
Delay Analysis of Switches in Heavy Traffic

Shashibhushan Borade

Recently, heavy-traffic theory has been applied for understanding behavior of delay in
switches. The next section explains the heavy traffic scaling. With some toy examples,
it discusses how Brownian motion arises in delay analysis and the idea of state-space
collapse. Section 2 defines a switch and sketches a standard method for its stability
analysis using the fluid scaling. For fluid scaling, the steady state behavior of switches
is also discussed. Section 3 first discusses the relations between the heavy traffic scaling
and the fluid scaling. Second, the results by Stolyar [1] are sketched out, where only one
of the resources of a switch is in heavy traffic (say an input port or an output port). Then
it discusses the results from Shah’s thesis [2], where all the resources are in heavy traffic.
It shows an optimal (in heavy traffic scaling) algorithm for minimizing the average delay
in a switch and also compares delays of other common algorithms.

1 Brownian Motion and State-Space Collapse in Heavy Traffic

1.1 Brownian Motion in Queueing systems

Consider a single server with a single queue in discrete time. The server can provide one
unit of service in each unit of time. The discrete-time arrival process is a renewal process
of rate λ. Hence the inter-arrival times {Ai} have mean 1/λ. The variance of each Ai is
assumed to be a2. Let the number of arrivals up to time k be denoted by N(k). Each
packet is assumed to have a service requirement of 1/µ, i.e. 1/µ time of the server. This
constant packet length assumption is not necessary for the results, but it shortens the
equations. By heavy traffic, we will mean that the rate at which work arrives is same as
the server capacity. In the current context, it means that λ/µ = 1. Finally, assume that
the system starts at time 0 with empty queues. This sub-section is devoted to analyzing
the delay behavior of this system.

Imagine that the server keeps serving even when the queue is empty, thus the remain-
ing work in the queue could be negative. In other words, the remaining work in this
imaginary system performs a random walk (not necessarily with i.i.d. increments)–it
is reduced by unity if no packet arrives and increases by (1/µ − 1) if a packet arrives
(Fig. 1.1). Let the remaining work in this imaginary system at time k be denoted by
W (k) = N(k)/µ − k. Let wr(t) denote the remaining work in heavy traffic scaling:
wr(t) = W (r2t)/r. Thus heavy-traffic scaling corresponds to shrinking the time by a
factor of r2 and shrinking the space by a factor of r, where r is a large number. The
limit of wr(t) as r tends to infinity would be denoted by w(t). In general, the limit of a
random process xr(t) (or random variable xr) is denoted x(t) (or x). Similarly, if X(k)
denotes the actual discrete-time process, x(t) would denote the heavy traffic scaling of
the process.

1



N(k)

3

5

2

4

1

W(k)

1 83 6 7

1

-1

-2

2

2

4

3

1

D(k)

5

Figure 1: Example of an arrival process: N(k), W (k) and D(k). Each packet is assumed
to have size 2. X- axis denotes the discrete time. The discrete-time values of these
discrete-time processes are linearly interpolated here.

We will show that w(t) behaves as a Brownian motion. However, directly finding the
distribution of wr(t) for a general renewal process is difficult. Hence, we will first find the
distribution of the remaining work after a large number of arrivals. Then show that it is
distributed similar to the remaining work after large time, i.e. similar to the distribution
of wr(t) as r tends to infinity.

Before proceeding further, we briefly discuss Brownian motion. Let {∆i} be i.i.d.
random variables with zero mean and variance σ2. Define Br(t) as

Br(t) =

∑r2t
1 ∆i

r

Let the limit of these processes as r tends to infinity be denoted by B(t). Note that by
central limit theorem, the marginal distribution of Br(t) converges to N (0, σ2t) in dis-
tribution. Also note that increments of B(t) over disjoint time-intervals are independent
because they are composed of disjoint subsets of {∆i}. Finally, note that B(t2)− B(t1)
is distributed as N (0, σ2|t2 − t1|). Such a process B(t) is called a standard Brownian
motion of standard deviation σ2, which is denoted by B0,σ2(t). B(t) + θt + c is called a
Brownian motion with drift θ and shift c.

