Cooperative Diversity for Wireless Networks

Vijay Divi

Signals, Information, and Algorithms Laboratory

November 17th, 2004

Introduction

- Fading is a major limitation in wireless systems
- Different forms of diversity used to overcome fading
 - Spatial Diversity
 - Temporal Diversity
 - Frequency Diversity
- Focus on specific form of spatial diversity named cooperative diversity
 - Other terminals in network act as relays between source and dest.
 - Relays experience independent fading and act as a virtual antenna array

Background

- Scalar Fading Channel
 - Slow/Fast Fading
 - Transmitter CSI
- MIMO Communication System
 - Diversity Gain
 - Multiplexing Gain
- Connection to Cooperative-Diversity

Scalar Fading Channel

Input signal experiences Rayleigh fading h and additive Gaussian noise w

y = hx + w

where $x \sim CN(0, \sigma_x^2)$, $w \sim CN(0, \sigma_w^2)$

SNR:

$$\rho \stackrel{\triangle}{=} SNR = \sigma_x^2 / \sigma_w^2$$

Two major questions:

- How often does the realization of *h* change?
- Does the transmitter have knowledge of *h*?

Transmission Cases

Fading:

- Slow Fading Channel does not change within time period of interest
- Fast Fading Channel changes on the order of symbols/codewords

Channel State Information (CSI):

- Tx CSI Transmitter has knowledge of *h*
- No Tx CSI Transmitter does not know h, only its distribution

	Slow Fading	Fast Fading
Tx CSI	Deterministic Capacity	Time Water-filling
	$C = \log(1 + h ^2 \rho)$	
No Tx CSI	Outage Capacity R, p^{out}	Ergodic Capacity
	R, p^{out}	$C = E[\log(1+ h ^2\rho)]$

Slow Fading/No Tx CSI

- Most difficult case
- Any non-zero rate chosen by the transmitter may be above the supported rate of the channel
- Channel is not changing with time (non-ergodic), the transmission may always fail with some non-zero probability
- Shannon capacity is zero, i.e., system cannot guarantee that any amount of information can be transmitted reliably.
- Outage capacity: given *R* and *SNR*, there is a non-zero probability that the channel does not support this rate; this probability is known as the outage probability (*p^{out}*).
- Can use relays to improve transmission, act like a virtual MIMO system

Multiple Antenna Systems

• The discrete-time MIMO channel model for system with *m* transmit and *n* receive antennas is

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}.$$

- **H** is an $n \times m$ matrix of channel gains whose entries are i.i.d., CN(0,1)
- H drawn from such a distribution causes
 - Outages in the system
 - Increases degrees of freedom for communications

Diversity Gain

• High-SNR regime: the diversity gain d measures the rate at which the error probability decays with SNR $(1/\rho^d)$

$$d = -\lim_{\rho \to \infty} \frac{\log P_e(\rho)}{\log \rho}$$

- For a system with *m* transmit and *n* receive antennas, in the best case, the error can be made to decay with SNR as $1/\rho^{mn}$
- Diversity is a result of the *mn* independent paths between the transmit and receive antennas.

Multiplexing Gain

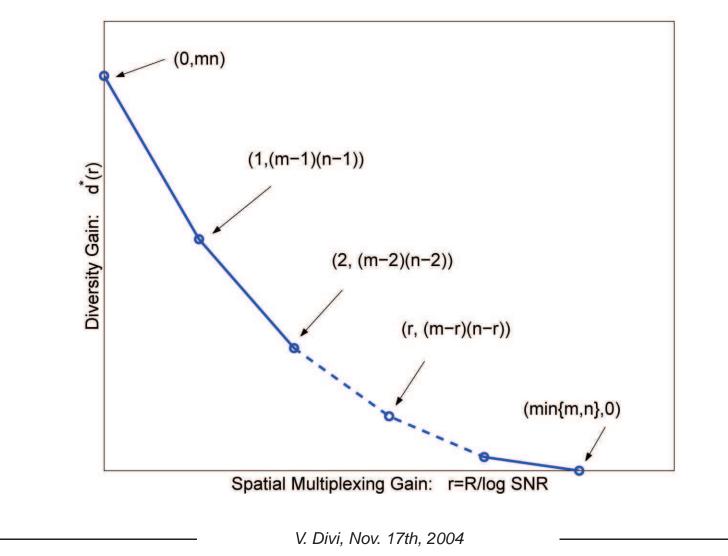
- Because the path gains are independent, the channel matrix is well-conditioned with high probability
- Can view the MIMO system as $\min(m, n)$ independent spatial channels between the transmitter and receiver.
- Fast fading ergodic capacity: $C(\rho) = \min(m, n) \log \rho + O(1)$
- For slow fading, spatial multiplexing gain *r* measures the rate at which *R* increases with respect log ρ and is formally defined as:

$$r = \lim_{\rho \to \infty} \frac{R(\rho)}{\log \rho}, \qquad R \doteq r \log \rho$$

