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Cooperative Strategies and Capacity Theorems
for Relay Networks

Gerhard Kramer, Michael Gastpar, and Piyush Gupta

Abstract— Coding strategies that exploit terminal cooperation
are developed for relay networks. Two basic schemes are stud-
ied: the relays multi-hop the source message to the destination,
or they transmit compressed channel outputs to the destination.
Strategies that mix these schemes are also considered. The multi-
hopping is done in a sophisticated way: the transmitters cooper-
ate and each receiver uses several or all of its past channel output
blocks to decode. For compression, the relays take advantage of
the statistical dependence between their channel outputs and the
destination’s channel output. The strategies are applied to several
wireless channels, and it is shown that one can approach capacity
if the terminals form two closely spaced clusters. One can further
achieve the ergodic capacity with phase fading if the relays are in a
region near the source terminal, and if phase information is avail-
able only locally. The ergodic capacity results generalize to multi-
antenna transmission with Rayleigh fading, single-bounce fading,
certain quasistatic fading problems, cases where partial channel
knowledge is available at the transmitters, and cases where local
user cooperation is permitted. The results further extend to multi-
source networks such as multi-access and broadcast relay chan-
nels.

Index Terms— antenna arrays, capacity, coding, multi-user
channels, relay channels

I. INTRODUCTION

Relay channels model problems where one or more relays
help a pair of terminals communicate. This might occur, for ex-
ample, in a multi-hop or sensor network where terminals have
limited power to transmit data. We briefly summarize the his-
tory of information theory for such channels, as well as some
recent developments concerning coding strategies.

A model for relay channels was introduced and studied by
van der Meulen in [1], [2] (see also [3, Sec. IX]). Two funda-
mental coding strategies for a single relay were developed by
Cover and El Gamal [4, Thm. 1 and Thm. 6]. A combination of
these strategies [4, Thm. 7] achieves capacity for several classes
of channels, as discussed in [4]–[7]. Capacity-achieving codes
appeared in [8] for deterministic relay channels, and in [9], [10]
for “permuting” relay channels with states or memory.

We will consider only random coding, and concentrate on
generalizing the two basic strategies in [4]. The first strategy
achieves the rates in [4, Thm. 1], and it uses block Markov su-
perposition encoding, random partitioning (binning) and suc-
cessive decoding. The encoding is done using codebooks of
different sizes, and we call this irregular block Markov encod-
ing.
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Two alternatives to irregular encoding/successive decoding
were developed in the context of the multi-access channel with
generalized feedback (MAC-GF) studied by King [11]. This
channel has three terminals like a single-relay channel, but now
two of the terminals transmit messages to the third terminal,
e.g., terminals 1 and 2 transmit the respective messages

���
and���

to terminal 3. Terminals 1 and 2 further receive a common
channel output ��� that can be different than terminal 3’s output
� . King developed an achievable rate region for this channel
that generalizes results of Slepian and Wolf [12], Gaarder and
Wolf [13], and Cover and Leung [14].

Carleial extended King’s model by giving the transmitters
different channel outputs � � and � � [15], and it is this model
that we call a MAC-GF. Carleial further designed a strategy and
derived an achievable rate region with 17 bounds [15, eq. (7a)-
(7q)]. Although this region can be difficult to evaluate, there are
several interesting features of the approach. First, the model in-
cludes the relay channel as a special case by making

���
have

zero rate and by setting � �
	�� (note that King’s version of
the relay channel requires � �
	 � � [11, p. 36]). Second,
Carleial achieves the same rates as in [4, Thm. 1] by appropri-
ately choosing the random variables in [15, eq. (7)], i.e., choose����	�����	�����	�����	��

and � ��	���� . This is remark-
able because Carleial’s strategy is different than Cover and El
Gamal’s: the transmitter and relay codebooks have the same
size, and the receiver employs a sliding window decoding tech-
nique that uses two consecutive blocks of channel outputs [15,
p. 842]. A descriptive name for this strategy might be regular
encoding/window decoding.

Yet a third relaying strategy is based on work for the MAC-
GF by Willems [16, Ch. 7]. Willems designed an encoding
technique that seems more powerful than Carleial’s in general,
but for the relay channel his encoders are basically the same as
in [15]. Moreover, instead of using window decoding, Willems
introduced a backward decoding technique. The resulting reg-
ular encoding/backward decoding method achieves the same
rates as irregular encoding/successive decoding and regular en-
coding/window decoding. Backward decoding does, however,
incur a substantial decoding delay.

Subsequent work focused on generalizing these strategies to
multiple relays. Irregular encoding/successive decoding was
extended to degraded relay networks by Aref [5, Ch. 4]. Aref
further developed binning strategies for deterministic broadcast
relay networks and deterministic relay networks without inter-
ference. For each of these networks, the corresponding strategy
was shown to achieve capacity by applying a (then new) cut-
set bound [5, p. 23]. This bound generalizes to networks with
many messages [17, p. 445] and has become a standard tool for
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bounding capacity regions.
More recently, the paper [18] sparked a renewed interest in

network information theory for wireless channels. Gupta and
Kumar also applied the irregular encoding/successive decod-
ing technique to multi-relay networks in [19]. They further
extended this method to multi-source networks by associating
one or more feedforward flowgraphs with every message (each
of these flowgraphs can be interpreted as a “generalized path”
in a graph representing the network [19, p. 1883]). We inter-
pret their relaying approach, and that of [5, Ch. 4], as a multi-
hopping strategy. By this we mean that the source message is
decoded successively by the relays, and finally by the destina-
tion. We remark that, in contrast to many other multi-hopping
schemes, the transmitters cooperate and each receiver uses sev-
eral or all of its past channel output blocks to decode, and not
only its most recent one.

Regular encoding/window decoding was developed for mul-
tiple relays by Xie and Kumar [20], [21], and one can simi-
larly generalize regular encoding/backward decoding [22]. It
is interesting to note that the rates of the two regular encoding
strategies are the same, and this rate is better than that of [5],
[19] for two or more relays. Regular encoding/window decod-
ing is therefore currently the preferred multi-hopping strategy
since it achieves the best rates in the simplest way.

Consider next the second basic strategy of Cover and El
Gamal that achieves the rates given by [4, Thm. 6]. Instead of
multi-hopping, the relays transmit compressed versions of their
channel outputs to the destination. The relays further use the
statistical dependence between these outputs and the destina-
tion’s channel output. More precisely, the relays use Wyner-Ziv
source coding to exploit side information at the destination [23].
This approach was generalized to the MAC-GF in [11, Ch. 3],
and to multiple relays in [24] by adding partial decoding at the
transmitters or relays. One can, of course, also mix the coding
methods described above (irregular/regular encoding, succes-
sive/window/backward/partial decoding).

This paper extends several of the above strategies to relay
networks with many terminals, antennas and sources. We fur-
ther determine new capacity theorems for additive white Gaus-
sian noise (AWGN) relay channels. The paper is divided into
two main parts. The first part deals with general relay chan-
nels and includes Sections II to V. In Section II, we define
the network model and review a capacity upper bound. Sec-
tion III develops the multi-hopping strategies, also known as
decode-and-forward strategies, and generalizes them to multi-
access relay channels (MARCs) and broadcast relay channels
(BRCs). Section IV extends the compress-and-forward strategy
of [4, Thm. 6] to multiple relays. Section V describes a mixed
strategy where each relay uses either decode-and-forward or
compress-and-forward, and refines this strategy to include par-
tial decoding.

The second part of the paper is Section VI that specializes the
information theory to wireless networks with geometries (dis-
tances) and fading. We begin by showing that the mixed strat-
egy of Section V achieves capacity when the terminals form two
closely spaced clusters. We next consider channels with phase
or Rayleigh fading, and where phase information is available
only locally. We show that the decode-and-forward strategy

achieves the ergodic capacity when all relays are in a region
near the source terminal. The capacity results generalize to cer-
tain quasistatic models, and to MARCs and BRCs. Section VII
concludes the paper.

We remark that, due to a surge of interest in relay channels,
we cannot do justice to all the recent advances in the area here.
For example, we do not discuss cooperative diversity that is
treated in [25]–[31]. Many other results can be found in [32]–
[52] and references therein. In particular, Schein developed sev-
eral decode-and-forward, compress-and-forward, and amplify-
and-forward strategies for a two-relay network in [32], [33].
His model is, however, somewhat restrictive in that there is no
direct link between the source and destination. This has the ad-
vantage of simplifying the theory because transmission strate-
gies do not need to deal with interference at the relays.