Coming back to the delay analysis, let T (n) =
∑n

1 Ai denote time of the n’th packet
arrival. The remaining work W (T (n)) after of the n’th packet is given by

W (T (n)) = n/µ− T (n) = n/µ−
n∑
i=1

Ai



Now define the following process in heavy traffic scaling

vr(t) = W (T (r2t))/r (1)

=
r2t/µ− T (r2t)

r
(2)

=

∑r2t
1 (1/µ− Ai)

r
(3)

It is the amount of remaining work after r2t arrivals, scaled down by a factor of r. Note
that the average E [1/µ− Ai] = 1/µ − 1/λ = 0 due to heavy traffic assumption and its
variance equals the variance of Ai, which is a2. Now the independence of {Ai} implies
that vr(t) converges to B0,a2(t). Using this, we now show that wr(t) also converges to a
Brownian motion.

By the limit theorem for renewal processes, we know that as r goes to infinity,

N(r2t)

r2t

a.s.→ λ and
T (r2t)

r2t

a.s.→ 1/λ (4)

Now note that wr(t) equals

wr(t) =
N(r2t)/µ− r2t

r

=
1

r

(
N(r2t)

r2t

r2t

µ
− T (r2t)

r2t

T (r2t)

)

Using (4) indicates that as r goes to infinity, wr(t) behaves as a scaled version of vr(t),
which converges to a Brownian motion. Thus the remaining work in this imaginary
system (where server is always active) behaves as a standard Brownian motion. Having
obtained the distribution of the remaining work in this imaginary system, we can now
go back to the work process in the actual system, where the remaining work cannot be
negative. The actual remaining work after time k be denoted by D(k). The relation
between D(k) and W (k) is given by

D(k) = W (k)− min
0≤i≤k

W (i)

It is understood by the Figure 1.1 that this simply means the server cannot serve a job
before it arrives. If dr(t) = D(r2t)/r denotes the actual remaining work in the heavy
traffic scaling,

dr(t) = wr(t)− min
τ∈[0,t]

wr(τ)

This mapping from wr(.) to dr(.) is continuous. Hence the limit of the mapping has
the same distribution as mapping of the limit of wr(t). However, the limit of wr(t) is
a Brownian motion and the above mapping for a Brownian motion yields a reflected
Brownian motion. Hence dr(t) also behaves as a reflected Brownian motion. Since all
packets have length 1/µ, the queue-length process (the number of packets in the queue)
behaves similar to the remaining work d(t). That is, the queue-length behaves as a
reflected Brownian motion. This is also true when the service requirements of packets
are i.i.d. random variables. This ends our discussion about the origin of Brownian motion
in queuing systems. Similar analysis can be done for more complex queueing systems
with many queues and many servers or a switch, but the basic ideas are the same.



Remark Using almost the same steps, the reader can verify that if the work arrives
at a rate bounded away from 1 i.e. if λ/µ = 1 − δ < 1, then the process w(t) is a
Brownian motion with drift −∞. Hence the actual work d(t) i.e. the corresponding
reflected Brownian motion is always zero. Thus if a resource is not in heavy traffic, its
queue-length in heavy traffic scaling is always zero.

1.2 State-space collapse

We will discuss the state-space collapse phenomenon using a simple example of a single
server serving 2 queues, one at a time. Let the queue-length vector at time k be Q(k),
where its i’th element denotes length of the i’th queue1. Assume all packets to be of unit
size. Assume that packets arrive at each queue according to a renewal process of rate λi
and the two arrival processes are assumed to be independent. The stability constraint
for this system is given by λ1 +λ2 ≤ 1. The heavy traffic assumption in this case implies
that the total arrival rate λ1 + λ2 = 1.

Let qr(t) denote the queue-length vector in heavy traffic scaling i.e. qr(t) = Q(r2t)/r.
Let qr(t0) be equal to [a, b]. Let [c, d] be any other queue-length vector such that a+ b =
c + d. We will show (half-rigourously) that as r goes to infinity, the system can change
the queue-length vector to any other [c, d] instantaneously.

It is enough if we show that starting from queue-lengths [a, b], queue-lengths [0, a+ b]
can be attained in zero time. qr(t0) = [a, b] corresponds to Q(r2t0) = [ra, rb]. The
system now decides to keep serving the first queue till it drains out, assuming no new
arrivals. This takes ra units of actual time i.e. a/r units of time in heavy traffic scaling.
However, by limit theorem for renewal processes, for large enough r, there are roughly
λ1ra new actual arrivals i.e. the scaled queue-length qr1 becomes λ1a due to new arrivals.
Again clearing out these new arrivals, (ignoring newer arrivals) takes rλ1a units of actual
time i.e. λ1a/r time units in heavy traffic scaling. Due to newer arrivals however, the
queue-length becomes qr1 = λ2

