steady state if $T \gg T(\epsilon)$.
- Hence the heavy traffic scaling is also in steady state (esentially always).
- Caution: In heavy traffic, steady state does not mean the same as in fluid scaling.
- Queue-states are a reflected Brownian motion in heavy traffic scaling
- Now a steady state simply means a solution to the optimization problem in Theorem 1

State space collapse again

- This optimization problem is described by $q_{i \cdot}(t)$ and $q_{\cdot j}(t)$ at heavy traffic ports.
- Corresponding steady state is the unique solution of this problem.
- Thus $q_{i .}(t)$ and $q_{\cdot j}(t)$ at heavy traffic ports completely describe $q(t)$.
- Hence state-space dimension collapses to the number of ports in heavy traffic from n^{2}.

Single port in heavy traffic

- Say input port 1 is in heavy traffic.
- Given $q_{1} \cdot(t)=a$, determine the entire state $q(t)$.

$$
\min \sum_{i, j} F\left(\hat{q}_{i j}\right) \text { such that } \hat{q}_{1} . \geq a
$$

- Make all rows zero other than the first.
- Since $L(\hat{q})$ is a symmetric convex function, choose all first row entries equal i.e. a / n. (Jensen's inequality)
- More generally, if neither input port i nor output port j are in heavy traffic, $q_{i j}(t)=0$ at all times.
- Recall that $q_{1} \cdot(t)$ performs a reflected Brownian motion.

Cost minimization

- Let each unit time cost $\sum_{i, j} F\left(Q_{i j}(k)\right)$
- We saw MWM-f minimizes this cost at all times in heavy traffic (hence coarser) scaling.
- In practice, minimizing delay is often of interest: minimize $\sum_{i, j} Q_{i j}(k)$
- $f(x)=1_{\{x>0\}} \triangleq x^{0}$ should be used.

This f is not strictly increasing, as needed for stability.

MWM- β Algorithms

- Choose the π maximizing $\pi \cdot Q^{\beta}$ for some $\beta \geq 0$.
- MWM-0 is same as maximum size matching (unstable).
- MWM-1 is the traditional maximum weight matching-queue-lengths directly used as weights.

All ports in heavy traffic

MWM-0+ algorithm

- Slight modification of MWM-0
- For small values of β : $Q_{i j}^{\beta} \approx 1+\beta \log Q_{i j}$
- Empty queues weigh 0 and non-empty are almost 1.
- Amongst all maximum size matchings, choose the one with maximum $\sum \log Q_{e_{i}}$ i.e. matching with maximum product of queue-lengths.

MWM-0+ is optimal in heavy traffic scaling.

Delay analysis using state-space collapse space

Let $\tilde{q}(t)$ denote the state-vector: vector of all $q_{i \cdot}(t)$ and $q_{\cdot j}(t)$.

- For MWM-0+, the state $\tilde{q}(t)$ lies in entire $\mathcal{R}_{+}^{2 n}$.
- Hence it never idles, so delay optimal.
- For MWM-1, the state vector $\tilde{q}(t)$ lies in a proper subspace \mathcal{S}_{1} of $\mathcal{R}_{+}^{2 n}$.
- Hence idling happens and delay is larger than MWM-0+ (contrary to a queueing folklore)
- For $\beta_{2}>\beta_{1}$, state-space of MWM- β_{2} is contained in state-space of MWM- β_{2}. Hence MWM- β_{2} has larger delay.