• Multiplexing gain can be thought of as the number of independent spatial channels being used optimally, which is upper-bounded by $\min(m, n)$.

Diversity-Multiplexing Tradeoff

• Natural to talk about a tradeoff between the r and d



Connection to Cooperative-Diversity

- Scalar fading channel provides a lower bound for the performance of any valid cooperative-diversity scheme
 - Can always ignore use of the relay (non-cooperative protocol) and achieve scalar channel performance
- 2×1 MIMO system provides an upper bound
 - In MIMO system, the transmitter has full control over both antennas and can code across both of them, allowing more flexibility.
 - Often referred to as genie-aided protocol

System Model $s \rightarrow b$

- $x_s[n]$ and $x_r[n]$ are the transmitted signals from the source and relay
- $y_r[n]$ and $y_d[n]$ are the received signals of the relay and destination
- Direct source to destination transmission modeled as:

$$y_d[n] = a_{s,d} x_s[n] + z_d[n]$$

- Fading $a_{i,j} \sim CN(0, \sigma_{i,j}^2)$ and independent
- Noise $z_j[n] \sim CN(0, N_0)$, mutually independent

Model Assumptions

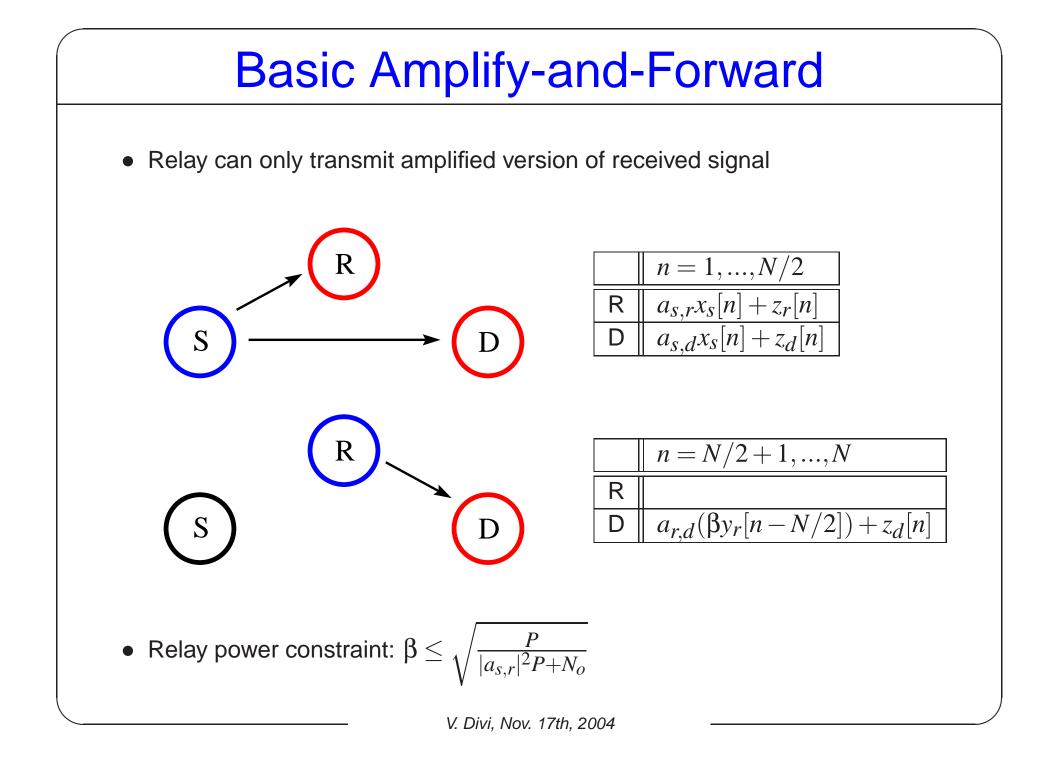
- Half duplex: antennas cannot transmit and receive simultaneously
- Channels experience independent flat Rayleigh-fading and white complex Gaussian noise.
- Slow fading environment
- Transmitters have no CSI. Receivers have full CSI.
- Each terminal has one antenna with power constraint, P.