1a.
Continuing this argument recursively, the first queue will eventually be empty because

λn1 goes to zero. The total time in heavy traffic scaling, for this to happen equals (a +

aλ1 + aλ2
1 · · · )/r = a/r

1−λ1
. This corresponds to an actual time of ra

1−λ1
. Applying the limit

theorem for renewal processes to the second queue implies that the number of actual new
arrivals to the second queue in this much time roughly equals δ2 = λ2ra

1−λ1
. This corresponds

to λ2a
1−λ1

new arrivals in heavy traffic scaling. The second queue has not been served yet,
so its queue-length equals the sum of the original queue-length and the number of new
arrivals. Hence qr2 = b + a λ2

1−λ1
= b + a, because λ2 = 1 − λ1 due to the heavy traffic

assumption. Thus qr = [0, b+ a] after a/r
1−λ1

time units in heavy traffic scaling. This time
goes to zero as r goes to infinity and thus [0, b+ a] is attained zero time.

Thus in heavy traffic scaling, a system can instantaneously switch between two states
with equal total queue-length. Hence from the system’s point of view, any two states
with the same total queue-length are equivalent in heavy traffic. In heavy traffic, this
system with two queues is thus equivalent to a single-queue system, whose queue-length
is given by the sum of the two queue-lengths of the original two-queue system. Hence
the sum queue-length of this two-queue system behaves as a reflected Brownian motion
2.

1In this paper, xi would mean the element i of vector x and yij would mean the element of matrix y.
2As discussed in Elif’s talk, if the first queue costs more per packet, the system should shift all the

q1(t) + q2(t) packets to the second queue. Practically, this suggests that the system should serve the



This phenomenon of reduction in the dimensionality of the state (i.e. q(t)) is called
as the state-space collapse. Similar result holds true for a system with m queues, where
the stability constraint on the arrival rates is

m∑
1

ξiλi ≤ c for some c > 0 and ξ ≥ 0. (5)

The two-queue system discussed above was a special case of this constraint, where ξ1 =
ξ2 = c = 1. This general system is said to be in heavy traffic if

∑
ξiλi = c. The

state of such a system is defined by
∑
ξiqi(t). In heavy traffic, this system can switch

instantaneously between q and q̂ if
∑
ξiqi =

∑
ξiq̂i. Again, the state

∑
ξiqi(t) behaves

as a reflected Brownian motion.
Generalizing further, if a system with m queues has multiple stability constraints

given by the matrix inequality

ξλ ≤ c where ξ ∈ R+
n×m, λ ∈ R+

m, c ∈ R+
n

where R+ denotes [0,∞). Let the arrival rates be such that first k constraints are met
with equality. The state of the system is then given by the first k entries of the vector
ξq. The state-space is collapsed to k dimensions from the original m dimensions.

2 Stability and Steady State of a Switch in Fluid Limit

2.1 Switch Properties, Fluid Scaling and Stability

We will consider a n × n switch with n input and output ports. Each input port i has
a separate queue for every output j (Fig. 2.1). This will be called (i, j) queue. The
queue-length of this queue at time k is denoted by Qij(k) and its arrival rate is denoted
by λij. For simplicity, all queues are assumed to have non-zero arrival rates. Arrival
process at each queue (i, j) is independent of arrival processes of all other queues. It is
a renewal process of rate λij. Each packet is of unit length. Each unit time, the switch
can connect the input ports and output ports such that each input port is connected to
exactly one output port and vice versa. This is called the crossbar constraint. Note that
the parallel server network considered last week cannot be used to model a switch i.e.
the crossbar constraint.

The switch connections at a given time can be represented by a permutation matrix
π where πij = 1 indicates that input i was connected to output j. If that queue was not
empty before service, πij = 1 also means that one packet from the queue (i, j) has been
served. A permutation π is also called a schedule or a matching (from the input ports
to the output ports). For stability, the arrival rate at any input or output port should
not exceed 1, because only one packet can be served per unit time per port. Hence the
stability constraints of a switch are given by

∑

k

λik ≤ 1 and
∑

k

λkj ≤ 1 ∀i, j (6)

cheaper queue only if the costlier queue is empty. Thus in the heavy traffic limit, q1(t) will be zero at
all times. The queue-length for the cheaper queue will be the same as the total queue-length, which
is a reflected Brownian motion. Thus only the cheaper queue will be in heavy traffic and the other
queue-length Q1(·) will be essentially negligeble compared to the cheaper queue Q2(·).