II. PRELIMINARIES

A. Abstract Model

We consider the network model of [5, p. 9]. The � -terminal
relay network has a source terminal (terminal 1), ����� relays
(terminals � with ���	� 	�
 �
��������������������� ), and a destina-
tion terminal (terminal � ). The network random variables are:
the message

�
, the channel inputs ����� , � 	 ����� �������!������� ," 	 �#�$�
�������&% , the channel outputs ����� , � 	 �
���
�������'��� ," 	 �#�$� �������(% , and the message estimate )� . The � � � are a

function of
�

, and the ����� are functions of terminal � ’s past
outputs � ��*

�
� 	,+ ��� � � ��� � �������-� � �/.0��* �&1�2 . The networks we con-

sider are memoryless and time invariant in the sense that

3 +�4 � �5�������6� 4#7 �$8 9:��; � � �������<��; �7 * � � 4 ��*
�� �������<� 4 ��*

�7 2
	 3'=?>A@B@B@ =DC<E FHG$@B@B@ FIC JKG +�4 � � �������<� 4 7 � 8 ; � � �������6��; . 7 * �51 � 2 � (1)

for all
"
, where 3 +ML 8 N 2 is the conditional probability that O 	�L

given P 	 N , and where the � � and � � , � 	 ���������<��� , are ran-
dom variables representing the respective channel inputs and
outputs. As in (1), we adopt the convention of dropping sub-
scripts on probability distributions when the arguments are low-
ercase versions of the random variables. The condition (1) lets
one focus on the channel distribution

3 +�4 � �������<� 4 7 8 ; � �������<�5; 7 * � 2 (2)

for further analysis.
The destination computes its message estimate )� as a func-

tion of ��Q7 . Suppose that
�

has PSR bits. The capacity T is
the supremum of rates U 	 P:RWVX% at which the destination’s
message estimate )� can be made to satisfy YHZ + )�\[	 � 2^]�_
for any positive

_
.

B. Capacity Upper Bound

Let �a` 	,
 � �cb �d�feg� . A capacity upper bound is given by
the cut-set bound in [5, p. 23] (see also [17, p. 445]).

Proposition 1: The � -terminal relay network capacity satis-
fies

Tih j�k�lm .on G�p n >qpB@B@B@(p n CKJKG 1 jar0s`!t!uwv + � � �a`yx � `�z � 7 8 � `�z 2 (3)
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where e�� is the complement of e in � . For example, for � 	 �
we have

Tih j�kXlm .0n GAp n > 1 jar0s 
 v + � � x � � ���#8 � � 2 � v + � � � � x ��� 2 �c� (4)

Remark 1: The set of 3 FHG$@B@B@ FIC JKG +�� 2 is convex, and the mu-
tual informations in (3) are concave in 3 FHG�@B@B@ FIC JKG +�� 2 [17, p.
31]. Furthermore, the point-wise minimum of a collection of
concave functions is concave [53, p. 35]. One can thus perform
the maximization in (3) efficiently with convex optimization al-
gorithms (see [47]).

III. DECODE-AND-FORWARD

The multi-hopping strategies have as a common feature that
the source controls what the relays transmit. For wireless
networks, one consequently achieves gains related to multi-
antenna transmission. The strategy has been named “decode-
and-forward” in [28], or simply decode-forward, and we label
the corresponding rates U��
	 .

A. Single Relay Rates

We interpret the strategy of Cover and El Gamal [4, Thm. 1]
as a decode-forward strategy. Again, however, we emphasize
that in addition to the usual multi-hopping, the transmitters co-
operate and each receiver uses several or all of its past channel
output blocks to decode. The strategy achieves any rate up to

U �
	 	 j�k�lm .0n G$p n > 1 jaros 
 v + � � x � � 8 � � 2 � v + � � � � x ��� 2 �H� (5)

The difference between (4) and (5) is that ��� is included in the
first information on the right hand side of (4).

Remark 2: We can apply Remark 1 to (5), i.e., convex op-
timization algorithms can efficiently perform the maximization
over 3 + ; � �5; � 2 .

Remark 3: Suppose we have a wireless network. The second
mutual information in (5) can be interpreted as the information
between two transmit antennas � � and � � , and one receive
antenna � � [24], [33, p. 15]. Decode-forward also achieves a
cooperative gain reflected by the maximization over all joint
distributions 3 + ; � �5; � 2 .

Remark 4: The rate (5) requires the relay to decode the
source message, and this can be a rather severe constraint. For
example, consider the network of discrete memoryless chan-
nels (DMCs) shown in Fig. 1. The channel inputs are � � 	� � � � � � � ��
 and � � , and the outputs are � � and � � 	 � � � � � � � ��
 .
Suppose that � � � , � � � and � � are binary, and that � � 	 � � � ,
� � � 	 � � and � � � 	 � � � . The capacity is clearly 2 bits per
use, but (5) gives only 1 bit per use.

Remark 5: One can generalize (5) by allowing the relay to
partially decode the message. This is done in [4, Thm. 7]
and [6] by introducing a random variable, say

�
, that repre-

sents the information decoded by the relay. The strategy of [6]
(which is a special case of [4, Thm. 7]) achieves rates up to

U�� �
	 	 jaros 
 v + � x � � 8 � � 2�� v + � � x ���K8 � � � 2 � v + � � � � x ��� 2 �
(6)

Terminal 3Terminal 1

Terminal 2

�����
����� �����

�����
������

Fig. 1. A network of DMCs.
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Fig. 2. A two-hop strategy for the single-relay network.

where 3 +�. �5; � ��; � 2 is arbitrary up to the alphabet constraints
on � � and � � . For instance, choosing

� 	 � � gives (5).
Moreover, the rate (6) is the capacity of the network in Fig. 1
and Remark 4 by choosing

�
, � � � , and � � as independent

coin-flipping random variables, and � � � 	 � .

B. Three Strategies for a Single Relay

The rate (5) has in the past been achieved with three differ-
ent methods, as discussed in the introduction. We refer to [4,
Thm. 1] for a description of the irregular encoding/successive
decoding strategy. We instead review the regular encoding ap-
proach of [15], [16] that is depicted in Fig. 2.

The message 9 is divided into P blocks 9 � �59 � �������<�59�/ of��Q�0 bits each. The transmission is performed in P � � blocks
by using codewords ; � + " �21 2 and ; � + " 2 of length % , where

"
and

1 range from � to � Q30 . The ; � + " �&1 2 , 1 	 ���$�
�������!�$� Q�0 , can be
“correlated” with ; � + " 2 . For example, for real alphabet chan-
nels one might choose

; � + " �&1 2 	54 ; � + " 2��76 ; 8 � + 1 2 (7)

where
4

and
6

are scaling constants, and where the ; 8 � + 1 2 , 1 	���$�
�������!�$��Q�0 , form a separate code book.
Continuing with the strategy, in the first block terminal 1

transmits ; � + �#�59 � 2 and terminal 2 transmits ; � + � 2 . The re-
ceivers use either maximum likelihood or typical sequence de-
coders. Random coding arguments guarantee that terminal 2
can decode reliably as long as % is large and

� h	U ] v + � � x � � 8 � � 2 (8)

where we assume that v + � � x � � 8 � � 2 is positive. We simi-
larly assume the other mutual informations below are positive.
So suppose terminal 2 correctly obtains 9 � . In the second
block, terminal 1 transmits ; � + 9 � �59 � 2 and terminal 2 trans-
mits ; � + 9 � 2 . Terminal 2 can decode 9 � reliably as long as %
is large and (8) is true. One continues in this way until blockP � � . In this last block, terminal 1 transmits ; � + 9 / ��� 2 and
terminal 2 transmits ; � + 9 / 2 .

Consider now the destination (terminal 3), and let
4
�-9 be itsN th block of channel outputs. Suppose these blocks are col-

lected until the last block of transmission is completed. Termi-
nal 3 can then perform Willems’ backward decoding by first
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decoding 9 / from
4
� . / � �&1 . Note that

4
� . / � �51 depends on

; � + 9 / ��� 2 and ; � + 9 / 2 , which in turn depend only on 9 / . One
can show (see [16, Ch. 7]) that terminal 3 can decode reliably
as long as % is large and

� h U ] v + � � � � x ��� 2 � (9)

Terminal 3 next decodes 9 / * � from
4
� / which depends on; � + 9 / * � �59 / 2 and ; � + 9 / * � 2 . Since terminal 3 knows 9 / , it

can again decode reliably as long as (9) is true. One continues
in this fashion until all message blocks have been decoded. The
overall rate is U � P V + P � � 2 bits per use, and by making P
large we can get the rate as close to U as desired.