Case Analysis

- 1. Single Relay Systems
 - Amplify-and-Forward
 - Decode-and-Forward
- 2. Multiple Terminal System
 - AF Revisited
 - DF Revisited
 - Cooperative Broadcast Channel
 - Cooperative Multiple-Access Channel

Single Relay Systems

- Three terminals: source, relay, destination
- Relay can either amplify or decode, re-encode, and transmit
- Work by Laneman-Wornell-Tse
 - Additional constraint that only one terminal is transmitting at a time
- Work by Azarian-El Gamal-Schniter
 - Allow multiple terminals to transmit simultaneously
 - Protocols optimal in certain regimes.



Basic AF Performance

• Mutual information between the input and 2 outputs as

$$I_{AF} = \frac{1}{2}\log(1+\rho|a_{s,d}|^2 + f(\rho|a_{s,r}|^2,\rho|a_{r,d}|^2))$$

where

$$f(x,y) = \frac{xy}{x+y+1}.$$

• For an outage event (small fading coefficients), f(x,y) can be approximated as $\min(x,y) \stackrel{\triangle}{=} \gamma$.

Basic AF Performance cont.

• Thus, our outage event becomes (I;R):

$$\frac{1}{2}\log(\rho|a_{s,d}|^2 + \rho\gamma) < R$$

$$\log(\rho) + \log(|a_{s,d}|^2 + \gamma) < 2r\log\rho$$

$$\log(|a_{s,d}|^2 + \gamma) < (2r - 1)\log\rho$$

$$|a_{s,d}|^2 + \gamma < \rho^{(2r - 1)}$$

- Since γ and $|a_{s,d}|^2$ are both exponential, the probability of outage becomes $(\rho^{2r-1})^2$
- Diversity-multiplexing tradeoff of d(r) = 2(1-2r)

Non-Orthogonal Amplify-and-Forward

AF general form:

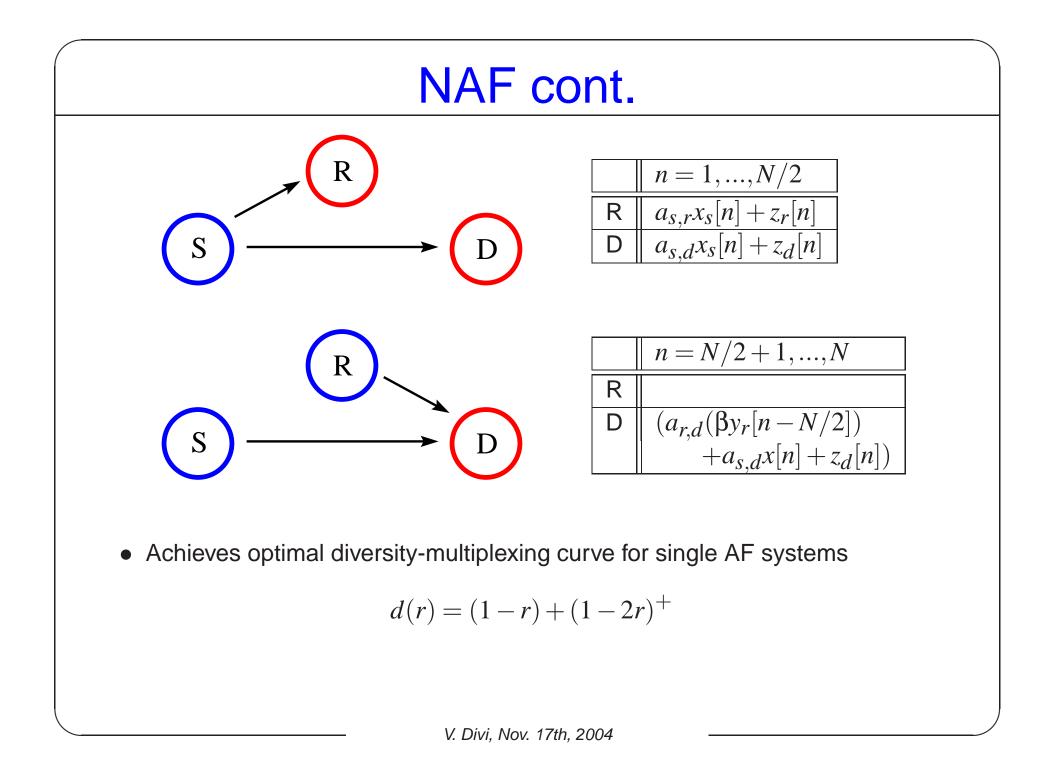
$$\mathbf{y} = \begin{bmatrix} a_{s,d}A_1 & 0\\ a_{s,r}a_{r,d}\beta B & a_{s,d}A_2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0\\ a_{r,d}B \end{bmatrix} \mathbf{z_r} + \mathbf{z_d}$$