1 2 3

Output ports

Input ports Switch crossbar

Q
33

 Connection point

Figure 2: Schematic diagram of a switch showing the queues at each input port. Each
input port i is connected to output port i, i.e., queues (1, 1), (2, 2) and (3, 3) are served.

Any arrival rate matrix satisfying the above constraints would be called a stable arrival
rate matrix. Note that a doubly stochastic matrix would obey all of these constraints
with equality.

The queue-length matrix at time k denoted by Q(k) obeys

Q(k + 1) = Q(k)−D(k) + A(k + 1)

where A(k + 1) denotes the number of arrivals at time k + 1 and D(k) denotes the
departures in the time interval [k, k + 1]. If the matching at time k is denoted by π(k)
and πij(k) = 1, then Dij(k) = 1 if Qij(k) = 1 and zero other wise–a packet will only
depart if it existed. Mathematically, if 1{E} denotes the indicator function for event E,

Dij(k) = πij(k)1{Qij(k)>0} (7)

The matrix of total number of arrivals and departures up to time k are denoted by
Ā(k) =

∑k
i=1A(i) and D̄(k) =

∑k−1
i=1 D(i), respectively. Let P̄π(k) indicate the number

of times the matching π was used till time k. Note that
∑

π P̄π(k) equals k. Finally, P (k)
is the vector of all n! matching counters {P̄π(k)}. The switch operation is completely
described the process X(.) = (Q(.), Ā(.), D̄(.), P̄ (.)).

A maximum weight matching algorithm chooses a matching π∗, which maximizes

the weight
∑

ij πijf(Qij)
∆
= αf (π,Q) over all permutations π for a given function f(.).

This maximum weight matching algorithm will be called MWM-f algorithm. We discuss
MWM-f throughout the remaining paper.

Now we define the fluid scaling of the system.

Xr(t) = X(rt)/r

Note that both time and space are shrunk by a factor of r as opposed to the heavy traffic
scaling. To avoid confusion with the notation for the heavy traffic limit, the limit of
Xr(t) is denoted by x′(t) = (q′(t), a′(t), d′(t), p′(t)). Time derivative of x′(t) would be
denoted by ẋ′(t) and x′(t) should not be confused as the time derivative of x(t).



Using law of large numbers, we can show that almost surely,

a′ij(t) = λijt i.e. a′(t) = λt (8)

q′(t) = λt− d′(t) (9)∑
π

p′π(t) = t hence
∑
π

ṗ′π(t) = 1 (10)

Now we rewrite the departure equation (7) as

Dij(k) =
∑
π

πij1{Qij(k)>0}(P̄π(k + 1)− P̄π(k))

because (P̄π(k + 1) − P̄π(k)) is nonzero (unity) only for the matching πij(k) at time k.
Using the above equation the following fluid relation is obtained

ḋij
′
(t) =

∑
π

πij1{q′ij(t)>0}ṗ
′
π(t) (11)

Let σ(t) denote the service rate matrix at time t,

σ(t) =
∑
π

πṗ′π(t) (12)

Differentiating Eq. (9) and using Eq. (11) yields

˙q′ij(t) = λij − σij(t) if q′ij > 0 (13)

= (λij − σij(t))+ if q′ij = 0 (14)

These equations are quite intuitive if one imagines a water container with water level q′ij,
an input tap flowing at rate λij and an output tap flowing at rate σij(t). In short, the
above function for all i, j will be written in matrix form as q̇′(t) = (λ− σ(t))+[q′=0].

After this setup, we are ready to analyze the stability of a switch under MWM-f
algorithm. We will use the following notion of stability.

Definition 1 A switch algorithm is stable if for any stable arrival rate matrix λ, q′(0) = 0
implies that q′(t) = 0 for all t > 0.

Condition 1 We assume the weight function f : R+ → R+ is a strictly increasing
continuous function and f(0) equals zero. It should also satisfy a more involved condition
that for any (x1, · · · , xn) and (x1, · · · , xn) in R+

n,

∑
i

f(xi) ≥
∑
i

f(yi)⇔
∑
i

f(δxi) ≥
∑
i

f(δyi) ∀δ > 0

This condition ensures that if a particular matching is optimum (maximizes the weight)
for actual queue-lengths Q(.), it also maximizes the weight for those queue-lengths in
fluid scaling i.e. Q(.)/r.