Finally, we describe Carleial’s sliding window decoding tech-
nique [15]. Consider again Fig. 2, but suppose terminal 3 de-
codes 9 � after block 2 by using a window of the two past re-
ceived blocks

4
� � and

4
� � . One can again show (see [15]) that

terminal 3 can decode reliably as long as % is large and

� h U ] v + � � � � x � � 2 � (10)

The mutual information (10) has a contribution of v + � � x ��� 2
from

4
� � , and v + � � x ���K8 � � 2 from

4
� � . After receiving

4
�-9 , N��� , Terminal 3 similarly decodes 9 9 * � by using

4
� . 9 * �51 and

4
� 9 ,

all the while assuming its past message estimate )9 . �
1

9 * � is 9 9 * � .
The overall rate is again U � P V + P � � 2 bits per use, and by
making P large we can get the rate as close to U as desired.

Remark 6: Window decoding enjoys the advantages of both
the Cover/El Gamal strategy (two block decoding delay) and
the Willems strategy (regular block Markov encoding). Fur-
thermore, regular encoding and window decoding are easy to
extend to multiple relays.

C. Multiple Relays

A natural first approach to multi-hop with several relays is to
generalize the irregular encoding/successive decoding strategy.
This was done in [5], [19]. However, we here consider only the
improved strategy of [20], [21].

Consider two relays. We divide the message 9 into P blocks
of ��Q�0 bits each. The transmission is performed in P � � blocks
by using ; � + " �21#��� 2 , ; � + " �21 2 , and ; � + " 2 , where

" �21#��� range from� to ��Q�0 . For example, the encoding for P 	��
is depicted

in Fig. 3. Terminal 2 can reliably decode 9 9 after transmission
block N if % is large, its past message estimates )9 .

�$1
9 * � � )9 .

�$1
9 * � were

correct, and

� h U ] v + � � x � � 8 � � � � 2 � (11)

Terminal 3 decodes 9 9 * � by using
4
� . 9 * �&1 and

4
�-9 . This can

be done reliably if % is large, its past message estimates )9 . �
1

9 * � ,
)9 . �

1
9 * � were correct, and

� h U ] v + � � � � x ���K8 � � 2 � (12)

The mutual information (12) has a contribution of

v + � � x � � 8 � � 2 from
4
�-9 , and a contribution of v + � � x � � 8 � � � � 2

from
4
� . 9 * �&1 . Assuming correct decoding, Terminal 3 knows

Block 4Block 2

Block 7Block 5 Block 6 Block 8

Block 3Block 1

� 	�
 ��
���� 	��

� ��
 ��� �
� 	�
 ��������� �
� 
 
 ��������������� �

� ��
 ��
 �

� 
 
 ����������� �
� 	�
 ������� �
� ��
 ��� �

� 
 
 ��
���� 	 ��� � �
� ��
 � 	��

� 
 
 � � ����������� �

� 	�
 � 	 ��� � �
� 
 
 � 	 ��� � ����� �� 
 
�������
���� 	��

� 	�
�������
 �
� ��
�� �

� 
 
 ������������� �
� 	�
 ��������� �
� ��
 ��� �
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 � �
� 	�
 ����� �
� 
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 �
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 � � ����� �
� ��
 � � �

Fig. 3. A multi-hopping strategy for the two-relay network.

9�9 * � after transmission block N , and can encode the messages
as shown in Fig. 3.

Finally, terminal 4 decodes 9 9 * � by using
4 ! . 9 * ��1 , 4 ! . 9 * �51 ,

and
4 !
9 . This can be done reliably if % is large, its past message

estimates )9 .
! 1
9 * !

, )9 .
! 1
9 * � were correct, and

� h	U ] v + � � � � � � x �
! 2 � (13)

This mutual information has a contribution of v + � ��x �
! 2

from4 !
9 , v + � � x �

! 8 � � 2 from
4 ! . 9 * �51 , and v + � � x �

! 8 � � � � 2 from4 ! . 9 * �$1 . The overall rate is U � PaV + P � � 2 , so by making P
large we can get the rate as close to U as desired.

It is clear that window decoding generalizes to � -terminal
relay networks, and one can prove the following theorem. Let" +�� 2 be a permutation on � , and define " + � 2 	 � , " + � 2 	 � ,
and " + " b 1 2 	,
 " + " 2 � " + " � � 2 �������<� " + 1 2 � .

Theorem 1: The � -terminal relay network capacity is at least

U��
	 	 j�kXl# .�$ 1 jaros�&% � % 7 * � v + � # . �(' � 1 x � # .0� � �&1 8 � # . � � ��' 7 * �51(2 (14)

where one can choose any distribution on
+ � � � � u 2 .

Remark 7: Theorem 1 is essentially due to Xie and Kumar,
and appeared for AWGN channels in [20]. The result appeared
for more general classes of channels in [21], [22]. Proofs can
be found in [20], [21].

Remark 8: Theorem 1 appeared for degraded relay networks
in [5, p. 69], where degradation was defined as

3 +�4 # . � 1 8 ; # . ��' 7 * �&1 � 4 # . �)' �/* �51&2	 3 +�4 # . � 1 8 ; # . �/* �&1 ��; # . � 1 � 4 # .0�/* �51/2 (15)

for � 	 �
�����������!�5� , some permutation " ++� 2 on � , and where" + � 2 	 � (see [5, p. 54], and also [4, eq. (10)] and [38]). More-
over, U �
	 is the capacity region of such channels [5, p. 69].
One can, in fact, replace (15) by the more general

3 +�4 # . � ' 7 1 8 ; # . �(' 7 * �51 � 4 # .0�/* �51&2	 3 +�4 # .0� ' 7 1 8 ; # . �/* �(' 7 * �51 � 4 # . �/* �51(2 (16)

for � 	 ���+*��������!�5� . The condition (16) simply makes the upper
bound of Proposition 1 the same as U �
	 [21].

Remark 9: We can apply Remark 1 to (14), i.e., convex op-
timization algorithms can efficiently perform the maximization
over 3 + ; � �������6�5; 7 * � 2 .
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Block 1 Block 2 Block 3 Block 4

� ����� ���	�	
��

 ����� �����

� �	��� ���	� ��� ���
� � ��� � � �	
��

 � ��� � � �

� ����� ����� � � � �

 ����� �����

� �	��� ����� ��� ���


 � ��� � � �
� � ��� � � � � ��� �

� ��� 
�� � �����

� �	� 
���
��


 � � 
��
� � � 
�� � � � �


 ��� 
��
� ����� � � � � ��� �

 ����� � � �

� �	��� � � � � ��� �
� � ������� � ��� ���

 � ������� �

Fig. 4. A multi-hopping strategy for a MARC.

Remark 10: We have expressed Theorem 1 using only per-
mutations rather than the level sets of [19]–[21]. This is because
one need consider only permutations to maximize the rate, i.e.,
one need consider only flowgraphs in that have one vertex per
level set. However, observe that to minimize the delay for a
given rate, one will need to consider level sets again. This oc-
curs, e.g., if one relay is at the same location as another.

Remark 11: Backward decoding also achieves U �
	 , but for
multiple relays one must transmit using nested blocks to allow
the intermediate relays (e.g., terminal 3 in Fig. 3) to decode be-
fore the destination. The result is an excessive decoding delay.

Remark 12: Equation (14) illustrates the multi-antenna
transmission behavior: the mutual information (14) can be in-
terpreted as the information between � transmit antennas and
one receive antenna. The main limitation of the strategy is that
only one antenna is used to decode. This deficiency is remedied
to some extent by the second basic strategy of [4, Thm. 6].

Remark 13: One can generalize Theorem 1 and let the relays
perform partial decoding (see [4, Thm. 7], [6]). We will not
consider this possibility here, but later do consider a restricted
form of partial decoding.

D. Multi-source Networks

We demonstrate that regular encoding and window decoding
are useful for relay networks with multiple sources. Consider
a MARC with two sources [34]. Such a network has four ter-
minals: terminals 1 and 2 transmit the independent messages���

and
���

at rates U � and U � , respectively, terminal 3 acts
as a relay, and terminal 4 is the destination for both messages.
This model might fit a situation where there are two sensors that
are too weak to cooperate, but they can send their data to more
powerful terminals that are part of a “backbone” network.