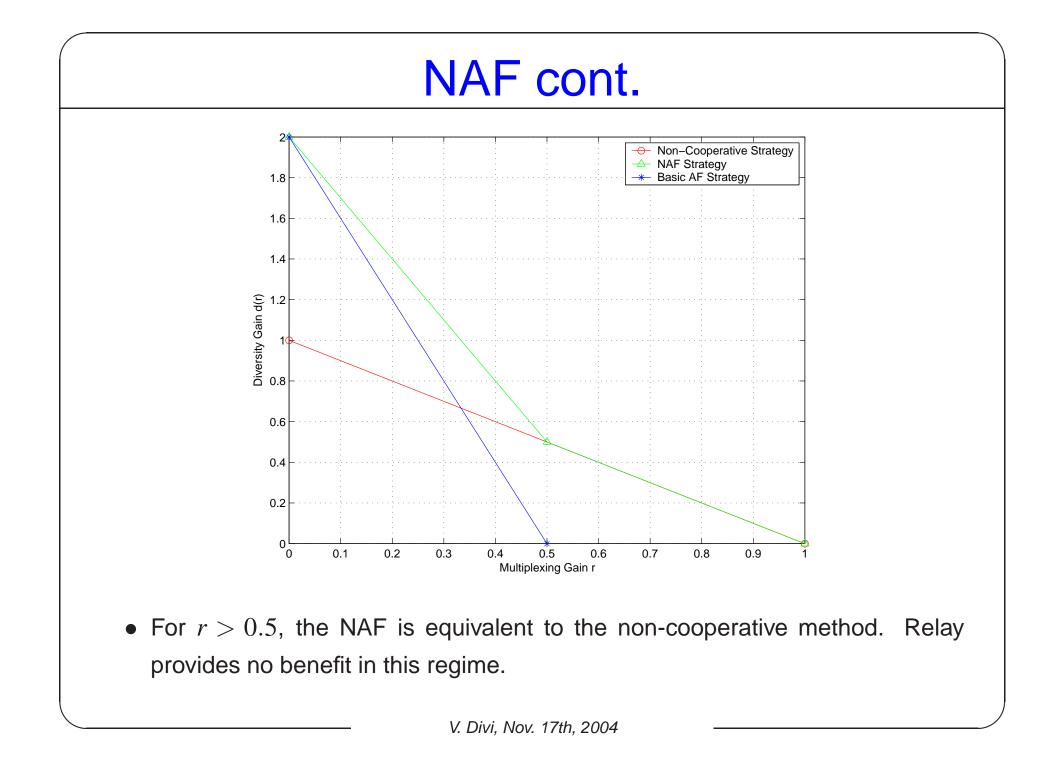
where $y,x,z_r,z_d\in\mathbb{C}^N$, $A_1\in\mathbb{C}^{N',N'}$, $B\in\mathbb{C}^{N-N',N'}$, $A_2\in\mathbb{C}^{N-N',N-N'}$.