A MWM-f algorithm only chooses the matchings which maximize the overall weight
and by our assumption about f , it only chooses the matchings which maximize the weight
with scaled queue-lengths. Hence at every time t in the fluid scaling, the cumulative
number of π matchings up to that time given by p′π(t) does not grow for suboptimal π.
In other words, ṗ′π(t) = 0 if π does not maximize

∑
ij πijf(q′ij(t)) = αf (π, q

′(t)). Let the



set of optimal matchings at time t (which maximize the weight αf (π, q
′(t))) be denoted

by π∗(t). By Eq. (10), these optimal matchings grow such that the sum of their growth
rates is 1.

∑

π∈π∗(t)
ṗ′π(t) = 1 (15)

Also from Eq. (12), the service rate is given by

σ(t) =
∑

π∈π∗(t)
πṗ′π(t) (16)

Now consider the following Lyapunav function of the queue-state q′

L(q′) =
∑
i,j

F (q′ij) where F (x) =

∫ x

0

f(y) dy.

We will show using the fluid equations that L(q′(t)) is a decreasing function of time
for any stable arrival rate matrix λ. We will use the dot product notation A · B for two
matrices A and B to denote

∑
i,j AijBij. Note that

dL(q′(t))
dt

=
∑
i,j

f(q′ij(t)) ˙q(t)
′
ij = f(q′(t)) · ˙q(t)

′
ij (chain rule of differentiation)

= f(q′(t)) · (λ− σ(t))+[q′(t)=0] (by Eq.(13))

= f(q′(t)) · (λ− σ(t)) as f(q′ij) = 0 if q′ij = 0

≤ f(q′(t)) · (λ+ − σ(t))

where λ+ is a doubly stochastic matrix such that λ+
ij ≥ λij for all i, j. Since every

doubly stochastic matrix can be written as a convex combination all the permutation
matrices, we have λ+ =

∑
π bππ where

∑
bπ = 1. Also note that f(q′(t)) · σ(t) =

f(q′(t)) · (∑π∈π∗(t) πṗ
′
π(t)) from Eq. (16). If weight of any optimal matching at queue-

state q′ is denoted by α∗f (q
′), we have f(q′(t)) · π = α∗f (q

′(t)) for all matchings π in the
optimal set π∗(t). Hence by Eq. (15),

f(q′(t)) · σ(t) = α∗f (q
′(t))

∑

π∈π∗(t)
ṗ′π(t) = α∗f (q′(t)) · 1

Now we have,

dL(q′(t))
dt

≤ f(q′(t)) ·
(∑

π

bππ

)
− α∗f (q′(t))

≤
(∑

π

bπ

)
α∗f (q′(t))− α∗f (q′(t))

= α∗f (q
′(t))− α∗f (q′(t)) = 0

The second last step follows because by definition, f(q′(t)) · π ≤ α∗f (q′(t)) for all π. Thus
we have shown that the Lyapunav function is non-increasing at all times.

Now to prove the stability, we simply note that if q′(0) = 0 then L(q′(0)) = 0.
Moreover, L(q′(t)) = 0 for all t > 0, because L(q′(t)) is nonnegative and non-decreasing–
it cannot decrease below 0. Now L(q′(t)) = 0 implies q′(t) = 0, because L(q′) is non-zero
for any other q′. Thus the definition of stability is satisfied and every MWM-f algorithm
is proved to be stable.



2.2 Steady State of the Switch in Fluid Scaling

A state q1 is called a steady state of the switch in fluid scaling if q′(t0) = q implies
q′(t) = q for all t > t0. For example, 0 is a steady state as proved earlier. Henceforth,
we will consider the case when one or more (input/output) ports are in heavy traffic.
Let q′i· =

∑
j q
′
ij denote the total queue-length at input port i. q′·j is similarly defined for

every output port j. Similarly, λi· and λ·j are defined as the sum arrival rate at input
port i and output port j, respectively. An input port being in heavy traffic means that
λı· = 1 (or λ·j = 1 if it is an output port).

Now we show that if an input port i is in heavy traffic, q′i·(t) is a non-decreasing
function of time. From Eq. (13),

q′i·(t) ≥ λi· − σi· because (λij − σij)+[q′ij=0] ≥ λij − σij
≥ 0 because λi· = 1

The above expressions simply state that the input port i can at most be served at a rate
of 1, which corresponds to always serving a nonempty queue at that port. Similar result
holds true for an output port. Thus we have shown that the fluid scaling queue-length
at a port in heavy traffic cannot decrease with time3.