A regular encoding structure is as follows. The message 9 �
is divided into P blocks 9 � � ��9 � � �������<��9 � / of ��Q30�� bits each,� 	 �#�$� . Transmission is performed in P � � blocks by using
codewords

. � + " � 2
, ; � + " � �&1 � 2 , . � + " � 2 , ; � + " � �21 � 2 , and ; � + " � � " � 2

of length % , where
" � and 1 � range from � to � Q�0 � . The message-

to-codeword mappings are organized as in Fig. 4. The details
of the codebook construction, encoding and decoding are given
in Appendix B. Summarizing the results, after block N terminal
3 can decode

+ 9 9 � �59 9 � 2 reliably if % is large, its past estimate
of

+ 9 � . 9 * �51 ��9 � . 9 * �5152 is correct, and

� h U � ] v + � � x � � 8 � � � � � � � � 2� h U � ] v + � � x � � 8 � � � � � � � � 2U � � U � ] v + � � � � x ��� 8 � � � � � � 2 (17)

Block 2Block 1 Block 3

� ���������! " � ��# ��� ��#�$ ��%
& $ � �! " � ���! " $ ��#'$�$ %
� ��� �! " � ���! " $ ��# � $���#'$�$ %

& " � �! " � ���! " $ %

� $ � �! " � %

& ��� �! " � ���! " $ ��# � $ % & ��� �! " $ ���! "�( ��# � ( %

� $ � �! " $ %

& $ �������! " � ��#�$ ��%

& " �������! " � %

� $ ��� %
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& $ � �! " $ ���! "�( ��#�$ ( %

Fig. 5. A multi-hopping strategy for a BRC.

where 3 +�. � � . � �5; � ��; � �5;�� 2 	 3 +�. � ��; � 2 3 +�. � �5; � 2 3 + ;��K8 . � � . � 2 .
Suppose Terminal 4 uses backward decoding. One finds that
this terminal can decode reliably if

� h U � ] v + � � � ��x �
! 8 � � � � 2� h U � ] v + � � � ��x �
! 8 � � � � 2

U � � U � ] v + � � � � � � x �
! 2 � (18)

The achievable rates of (17) and (18) were determined in [34]
for AWGN channels by using irregular block Markov encoding,
and with ; � a deterministic function of

. �
and

. �
. A cut-set

outer bound on the capacity region was also given in [34].
Remark 14: We can use the flowgraphs of [19, Sec. IV] to

define other strategies for the MARC. There are two different
flowgraphs for each source, namely one that uses the relay and
one that does not. Suppose that both sources use the relay.
There are then 2 successive decoding orderings for the relay
and 6 such orderings for the destination, for a total of 12 strate-
gies. There are 6 more strategies if one source uses the relay
and the other does not, and 2 more strategies if neither source
uses the relay. There are even more possibilities if one splits
each source into two colocated “virtual” sources and performs
an optimization over the choice of flowgraphs and the decoding
orderings, as was suggested in [19, p. 1883].

Consider next a BRC with four terminals and three indepen-
dent messages

�*)
,
���

,
� �

. Terminal 1 transmits
�+)

at rateU )
to both terminals 3 and 4,

���
at rate U � to terminal 3, and���

at rate U � to terminal 4. Terminal 2 acts as a relay. Such
a model might fit a scenario where a central node forwards in-
structions to a number of agents via a relay.

Several block Markov encoding strategies can be defined for
BRCs, and one of them is depicted in Fig. 5. The messages9 ) �59 � �59 � are again divided into P blocks 9 ) 9���9 � 9��59 � 9 , re-
spectively, for N 	 ���$�
�������<��P . However, to improve rates, for
each N these blocks are reorganized into blocks 9 8) 9 �59 8� 9 ��9 8� 9
such that

+ 9 8) 9 ��9 8� 9 2 contains the bits of
+ 9 ) 9��59 � 9 2 , and+ 9 8) 9 ��9 8� 9 2 contains the bits of

+ 9 ) 9���9 � 9 2 . Finally,
+ 9 8� 9 �59 8� 9 2 is

encoded into a pair of integers
+', � 9�� , � 9 2 such that

, � 9 uniquely
determines 9 8� 9 , and

, � 9 uniquely determines 9 8� 9 .
Decoding proceeds as follows. Terminal 2 decodes 9 8) 9 after

block N , but terminal 3 waits until block N � � to decode both9 8) 9 and
, � 9 by using window decoding with its channel outputs

from blocks N and N � � . Similarly, terminal 4 decodes 9 8) 9
and

, � 9 after block N � � . Appendix C outlines an analysis for
this decode-forward strategy that is closely related to the theory
in [54], [55], [56, p. 391]. Summarizing the results, we have
the following theorem.
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Theorem 2: The non-negative rate triples
+ U ) ��U � �$U � 2 sat-

isfying

U ) ] j ros + v � � v � � v
! 2

U ) � U � ] jar0s + v � � v � 2�� v + � � x � � 8 � ) � � 2U ) � U � ] jar0s + v � � v
! 2�� v + � � x �

! 8 � ) � � 2
U ) � U � � U � ] jaros + v � � v � � v

! 2 � v + � � x � � 8 � ) � � 2� v + ��� x �
! 8 � ) � � 2 � v + � � x ��� 8 � ) � � 2 (19)

are in the capacity region of the BRC, where

v � 	 v + � ) x � � 8 � � 2 � v � 	 v + � ) � � x � � 2 � v
! 	 v + � ) � � x �

! 2
and where 3 +�. ) � . � � . � ��; � ��; � 2 is arbitrary up to the alphabet
constraints on � � and � � . For example, the choice

� ) 	 � �
and
� � 	 � � 	
�

gives

U ) � U � � U � ]
jaros � v + � � x � � 8 � � 2 � v + � � � � x � � 2 � v + � � � � x �

! 2 
 � (20)

Remark 15: The region (19) includes Marton’s region [54],
[56, p. 391] by turning off the relay and making it colocated
with the source. That is, we choose � � 	 � and � � 	 � � so
that v � is larger than v � and v

!
.

Remark 16: One can generalize Theorem 2 by letting the re-
lay perform partial decoding of

� )
. More precisely, suppose

that
�9 8) . 9 * �51 is some portion of the bits in 9 8) . 9 * �51 . We first

generate a codebook of codewords ; � + �9 8) . 9 * �&1 2 ; the size of this
codebook is smaller than before. We next superpose on each; � + �9 8) . 9 * �51 2 a codebook of codewords � + �9 8) . 9 * �&1 � �9 8) 9 2 gener-
ated by an auxiliary random variable

�
. Next, we superpose a

codebook of codewords
. ) + �9 8) . 9 * �51 �59 8) 9 2 , and similarly for

. �
,. �

and ; � . In block N , one thus replaces 9 8) . 9 * �51 by
�9 8) . 9 * �&1 .

As yet another approach, the relay might choose to decode
all new messages after each block. This seems appropriate if
there is a high capacity link between the source and relay. The
choice of strategy will, of course, depend on the channel.

IV. COMPRESS-AND-FORWARD

Consider the strategy of [4, Thm. 6] where the relay for-
wards a compressed version of its channel outputs to the desti-
nation. This approach lets one achieve gains related to multi-
antenna reception [24], [28, p. 64]. The strategy has be-
come known as “compress-and-forward”, or simply compress-
forward (other authors prefer “observe-and-forward” [28] or
“quantize-forward”), and we label the corresponding ratesU � 	 . For a different approach named collaborative decoding,
we refer to [39].

A. Single Relay

The strategy of [4, Thm. 6] achieves any rate up to

U � 	 	 v + � � x-)� � ���#8 � � 2 (21)

where

v + )� � x � � 8 ��� � � 2 h v + � � x ��� 2 (22)

and where where the joint probability distribution of the random
variables factors as

3 + ; � 2 3 + ; � 2 3 + )4 � 8 ; � � 4 � 2 3 +M4 � � 4 �#8 ; � �5; � 2 � (23)

Remark 17: Equation (21) illustrates the multi-antenna re-
ception behavior: v + � � x-)� � ��� 8 � � 2 can be interpreted as the rate
for a channel with one transmit antenna and two receive anten-
nas. The multi-antenna gain is limited by (22), which states that
the rate used to compress � � must be smaller than the rate from
the relay to the destination. The compression uses techniques
developed by Wyner and Ziv [23], i.e., it exploits the destina-
tion’s side information � � .
B. Multiple Relays

For multiple relays a multi-access channel (MAC) appears
because the relays transmit to the destination simultaneously.
Furthermore, the signals observed by the relays are correlated.
We thus have the problem of sending correlated sources over a
MAC as treated in [57]. However, there are two additional fea-
tures that do not arise in [57]. First, the destination has channel
outputs that are correlated with the relay channel outputs. This
situation also arose in [4], and we adopt the methodology of
that paper. Second, the relays observe noisy versions of each
other’s symbols. This situation did not arise in [4] or [33], and
we deal with it by using partial decoding.