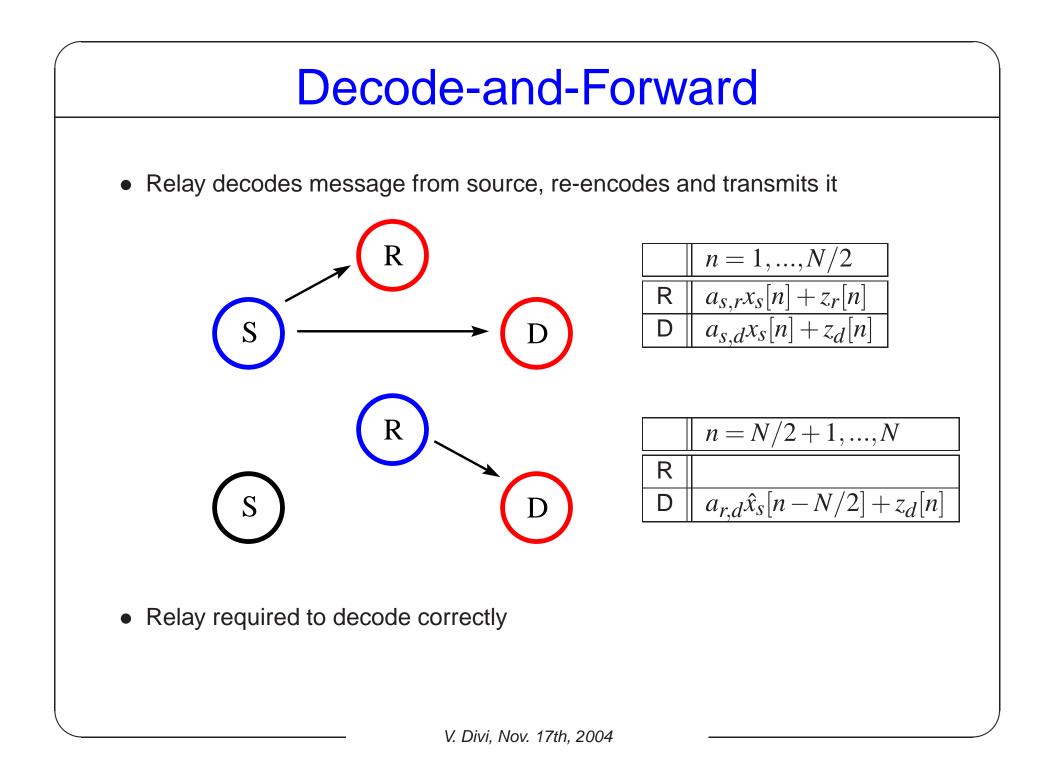
- Initial protocol: N' = N/2, $A_1 = B = I_{N/2}$, and $A_2 = 0$.
- NAF protocol: N' = N/2 and $A_1 = A_2 = B = I_{N/2}$

- $A_1 = A_2 = I_{N/2}$ maximizes mutual information between x and y

- B diagonal to prevent ISI, size N/2 for max symbol repetition







Decode-and-Forward cont.

Mutual information is given by

$$I_{DF} = \frac{1}{2} \min\left(\log(1+\rho|a_{s,r}|^2), \log(1+\rho|a_{s,d}|^2+\rho|a_{r,d}|^2)\right)$$

An outage (either relay or destination cannot decode) occurs for a transmission rate R if

$$\min\left(|a_{s,r}|^2, |a_{s,d}|^2 + |a_{r,d}|^2\right) < \frac{2^{2R} - 1}{\rho}.$$

This occurs with probability

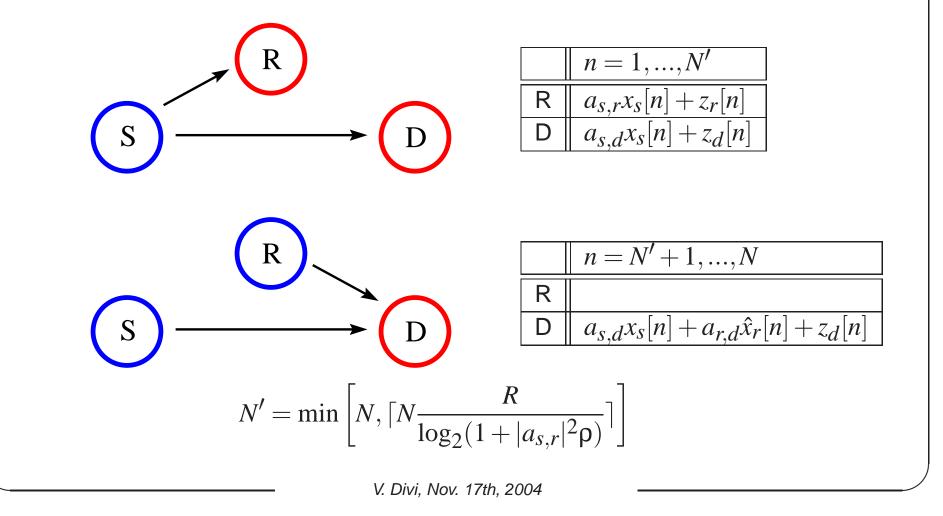
$$p_{DF}^{out}(\rho,R) \sim \frac{1}{\rho^{(1-2r)}}$$