Trajectory Constraints We have shown two constraints over the trajectories of the
queue-state q′(t): 1) The Lyapunav function L(q′(t) cannot increase over time 2) The
queue-length at the heavy traffic ports cannot decrease over time.

Now also note that the Lyapunav function L(q′) =
∑

ij F (q′ij) is strictly convex in
q′. It is because we have assumed that f(.) is strictly increasing. Hence over any convex
region, there is unique minimum for L(.). Now if q is the initial state, any future state
q′(t) is such that q′i· ≥ qi· and q′·j ≥ q·j for the ports in heavy traffic. Thus the future
states lie in a convex region defined by the initial state and the Lyapunav function has a
unique minima in this region. Since Lyapunav function keeps decreasing, the queue-state
will eventually land up at that minima. Now if the initial state q itself was this minima,
the queue-state would remain unchanged. Thus we have the following characterization
of the steady state.

Theorem 2 q is a steady state if an only if q itself is the solution to the optimization
problem based on q: minimize L(r) over the set of non-negative r such that ri· ≥ qi· and

r·j ≥ q·j for the heavy traffic port(s). Also note that dL(q′(t))
dt

= 0 at the steady state,
because q′(t) remains unchanged and hence its function also remains unchanged.

We noted in the previous discussion that starting with any state, a steady state is
reached eventually. Once a steady state is reached, it remains unchanged (by definition).
To be precise, for arbitrarily small ε > 0 and any initial state q′(0), the queue-state q′(t)
goes within an ε-neighborhood of a steady state q, that is, ||q′(t) − q|| < ε within some
finite time t ≤ T (ε).

3Compare this with the behavior of the queue-length in heavy traffic scaling, which behaves as a
reflected Brownian motion and thus can decrease over time.



3 Heavy traffic theory

We have seen earlier that the heavy traffic scaling is given by xr(t) = X(r2t)/r, where
X(.) denotes the original discrete time process (Q(.), Ā(.), D̄(.), P̄ (.)) and xr(.) denotes
the heavy-traffic scaled process. In this discussion, r should be thought as a large but
fixed number. Recall that the fluid scaling Xr(t) = X(rt)/r corresponds to shrinking
time and space by a factor of r. The heavy traffic scaling further shrinks Xr(t) in time
by a factor of r. Intuitively, each instant in a heavy traffic process is a long time in fluid
process. Since a fluid process converges to a steady state after some time, the heavy
traffic process is in a steady state at every instant4. The next few paragraphs sketch this
intuition little more precisely.

Studying the heavy traffic scaling xr(t) i.e. (qr(.), ar(.), dr(.), pr(.)) for a time interval
of t ∈ [0, T ] corresponds to the original process in time [0, r2T ]. We form r sub-intervals
of this heavy traffic time interval [0, T ]. For ease of understanding, assume that these

sub-intervals are disjoint and have equal length i.e. the interval m is [mT
r
, (m+1)T

r
].

Consider the heavy-traffic process xr(t) in interval m. Stretch it in time by a factor
of r. Define this new stretched process as xrm(t) = (qrm(.), arm(.), drm(.), prm(.)). More
precisely,

∀ t ∈ [0, T ] arm(t) = ar
(
t+mT

r

)
− ar

(
mT

r

)

drm(t) = dr
(
t+mT

r

)
− dr

(
mT

r

)

prm(t) = pr
(
t+mT

r

)
− pr

(
mT

r

)

qrm(t) = qr
(
t+mT

r

)

These equations can be re-written by substituting xr(t) = X(r2t)/r.

∀ t ∈ [0, T ] arm(t) =
Ā(rt+ rmT )− Ā(rmT )

r

drm(t) =
D̄(rt+ rmT )− D̄(rmT )

r

prm(t) =
P̄ (rt+ rmT )− P̄ (rmT )

r

qrm(t) =
Q(rt+ rmT )

r

Note that for every 1 ≤ m < r, process xrm(t) is a fluid scaling by r of the original
discrete-time process. Recall that any starting state reaches ε-neighborhood of a steady
state in fluid scaling within finite time T (ε). Thus if T � T (ε), each of the fluid processes
essentially always (excluding the initial T (ε) time units) remains in steady state. Now
concatenating all the r fluid processes xrm(t) ahead of each other yields the original heavy
traffic process stretched in time by a factor of r i.e. xr(t/r).

This concatenated process is essentially always in steady state, as its pieces are es-
sentially always in steady state. Each piece may be in a different steady state however.

4However, different times may be in different steady states.