The compress-forward scheme for two relays operates as fol-
lows. During block N terminal 2 receives symbols that depend
on both � � and � � . After block N , terminal 2 partially decodes
terminal 3’s codeword and “subtracts” this from � � . How much
terminal 2 decodes is controlled by choosing auxiliary random
variables

� u . For example, if
� � 	 � � then terminal 2 will

completely decode terminal 3’s codewords, while if
� � 	 �

then terminal 2 ignores terminal 3.
The symbols � � , modified by the “subtraction” using

� � , are
next compressed to )� � by using the correlation between � � , ���
and �

!
, i.e., the compression is performed using Wyner-Ziv

coding [23]. However, the relays additionally have the prob-
lem of encoding in a distributed fashion [33]. After the com-
pression, terminal 2 transmits a codeword in block N � � from
which the destination obtains )� � from block N . Finally, the des-
tination uses its �

!
during block N together with the codewords

it receives from the relays in block N � � to estimate the � � of
block N .

In Appendix D we derive the rates of such schemes for any
number of relays. The result is the following Theorem. Let e��
be the complement of e in � , and let e ��� e � denote


 , b , �e � � , V� e � � .
Theorem 3: Compress-forward achieves any rate up to

U � 	 	 v + � � x6)�'u � 7 8 � u � u 2 (24)

where

v + )��` x ��`c8 � u ��u )� ` z � 7 2 ������ ` v
+ )� � x � u
	�� ��
 8 � u�� � 2

h v + �a` x � 7 8 � ` � ` z 2�����
��� � v

+ ����� x ��� . � 1 8 � � z� ��� . � 1(2
(25)
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for all e�� � , all partitions

�� � � ���� � of e , and all � +�� 2 �
 � �����������!�5�S� such that � +�� 2 V� � � . For � +�� 2 	 � we set

� 7 	 � . Furthermore, the joint probability distribution of the
random variables factors as

3 + ; � 2
� 7 * �	
� � �

3 +�. � ��; � 2 3 + )4 � 8 . ug�5; � � 4 � 2�

� 3 +�4 � �������<� 4 7 8 ; � �������<�5; 7 * � 2 � (26)

Remark 18: Equation (26) implies that the ��� , � 	
�#�������<�5� �,� , are statistically independent. Equation (24) il-
lustrates the multi-antenna reception behavior: the mutual in-
formation can be interpreted as the rate for a channel with one
transmit antenna and ����� receive antennas. The multi-antenna
gain is limited by (25), which is a combination of source and
channel coding bounds.

Remark 19: For � 	 � we recover (21)–(22).
Remark 20: For � 	 * there are already nine bounds of the

form (25): two for e 	 
 � � ( � + � 2 	 � and � + � 2 	 * ), two
for e 	 
 �
� ( � + � 2 	 � and � + � 2 	 * ), and five bounds fore 	 
 �
��� � ( � + � 2 	 * for

� � 	 e , and otherwise
+ � + � 2 ��� + � 252

being
+ � �$� 2 , + � �+* 2 , + �
�(* 2 , or

+ *��+* 2 ). Clearly, computing the
compress-forward rate for large � is tedious.

Remark 21: Suppose the relays perform no partial decoding,
i.e.,
� � 	 � for all � . The bounds (25) simplify because we need

not partition e . For example, for � 	 * we have

v + )� � x � � 8 � � � �H)��� �
! 2�� v + )� � x � �K8 � � 2 h v + � � x �

! 8 � � 2
v + )� � x � � 8 � � � � )� � �

! 2�� v + )� � x � � 8 � � 2 h v + � � x �
! 8 � � 2

v + )� � )����x � � ���#8 � � � � �
! 2 � v + )� � x � �K8 � � 2�� v + )���#x � � 8 � � 2h v + � � � ��x �

! 2
(27)

For Schein’s parallel relay network, this region reduces to The-
orem 3.3.2 in [33, p. 136].

Remark 22: Suppose the relays decode each other’s code-
words entirely, i.e.,

� � 	 �a� for all �,� � . The relays
thereby remove each other’s interference before compressing
their channel outputs. The bound (25) simplifies to

v + )��`Ix ��`I8 � u )� ` z � 7 2 h ��
��� � v

+ � ��� x � � . � 1 8 � � z� 2 � (28)

However, there are still nine bounds of this form.
Remark 23: The left hand side of (25) describes rates that

generalize results of [23] to distributed source coding with side
information at the receiver (see [58]). The right hand side of
(25) describes rates achievable on the multi-way channel be-
tween the relays and the destination. In other words, an (ex-
tended) Wyner-Ziv source coding region must intersect a chan-
nel coding region. This approach separates source and channel
coding, which will be suboptimal in general (see [59, Ch. 1]).

V. MIXED STRATEGIES

The strategies of Sections III and IV can be combined as in
[4, Thm. 7]. However, we consider only the case where each

relay chooses either decode-forward or compress-forward. We
divide the relay indexes into the two sets

� � 	 
 � �����������!�5� � � ���#� � � 	,
 � � � � �������<���	� ���K�
The relays in � � use decode-forward while the relays in � � use
compress-forward. The result is the following theorem.

Theorem 4: Choosing either decode-forward or compress-
forward achieves any rate up to

U � � 	 	 jar0s�
 jar0s�)% � % 7 G v + � # . ��' � 1 x � # . � � �51 8 � # . � � ��' 7 G � �51&2 �
v + � � � u G x )�'u > � 7 8 � u > � u > 2��

(29)

where " +�� 2 is a permutation on � � , we set " + � 2 	 � , and

v + )��` x ��`c8 � u > � u > )� `�z � 7 2������� ` v
+ )� � x � u > 	 � ��
 8 � u > � � 2

h v + �a` x � 7 8 � ` � ` z 2�����
��� � v

+ ����� x ��� . � 1 8 � � z� ��� . � 1(2
(30)

for all e��i� � , all partitions

�� � � ���� � of e , and all � +�� 2 �� ���w
 �S� such that � +�� 2 V� � � . We here write e�� for the com-

plement of e in � � . For � +�� 2 	 � we set � 7 	 � . Further-
more, the joint probability distribution of the random variables
factors as

3 + ; � ��;'u G 2 �
� 	
��� u >

3 + . � ��; � 2 3 + )4 � 8 . u > �5; � � 4 � 2�

� 3 +�4 � �������6� 4 7 8 ; � �������<��; 7 * � 2 � (31)

As an example, consider � 	 * , � � 	 � , and
� � 	 � � (or� � 	 �

). We find that Theorem 4 simplifies to

U � � 	 	 jaros�� v + � � x � � 8 � � 2 � v + � � � � x6)� � � ! 8 � � 2�� (32)

where

v + )����x ��� 8 � � �
! 2 h v + � ��x �

! 2
(33)

and the joint probability distribution of the random variables
factors as

3 + ; � ��; � 2 3 + ; � 2 3 + )4 � 8 ; � � 4 � 2 3 +M4 � � 4 � � 4 ! 8 ; � �5; � �5; � 2 � (34)

The second information in (32) can be interpreted as the rate for
a ��� � multi-antenna system. Hence, when terminal 2 is close
to the source and terminal 3 is close to the destination, we will
achieve rates close to the capacities described in [60], [61].

We omit the proof of Theorem 4 because of its similarity to
the proofs in [20], [21] and Appendix D. Instead, we supply
a proof of Theorem 5 below. This theorem illustrates how one
can improve on Theorem 4 by permitting partial decoding at
one of the relays.
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A. Two Relays and Partial Decoding

Suppose there are two relays, and that terminal 2 uses
decode-forward while terminal 3 uses compress-forward. Ter-
minal 3 further partially decodes the signal from terminal 2 be-
fore compressing its observation. However, as in Theorem 4,
we make � � statistically independent of � � and � � . In Ap-
pendix E we show that this strategy achieves the following
rates.

Theorem 5: For the two-relay network, any rate up to

U�� � 	 	 jar0s 
 v + � � x � � 8 � � � � 2 �
v + � � � � x )��� �

! 8 � � � � 2 � U 8� � (35)

is achievable, where for some U 8� and U�� we have

U � � v + )� � x � � 8 � � � � �
! 2

(36)� h U 8� h	jaros 
 v + � � x � � 8 � � 2 � v + � � x �
! 8 � � 2 � (37)� h U�� h v + � ��x �

! 8 � � 2 (38)� h U 8� � U�� h v + ��� � ��x �
! 2

(39)

and where the joint probability distribution of the random vari-
ables factors as

3 + ; � � .�� �5; � 2 3 + ;�� 2 3 + )4 �K8 . � �5;���� 4 � 2 3 +�4 � � 4 �X� 4
! 8 ; � ��; � �5;�� 2 �

(40)

Remark 24: We recover (32) and (33) with
� � 	
�

.
Remark 25: We recover (5) by turning off Relay 3 with

� � 	
� � 	 )��� 	 � and U 8� 	 U � 	 � .