Thus, the diversity multiplexing tradeoff is

$$d(r) = 1 - 2r$$

Dynamic Decode and Forward

• Relay listens to the source until it collects sufficient energy to decode, then begins retransmitting to the destination using an independent codebook



DDF Analysis

It can be shown that the diversity-multiplexing tradeoff achieved via this DDF scheme is:

$$d(r) = \begin{cases} 2(1-r) & \text{ for } \frac{1}{2} \ge r \ge 0, \\ (1-r)/r & \text{ for } 1 \ge r \ge \frac{1}{2} \end{cases}$$

Outline of Proof:

• For a Gaussian random variable g, we define the exponential order of $1/|g|^2$ as v, where

$$v = \lim_{\rho \to \infty} \frac{\log(|g|^2)}{\log \rho}.$$

This implies that in the high-SNR regime, $|g|^2 \doteq \rho^{-\nu}$. The resulting pdf for v is equal to $\rho^{-\nu}$ for $v \ge 0$ and 0 for v < 0. Let us define v_1 , v_2 , and u as the exponential orders of $a_{s,d}$, $a_{r,d}$, and $a_{s,r}$ respectively.

DDF Analysis cont.

• An outage occurs if the mutual information is less than the chosen rate (I < R):

$$\begin{aligned} & Pr(N'\log(1+|a_{s,d}|^2\rho)+(N-N')\log(1+(|a_{s,d}|^2+|a_{r,d}|^2)\rho) < Nr\log(\rho)) \\ &= Pr(N'\log(1+\rho^{-\nu_1}\rho)+(N-N')\log(1+(\rho^{-\nu_1}+\rho^{-\nu_2})\rho) < Nr\log(\rho))) \\ &\approx Pr(N'(1-\nu_1)\log(\rho)+(N-N')(1-\min(\nu_1,\nu_2))\log(\rho) < Nr\log(\rho))) \\ &= Pr((N'/N)(1-\nu_1)+((N-N')/N)(1-\min(\nu_1,\nu_2)) < r) \end{aligned}$$

• Outage region O^+ :

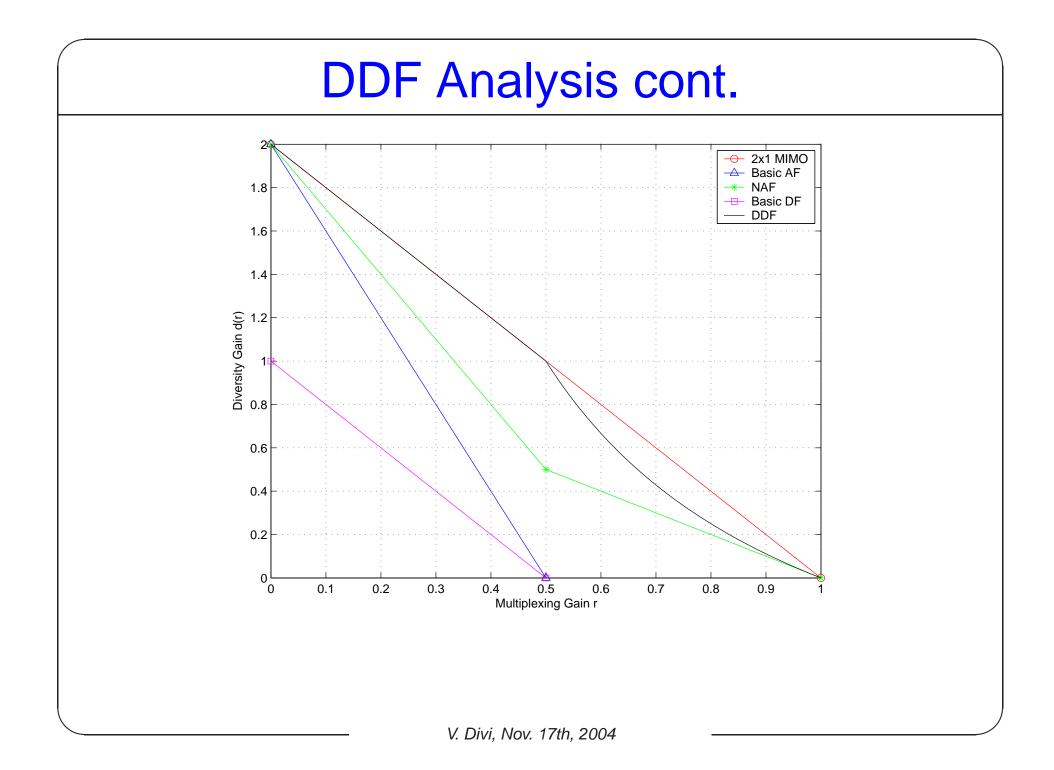
$$O^{+} = \{ (v_1, v_2, u) \mid (N'/N)(1 - v_1) + ((N - N')/N)(1 - \min(v_1, v_2)) < r \}$$