Shrinking back xr(t/r) by a factor of r gives the original heavy traffic process of interest,
xr(t). In every time interval [mT

r
, mT+T

r
], this process is essentially always in some steady

state. Taking r to infinity implies that the heavy traffic limit q(t) is always in some
steady state.

By steady state in heavy traffic limit, we meant any state q, which satisfies the
optimization problem in Theorem 2. Because the queues behave as a Brownian motion
in heavy traffic scaling, a steady state in heavy traffic scaling should not be interpreted
as that in fluid scaling (which meant a steady state remains unchanged once reached).

Now recall that the optimization problem in Theorem 2 is defined by the sum queue-
length(s) at the heavy traffic port(s). Since a steady state is a unique solution to this
problem, it is completely defined by the sum queue-lengths at the heavy traffic ports.
Since q(t) for every t is a steady state in the heavy traffic limit, only specifying the sum
queue-lengths (qi· or q·j) at the heavy traffic ports completely describes the entire state
q(t). Thus the dimensionality of the state is reduced from n2 to the number of ports in
heavy traffic–state-space collapse again.

3.1 Only one port in heavy traffic

Without loss of generality, consider that the first input port is in heavy traffic, because
similar analysis can be performed even for an output port in heavy traffic. Now if
q1·(t0) = a, the entire queue-state q(t0 is given by the solution to the optimization:
minimize L(q) such that q1· ≥ a and all qij ≥ 0. First, all rows of q(t0) other than
the first should be zero for optimality. Second, the elements of the first row should be
all equal due to Jensen’s inequality and the fact that L(q) is convex. Thus the entire
queue-state is described as follows: the first row of q(t0) equals [ a

n
, · · · , a

n
] and all other

rows are zero.
More generally, when more than one port is in heavy traffic, if neither input port i

nor output port j are in heavy traffic, qij(t) should be 0 at all times5. Thus analyzing a
switch with first k input and output ports in heavy traffic is same as analyzing a smaller
switch of size k with all its ports in heavy traffic.

Going back to case of single heavy traffic port, recall the discussion at the end of
section 1 (after Eq. (5)). Since the rate constraint

∑
j λ1j = 1 is met with equality,∑

j q1j(t) i.e. q1·(t) is a reflected Brownian motion. Hence all the entries of the first row
of the state q(t) are also a reflected Brownian motion–moreover all of them are always
equal to each other. [1] also generalizes these results for a broader definition of switch.

3.1.1 Comments

Assume that it costs
∑

i,j F (Qij) = L(Q) each time the queue-state isQ (in discrete time).
In the heavy traffic scaling, this will correspond to a cost rate of ċ(t) =

∑
i,j F (qij) =

L(q(t)). Since MWM-f algorithm minimizes L(q(t)) for every t, it also minimizes the

total cost incurred up to any given time. That is, it minimizes c(t) =
∫ T

0
ċ(t)dt. If a

weight function of the form f(x) = xβ is used for some β > 0, we will call it MWM-β
algorithm with little abuse of notation. MWM-β will minimize

∑
i,j q

1+β
ij (t) for all t.

Thus it minimizes the total cost incurred with the cost rate
∑

i,j q
1+β
ij (t).

5This reminds us of the remark at the end of Section 1.1.



3.2 All ports in heavy traffic: minimizing delay

Minimizing the sum delay incurred by the packets is of interest in practice. By Little’s
law, this also corresponds to minimizing the sum of queue-length at all times. Thus we
need an algorithm which minimizes

∑
i,j Qij(k) at all times. However, we simplify the

problem by looking at a coarser scaling, that is just find an algorithm which minimizes
the sum queue-length in heavy traffic scaling (

∑
ij qij(t)) at all times k. Unfortunately,

any MWM-f algorithm would not achieve this. Because, a weight function f(x) = 1{x>0}
should be chosen for the Lyapunav function to equal the cost rate

∑
ij qij(t). However,

we have assumed strictly increasing f in our analysis (Condition 1).

This choice of f(x) = 1{x>0}
∆
= x0 is also called the maximum size matching, because

it finds a matching of the maximum size in a bipartite graph, where an input port i
is connected to an output port j if and only if Qij > 0. This algorithm is also called
as MWM-0 algorithm. It does not give any extra service priority to the longer queues
over the shorter queues. Delay optimality apart, it is known that it is not even a stable
algorithm. That is, the Definition 1 of stability is not satisfied for some stable arrival
rate matrix λ.