Remark 26: We recover (21)–(22) by turning off and ignor-
ing Relay 2 with

� � 	 � � 	
� and � � 	 � � .

VI. WIRELESS MODELS

The wireless channels we will consider have the � � and � �
being vectors, and we emphasize this by underlining symbols.
We further concentrate on channels (2) with

� � 	�� � � � ���� � O � �� ���� � � � (41)

where
� � � is the distance between terminals

,
and � , 4 is an

attenuation exponent, � � is a % � � � complex vector, O � � is

a % � � % � matrix whose
" �21 entry O .0� p 	 1� � is a complex fading

random variable, and
� � is a % � � � vector whose entries are in-

dependent and identically distributed (i.i.d.) complex Gaussian
random variables with zero mean, unit variance, and whose real
and imaginary parts are i.i.d. We impose the per-symbol power
constraints 
 � � �� � � 
 h
� � for all

,
, where � �� is the complex-

conjugate transpose of � � .
We will consider several kinds of fading:� No fading: O .o� p 	 1� � is a constant for all

,
, � , " , and 1 .� Phase fading: O .o� p 	 1� � 	�� 	�������� ���� � , where � .0� p 	 1� � is uniformly

distributed over
� � �$� " 2 . The � .0� p 	 1� � are jointly independent

of each other and all other random variables.� Rayleigh fading: O .o� p 	 1� � is a complex, Gaussian random
variable with zero mean, unit variance, and whose real and
imaginary parts are i.i.d. The O .0� p 	 1� � are jointly indepen-
dent of each other and all other random variables.

� Single-bounce fading: O � � 	 P � ��� � � T � � , where P � � is a
random % � �H% � � matrix, � � � is a random % � � �c% � � diagonal
matrix whose entries are independent and have phases that
are uniformly distributed over

� � ��� " 2 , and T � � is a random% � � � % � matrix. The P � � , � � � and T � � are jointly inde-
pendent of each other and all other random variables. The
matrices P � � and T � � might represent knowledge about the
directions of arrival and departure, respectively, of plane
waves [62].� Rayleigh fading with directions: O � � 	 P � �! � �5T � � , where
P � � is a random % � � % .

�$1� � matrix,  � � is a % .
��1� � � % .

�51� �
complex, Gaussian random matrix whose entries are inde-
pendent, zero mean, unit variance, and have i.i.d. real and
imaginary parts, and T � � is a random % .

�&1� � �d% � matrix. TheP � � ,  � � and T � � are jointly independent of each other and
all other random variables.

We will usually assume that terminal � knows only its own fad-
ing coefficients. That is, terminal � knows O � � for all

,
, but it

does not know O � ��" for � 8 [	 � . The one exception is the no-
fading case where the O � � are known by all terminals.

Remark 27: The above model lets the relays transmit and re-
ceive at the same time (and in the same bandwidth). This is
possible, e.g., if the relay has two antennas: one receiving and
one transmitting. When simultaneous transmission and recep-
tion is not possible, then one should modify (41) by, say, adding
the constraints that � � 	 � if � � [	 � for all � . The remaining
analysis is then similar to that described below (cf. [37], [40],
[44], [46]), but some of the the capacity results change (see Re-
mark 32). On might also wish to use the strategy of [6] or the
flowgraphs of [19] to improve rates.

A. No Fading and One Relay

Suppose we have a single relay, terminals with one antenna,
and no fading. Let # be the correlation coefficient of � � and
� � . For a fixed covariance matrix of � � and � � , a con-
ditional maximum entropy theorem (see [64, Lemma 1]) en-
sures that both of the differential entropies $ + � � ���K8 � � 2 and$ + ��� 2 are maximized by making 3 + ; � ��; � 2 zero-mean Gaus-
sian. Since $ + � � ���K8 � � � � 2 and $ + ��� 8 � � � � 2 are constants, the
cut-set bound (4) is

T h j�kXl) %&% % � jaros('*),+.-0/-� � � � / �� � � � � �� � � �21 + � � 8 #!8 � 2 1 �)3+4-65y� � � �� � � � � � �� �� � � �7#98 � � � �� ��: �� � � �4: �� �<;>= (42)

where # is real. Similarly, the best decode-forward rate (5) is

U��
	 	 j�kXl) %?% % � jar0s ' )3+4- / � � � �� � � � + � � 8 #<8 � 2 1 �),+.- 5 � � � ��@� � � � � ����� � � �A# 8 � � � �� ��: �� � � ��: �� � ;B= � (43)

Consider next the compress-forward strategy. We choose � �
and � � to be Gaussian, and )� � 	 � � � )��� where )� � is a Gaus-
sian random variable with zero-mean, variance )C � , and that is
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Fig. 6. A single relay on a line.
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Fig. 7. Rates for a single-relay network with ����� �"!#�%$�& and '(�*) .
independent of all other random variables. The rate (21) is then

U � 	 	 ),+.-65 � � � �� � � � + � � )C � 2 � � ��@� � � ; (44)

where the choice

)C � 	 � ��+ �XV � � � � � �DV � � � � 2�� �� � V � �� � (45)

satisfies (22) with equality (see also [44, Sec. 3.2] for the same
analysis).

As an example, suppose the source, relay and destination are
aligned as in Fig. 6, where

� � � 	 �
,
� � � 	 � � �

, and
� � � 	 � .

Fig. 7 plots various bounds for � � 	 � � 	 � � and
4�	 � . The

curves labeled DF and CF give the respective decode-forward
and compress-forward rates. Also shown are the rates when
the relay is turned off, but now only half the power is being
consumed as compared to the other cases. Finally, the figure
plots rates for the strategy where the relay transmits � � � 	+ � � � .0�M* �51 , where + is a scaling factor chosen so that

, � 8 � � � 8 � 
 	� � . This strategy is called “amplify-and-forward” in [28, p. 80]
(see also [32], [33, p. 61]), and it turns the source to destination
channel into a unit–memory intersymbol interference channel.
The curve labeled AF shows the capacity of this channel.

Remark 28: As the relay moves toward the source (
�.- �

),
the rates (43) and (44) become

U �
	 	 ),+.- / � � � � � � � � � � � � � �10
U � 	 	 ),+.- + � � � � � � � 2 (46)

243
5�687 9�:�;=<243
5�687 9�:�;1> 213
5�687 9�:?;=@213
5�687 9�:?;BA
>

C C

Fig. 8. Two relays on a line.

and U��
	 is the capacity. Similarly, as the relay moves toward
the destination (

�D- � ), we have

U �
	 	 ),+.- + � � � � 2
U � 	 	 ),+.- + � � �.� � 2 (47)

and U � 	 is the capacity. These limiting capacity results extend
to multiple relays, as discussed next.

B. No Fading and Two Relays

Suppose we have two relays, terminals with one antenna, and
no fading. Suppose further that the relays are within a distance�

of the source. The decode-forward rate of Theorem 1 be-
comes the capacity as

�D- �
, which is

U��
	 	 ),+.- / � �FE � � � � � � � � � � �BG � 1 �
This limiting capacity result generalizes to more relays and is
called an antenna clustering capacity in [24].

Similarly, if the relays are within a distance
�

of the desti-
nation and

�H- �
, the compress-forward rate of Theorem 3

becomes the capacity

U � 	 	 ),+.- + � � �4� � 2 �
This limiting capacity result again generalizes to many relays
and is another type of antenna clustering capacity.

Finally, consider the geometry in Fig. 8. The mixed strategies
of Theorems 4 or 5 achieve capacity as

�D- �
, which is

U � � 	 	 ),+.- / � � � E � � � � � � � � � � � � G 0 �
This type of limiting capacity result generalizes to many relays
if the � terminals form two closely spaced clusters.

Remark 29: In Fig. 8, we have U�� � 	
- �

as
�I- � �KJ . This

is because terminal 2 does not decode what terminal 3 trans-
mits, so that � � acts as interference for terminal 2. This prob-
lem could be fixed by adding partial or full decoding at terminal
2 to the strategy of Theorem 5.