Probability of outage:

$$p_{out} = \int_{(v_1, v_2) \in O^+} \rho^{-(v_1 + v_2)} dv_1 dv_2$$
$$\approx \rho^{-d}$$

where

$$d = \inf_{(v_1, v_2) \in O^+} (v_1 + v_2).$$



DDF Remarks

Comments:

- Optimal diversity-multiplexing tradeoff for single DF relay is unknown for r > 0.5
- Extremely difficult to implement, requires a high level of synchronization and coordination among terminals
- Mixed AF/DF strategy cannot improve performance. Any event outage event for the DDF strategy will remain in outage through mixed strategies.

Multiple Terminals

- AF Revisited
- DF Revisited
- Cooperative Broadcast Channel
- Cooperative Multiple-Access Channel

AF Revisited

- NAF protocol generalized to M-1 relays
 - Relay takes turns helping the source node (first relay is active during first time slots, second relay is active during second time slots, ...)
 - Due to power constraints on the relays, nothing can be gained by having multiple relays repeat the same symbol
- Diversity-multiplexing tradeoff

$$d(r) = (1 - r) + (M - 1)(1 - 2r)^+$$

DF Revisited

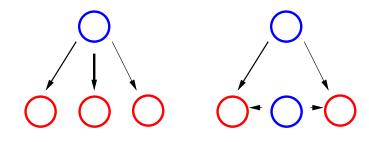
- DDF protocol generalized to M-1 relay system
- When a relay can properly decode, it begins transmitting codeword using an independent codebook (DDF)
- Relays use beacon signal used to inform other relays of transmission starting time
- Diversity Multiplexing tradeoff:

$$d(r) = \begin{cases} M(1-r) & \text{for } \frac{1}{M} \ge r \ge 0, \\ 1 + \frac{(M-1)(1-2r)}{1-r} & \text{for } \frac{1}{2} \ge r \ge \frac{1}{M} \\ \frac{1-r}{r} & \text{for } 1 \ge r \ge \frac{1}{2} \end{cases}$$

Note that this tradeoff is not known to be optimal for r > 1/M.

Cooperative Broadcast Channel

- Single source broadcasts information to M different destinations
- Worse case scenario: all users want to decode the full rate $R = R_c$



- Can use protocol similar to DDF
 - Source transmits codeword
 - After a destination decodes, it begins transmitting to the rest
 - D-M tradeoff same as relay channel with M relays

Multiple-Access Channel

- *M* sources each with independent message to the destination
- CMA-NAF protocol:
 - Sources alternate turns to transmit
 - In each interval, a single source transmits a linear combination of its own signal and the signal it received from the source before it
 - Reaches optimal diversity-multiplexing tradeoff for CMA systems:

$$d(r) = M(1-r)$$

Summary of Results

Protocol	D-M Tradeoff d(r)	
Non-Cooperative	1-r	
Basic AF	2(1-2r)	
NAF	$(1-r) + (1-2r)^+$	
Basic DF	1 - 2r	
DDF	$\begin{cases} 2(1-r) & \text{for } \frac{1}{2} \ge r \ge 0, \\ (1-r)/r & \text{for } 1 \ge r \ge \frac{1}{2} \end{cases}$	
2×1 MIMO	2(1-r)	

• Diversity-Multiplexing Tradeoff

• Performance-Complexity Tradeoff