On the other hand, as discussed later, a slight modification of the MWM-0 algorithm,
called as MWM-0+ algorithm is a stable algorithm, moreover, it minimizes the sum
queue-length

∑
ij qij(t) at all times in heavy traffic scaling. Thus it minimizes the average

delay of the switch at least in the heavy traffic scaling. It is also shown that the traditional
MWM-1 algorithm, which treats the queue-lengths Qij themselves as weights, is not a
delay optimal algorithm–thus shattering a common folk-lore in switching community.

3.3 Delay optimality of MWM-0+

First we explain the meaning of this algorithm. This can be thought of as MWM-β
algorithm for arbitrarily small β > 0. For small values of β,

Qβ
ij ≈ 1 + β logQij

Thus every non-empty queue is given essentially unit weight and every empty queue
weighs 0. Hence only maximum-size matchings need to be considered further. Let
{e1 · · · , en} denote the set of edges in a matching. Among all maximum size match-
ings, the one which also maximizes the weight

n+ β log

(∏
i

Qei

)

is chosen. Thus the maximum size matching which maximizes the product of the queue-
lengths is chosen.

For proving the optimality, the authors first characterize the steady state of a MWM-f
algorithm. Note that since all the ports are in heavy traffic, the set of sum queue-lengths
at each port i.e. all qi·(t) and qi·(t) determines the entire matrix q(t) in heavy traffic
limit. We denote this vector of sum queue-lengths at all ports by q̃(t). This q̃(t) is
also called as the state of process since it completely determines all qij(t). The analysis
for characterizing the steady state is omitted, as it is not as straight-forward as that in
Section 3.1 where only one port was in heavy traffic. We will summarize the (somewhat
surprising) final characterization without proof: A steady state q satisfying Theorem 2
is such that all the matchings have the maximum weight

∑
ij πijf(qij).



Then they show that for MWM-0+ algorithm, for every non-negative vector z ∈ R2n
+ ,

there exists a steady state q such that the sum queue-length at port equals an element
of z. That is, qi· = zi and q·j = zn+j for all i and j. They show this by using the fact
that all matchings are optimal in a steady state q. Thus the state vector q̃(t) can take
any value in z ∈ R2n

+ .
Under MWM-0+ algorithm, for any strictly positive (element-wise) q̃(t), all the entries

of the corresponding steady state q(t) can be shown to be strictly positive. Then any
matching serves all the inputs ports and all the outputs ports without idling at any port,
that is, none of the crossbar connections are wasted.

Moreover, as seen before in Section 1, each element of the state vector q̃(t) performs a
reflected Brownian motion. The set of times when a reflected Brownian motion hits zero
has measure zero. Hence, almost at all times, the algorithm does not idle at any port.
Since the system is never idle, the sum of queue-lengths cannot be reduced further, thus
proving the optimality of MWM-0+ algorithm.

Finally, for showing that the traditional MWM-1 is not delay optimal, they simply
show that the state vector q̃(t) no more lies in the entire space R2n

+ . Instead, it lies in a
strict sub-space S1 of R2n

+ . Hence, there exist arrival processes such that the state-vector
q̃(t) would go outside S1 under MWM-0+ algorithm, but MWM-1 would retain it within
S1 by idling on some ports.

In a similar manner, let the state vector q̃(t) under MWM-β1 algorithm lie in space
Sβ1 and that for MWM-β2 lie in Sβ2 . They show that Sβ2 is contained in Sβ1 if β2 > β1.
Hence, MWM-β1 has a better delay performance than MWM-β1.

4 Summary

We discussed the origin of Brownian motion in heavy traffic scaling. Then we saw the
idea of state-space collapse for a simple two-queue system. Later, we described the switch
properties and a class of maximum weight matching algorithms called MWM-f was shown
to be stable using fluid scaling. Then steady state in fluid scaling was characterized as
solution to an optimization problem. Then we showed that a process in heavy traffic
scaling, is in a (fluid scaling) steady state at all times. We then studied the case with
only one port in heavy traffic. Finally, a delay optimal algorithm was discussed and the
delay of some other common algorithms was compared.

References

[1] A.L. Stolyar, “MaxWeight Scheduling in a Generalized Switch: State Space Collapse
and Workload Minimization in Heavy Traffic,” Annals of Applied Probability, Vol.14,
No.1, pp.1-53, 2004.

[2] D. Shah, Randomization and heavy traffic theory: new approaches to the design
and analysis of switch algorithms, Ph.D. Thesis, Stanford University, 2004.