C. Phase Fading and One Relay

Consider next phase fading where � � � is known only to ter-
minal � for all

,
. The result is that U��
	 in (5) becomes

j�kXlm .0n G p n > 1 jar0s 
 v + � � x � � 8 � � � � � 2 � v + � � � � x � � 8 � � � � � � 2 � (48)

where the � � � appear in the conditioning. We have

v + � � x � � 8 � � � � � 2 	ML � #)
�ON
� " v + � � x � � 8 � � � � � � 	 N 2 (49)
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and one can similarly express v + � � � � x ���#8 � � � � � � 2 . Further,
for a fixed covariance matrix of � � and � � , the conditional
maximum entropy theorem [64, Lemma 1] tells us that$ + � � 8 � � � � � � 	 N � � 2 and$ + ��� 8 � � � 	 N � ��� � � � 	 N � � 2
are maximized by making 3 + ; � ��; � 2 zero-mean Gaussian for
any choice of the phases. The maximization (48) is thus

j�kXl% j ros ' ),+.- / � � � �� � � � + � � 8 #!8 � 2 1 � L
� #

)
�ON � � �ON � �+ � " 2 �),+.- 5 � � � ��@� � � � � ��@�� � � ��� + # � 	 .�� G�� *�� >�� 1 2 8 � � � �� ��: �� � � �4: �� � ;B= (50)

where � + ; 2 is the real part of ; . Let v + # 2 be the integral in
(50). This integral does not depend on the phase of # , so we
have v + # 2 	 �

v + # 2 � v + � # 2 
 V�� . But )3+4- + ; 2 is concave in ; and� + ; 2 is linear in ; , so Jensen’s inequality gives

v + # 2 � v + � # 2 
 V���h v + � 2 � (51)

This shows that # 	 � is best for both informations in (50).
Remark 30: An alternative proof is to observe that v + # 2 	
 � ),+.- + � 2 


for a random variable � with
 � � 
 	 � � � � V � � � � � � � V � �� � �
Jensen’s inequality now directly gives the desired upper bound

v + # 2 h v + � 2 (see [44, Lemma 1]). We instead used the proof
with (51) because it seems easier to extend to the problems stud-
ied in Section VI-E.

Similar arguments show that # 	 � is also best for the capac-
ity upper bound (3) (see Sec. VI-E). This leads to the following
theorem by combining (4) and (5).

Theorem 6: Decode-forward achieves capacity with phase
fading if the relay is near the source. More precisely, if� �	� � � � � � � �
� � �� � h
� ��� � � � � (52)

then the capacity is

T 	 )3+4-
��� � � ��� � � � � � � ��� � �� �	� � (53)

Remark 31: The optimality of # 	 � for phase fading was
also realized in [44, Lemma 1], [47, Sec. 2.3]. The geometric
capacity result of Theorem 6 appeared in [22].

The condition (52) is satisfied for a range of
� � �

near zero.
For example, for the geometry of Fig. 6 with

4 	 � and � � 	� � , the bound (52) is � � � ����� h � h � � * ���
. Fig. 9 plots the

resulting decode-forward and upper bound rates for � � 	 � � 	� � and a range of
�
. Fig. 9 also plots the rates of compress-

forward when the relay uses )� � 	 � � � )��� as for the no-fading
case. In fact, these rates are given by (44) and (45), i.e., they are
the same as for the no-fading case. We remark that compress-
forward performs well for all

�
and even achieves capacity for� 	 �

.
Consider next a two-dimensional geometry where the source

is at the origin and the destination is a distance of 1 to the right
of the source. For � � 	 � � the condition (52) is

� � � � � � � � � � �� � h � � � � � � � (54)
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Fig. 9. Rates for a single-relay network with phase fading, � � � � ! � $�& ,
and '(� ) .
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Fig. 10. Relay positions where decode-forward achieves capacity with phase-
fading and � � �*� ! .
The relay positions that satisfy (54) for

4 	 � ,
4 	 * , and4 	 � � � are drawn as the shaded regions in Fig. 10. As

4
increases, this region expands to become all points inside the
circle of radius one around the origin, excepting those points
that are closer to the destination than the source.

Remark 32: The capacity results of Theorem 6 (and Theo-
rems 7-11) are no longer valid if the relays cannot transmit and
receive at the same time. The reason is that one must intro-
duce a time-sharing parameter, and this parameter will take on
different values for the capacity lower and upper bounds. Simi-
larly, the capacity results are not valid if the per-terminal power
constraints are replaced by a network power constraint, e.g.,� � �-� h � . However, we note that if the time-sharing parame-
ter or power levels are restricted to certain ranges, then one can
again derive capacity theorems. For instance, this occurs if pro-
tocols restrict time to be shared equally between transmission
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and reception.

D. Phase Fading and Many Relays

Suppose there are � terminals subject to phase fading. Eval-
uating (3) and (14), we find that it is best to make the � � ,� 	 �#�$�
�������q�5� � � , Gaussian and independent (see Sec. VI-
E). We thus have the following generalization of Theorem 6.

Theorem 7: Decode-forward achieves capacity with phase
fading if 7 * ��

� � �
� �� �� 7 h	j�kXl# .�$ 1 jar0s�&% � % 7 * � �

��� # . ��' � 1 � �� �� # . � � �&1 (55)

and the resulting capacity is

T 	 ),+.-65y� � 7 * ��
� � �

� �� �� 7 ; � (56)

Note that the minimization in (55) does not include
, 	 �	�	� .

The condition (55) is satisfied if all relays are near the source.
For example, consider a two-dimensional geometry and sup-
pose the relays are in a circle of radius

�
around the source.

Then if the destination is a distance of 1 from the source, we
have

� � 7 � � � �
. Suppose further that � � 	 � for all � . The

bound (55) tells us that decode-forward achieves capacity if� h �+ � � � 2 � : � � � � (57)

The relays must therefore be in a circle of radius about � * � :��
around the source for large � .

As another geometric example, consider a linear network as
in Fig. 6 but with ���	� relays placed regularly to the right of
the source at

� � � 	 + �c��� 2 � , �fh�� h������ , where
� h � ]

�XV + ����� 2 (see also [20, Sec. 2]). Suppose again that � � 	 �
for all � . The bound (55) ensures that decode-forward achieves
capacity if

�
satisfies7 * ��

� � �
�� � � + �y� � 2 � 
 � h �� � � (58)

Suppose we choose
� 	 �XV + ��� � ��_A2

where
_

is a positive
constant independent of � . We can upper bound the sum in (58)
by integrating the function �DV + ; � 2 � from

_
to � . As a result,

we find that for any
4�� � there is an

_
satisfying

� ] _ h / �4 � � 1 G� JKG
(59)

such that (58) holds with equality. This choice of
_

gives

T 	 ),+.- + � � + � �	� ��_A2 � 2 �
large � 4 ),+.- + � 2 � (60)

In other words, capacity grows logarithmically in the number
of terminals (or relays). Other related logarithmic scaling laws
were obtained in [20] and [36].

E. Phase Fading, Many Relays, and Multiple Antennas

Suppose we have phase fading, many relays, and multiple
antennas. Gaussian distributed inputs are again optimal for (3)
and (14). Letting O��	�
� represent the vector of all matrices O � � ,
we can write and bound the information in (3) as

v + � � � ` x � `�z � 7 8 � `�z O����
� 2
h L � 3 + L 2 )3+4- / ���� 
 = � z = C �� F � z p ������� � � ���� 1 � L

(61)

where

 � / �� � p � ��� is the covariance matrix of the vector� O 7 P 7�� conditioned on T and � 	 �

, and 8 
 8 is the deter-
minant of



. The determinant in (61) evaluates to���� 
��= � z �= C �� F � z ���� h ��� 
 �= � z �= C ��� (62)

where �
� � 	 � � � �� � � � 
�� ` L � �� � �� � � � (63)

and where equality holds in (62) if � � � 
�� ` and � ` z are inde-
pendent.

Observe that we can replace O � � with �gO � � for all � , because
it is immaterial what phase we begin integrating from for any
entry in O � � . Moreover, this is equivalent to using the sameO � � as originally, but replacing � � with � � � . But this change

makes all cross-correlation matrices 
 E � � � �� G with
, [	 �

change sign. We can thus use the concavity of ),+.- + 8 O�8 2 in pos-
itive semi-definite O of the same size, and apply Jensen’s in-
equality to show that the mutual informations cannot decrease if
we make 
 � � � � �� 
 	 � for all

,�[	 � . � � and � u are therefore
independent. Repeating these steps for all input vectors, the
best input distribution has independent � � , � 	 �#�$�
�������!�5� �f� .
This implies that equality holds in (62).

We next determine the best

 F G . Observe that, by the same

argument as above, we can replace the first columns of the O � �
with their negative counterparts. This is equivalent to using
the same O � � as originally, but replacing the first entry � . �51�
of � � with � � . �51�

. This in turn makes the entries of the first
row and column of


 F G change sign, with the exception of
the diagonal element. Applying Jensen’s inequality, we find
that � . �&1� should be independent of the remaining � .0� 1� ,

" 	
� �����������!�5% � . Repeating these steps for all the entries of all the
� � , we find that the best


 F
� are diagonal.

Finally, we can permute the diagonal elements of the

 F

�
without changing the mutual informations. Applying Jensen’s
inequality, we find that the best input distributions have
 F

�
	 � �-�

% � v (64)

where v is the appropriately sized identity matrix. We find that
(64) is also optimal for Rayleigh fading by repeating the above
arguments. This gives the following theorem.

Theorem 8: Decode-forward achieves capacity with phase
or Rayleigh fading if the choice e 	 � minimizes (3), where
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the � � are independent, Gaussian, and have covariance matrix
(64). This requirement is satisfied, e.g., if all the relays are in a
region near the source terminal. The resulting capacity is

T 	HL � 3 +ML 2 ),+.-65 ����� v � 7 * ��
� � �

� �
%<�

L � 7 L �� 7� �� 7 ����� ; � L � (65)

Remark 33: Theorem 8 appeared in [51]. The capacity result
was also derived in [52] for one relay ( � 	 � ) and Rayleigh
fading by using the above proof technique.

For example, suppose we have phase fading with one relay,% � 	 % � 	 � , and %�� 	 � , i.e., the destination has two anten-
nas. Equation (65) is then

L � #
)
L � #
) ),+.-0/ ���� v � � �� � � ��� � � 	 � G� * 	 � G � �

� � �� �� � � � � 	 � >� * 	 � > � � ���� 1 ��N � �ON �
* " �

	 ),+.- 5 L � 8 L � � N �
� ; (66)

where

L 	 � � �.� �� � � � � �7� �� �� � � �.� � � �� � � � � �� � � N 	 �7� � � �� � � � � �� � � (67)

For the geometry of Fig. 6 with
4 	 � and � � 	 � � , capacity

is therefore achieved if

L � 8 L � � N �
� h � � � ��@� � � � (68)

Again, this condition is satisfied for a range of
� � �

near zero.
Fig. 11 plots the decode-forward and upper bound rates for� ��	 � � 	 � � and the same range of

�
as in Fig. 9. We

have also plotted the decode-forward rates from Fig. 9, and
the compress-forward rates when the relay again uses )� �
	
� � � )��� . The compress-forward rates are now

U � 	 	 ),+.-65y� � � ��@� � � + � � )C � 2 � �.� �� � � � ; (69)

where the choice

)C � 	 � ��+ �XV � � � � � �#V � � � � 2�� �
� L � 8 L � � N � � V��^� + �.� � V � � � � � � 2 (70)

satisfies (22) with equality. Compress-forward again performs
well for all

�
and achieves capacity for

� 	 �
and

� 	 � .
Fig. 12 plots the relay positions that satisfy (68) for the same

geometry as in Fig. 10. Again, as
4

increases this region ex-
pands to become all points inside the circle of radius one around
the origin, except those points that are closer to the destination
than the source. Observe further that the known-capacity re-
gions are much smaller than for % � 	 � when

4
is small. At

the same time, the rates with %�� 	 � are much larger than with% � 	 � .
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Fig. 11. Rates for a single-relay network with phase fading, � � ��� ! � $ ,��� �*) , � � �*� ! �%$�& , and '(�*) .
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Fig. 12. Relay positions where decode-forward achieves capacity with phase-
fading, � � ��� ! �%$ , � � � ) , and � ��� �"! �%$�& .
F. Fading with Directions

Single-bounce and Rayleigh fading with directions can be
dealt with as above, and the best � � for (3) and (14) are again
Gaussian and independent. However, now the best


 F
� are not

necessarily given by (64), and they might not be diagonal. For
example, suppose we have Rayleigh fading where P � � and T � �
are fixed (deterministic) matrices. Suppose the singular value
decomposition of T � � is

� � ��� � � � �� � , where
� � � and

� �� � are uni-
tary, and where � � � is nonnegative with positive values along
its diagonal only [65, p. 414]. We can absorb

� � � into the matrix � � by applying [61, Lemma 5]. One might now guess that the
optimal


 F � has the form

 F � 	�� � � � � where � � is diag-

onal. However, since each � � goes through multiple
� � � , it is

unclear what the best choice of

 F � should be. Nevertheless,

the capacity is again achieved if all relays are in a region near
the source terminal, because the best choice of


 F � will be the
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same for both (3) and (14).
There are, of course, some simple cases where we can say

more. Suppose there is single-bounce fading, the nonzero en-

tries of � � � are
� 	�������� �3�� � , % � � 	 % � , T � � 	 v , and P � � is fixed

(deterministic) for all
,
. We find that (64) is best and (65) sim-

plifies to

T 	 )3+4-65 ����� v � 7 * ��
� � �

� �
%<�

P � 7 P �� 7� �� 7 ����� ; � (71)

We illustrate the behavior of T with the following simple gen-
eralization of Theorem 7.

Theorem 9: Consider single-bounce fading with % � 	 % � � 	
% � 	 % � , P � � 	 v ,

��� � .o� p � 1� � ��� 	 � , and T � � 	 v for all
, �5�A� " .

Decode-forward achieves capacity if7 * ��
� � �

� �� �� 7 h	j�kXl# .�$ 1 jar0s�&% � % 7 * � �
��� # . ��' � 1 � �� �� # . � � �&1 (72)

and the resulting capacity is

T 	 % � ),+.- 5 � � �
% �

7 * ��
� � �

� �� �� 7 ; � (73)

The condition (72) is identical to (55), but the capacity (73) is
increased if % � � � .

Remark 34: The above capacity results remain valid for var-
ious practical extensions of our models. For example, suppose
that phase information can be shared locally, i.e., terminals that
are near each other can exchange knowledge of their O � � . If
the destination is far away, and the transmitting terminals can-
not determine the O � � between them and the destination, then
the capacity remains the same. Similarly, if local cooperation
is possible but the receiver is far away and there is phase uncer-
tainty, the right hand side of (65) is still the capacity.

G. Quasistatic Fading

Quasistatic fading has the O � � chosen randomly at the begin-
ning of time and held fixed for all channel uses [61, Sec. 5].
The information rates given � + ; � �5; u 2 can therefore be viewed
as random variables [66, p. 2631], and the situation is rather
more complicated than for ergodic fading. To illustrate the dif-
ferences, consider a single-relay, single-antenna terminals, and
phase fading.

Suppose we use decode-forward with irregular encoding and
successive decoding. This strategy will not work well be-
cause its intermediate decoding steps can fail. Consider in-
stead regular encoding with either backward or window de-
coding. The destination will likely make errors if either

v + � � � � x ���K8 O � ��O � � 2 or v + � � x � � 8 � � O � � 2 is smaller than the
code rate U , because in the second case the relay likely trans-
mits the wrong codewords. We thus say that an outage occurs
if either of these informations is too small.

The best input distribution � + ; � �5; � 2 for all our bounds and
for any realization of O � � , O � � , and O � � is again Gaussian, but
one must now carefully adjust # 	 
 � � � �
�� 
 V 8 � � � � . Recall

that O � � 	 � 	�� � � , and let � 	 � � � � � � � � � % where � % is the
phase of # . The information rate of (5) is the random variable

� + #'� � 2 	 jar0s � ),+.- / � � � ��@� � � + � ��8 #!8 � 2 1 �)3+4- 5 � � � �� � � � � � �� �� � � � 8 � � � � 8 #!8�� +��2�� �4: �� � � ��: �� � ; 
 � (74)

This random variable depends on � % but, since � is uniform
over the interval

� � �$� " 2 , we can restrict attention to real and
non-negative # . The decode-forward outage probability is thus� �
	��� � + U 2 	 jaros) %&% % � YcZ +�� + #�� � 2 h U 2 � (75)

We similarly denote the best possible outage probability at rateU by � ��� � + U 2 .
Continuing with decode-forward, observe that if

U � ),+.- / � � � ��@� � � 1 (76)

then � �
	��� � + U 2 	 � . For smaller U , we infer from (74) that one
should choose # as large as possible, i.e., choose the positive #
satisfying

U 	 )3+4-0/<� � � �� � � � + �g� # � 2 1 � (77)

The random component of (74) is 	 	 � +��2� that has the cumu-
lative distribution

YcZ + 	�h ; 2 	

� � � � ; ] �S��� � �# k�Z
����r0s + ; 2 � �S� h�;Wh ���� ; � ��� (78)

Using (77) and (78), we compute

� � 	��� � + U 2 	

� � � � � + U 2 ] ��� � �# k�Z����5ros + � + U 252 � � h�� + U 2 h ���� � + U 2 � � (79)

where

� + U 2 	
/ � 0 �	� � � G� � G�� � � >� �> � 0 � �4: �� � � ��: �� �

� 8 � � � � � � � � � � +�� 0 � � 2 � (80)

We remark that � �
	��� � + U 2 	 � clearly implies � ��� � + U 2 	 � .
Also, if � �
	��� � + U 2 [	
� then � �
	��� � + U 2 � �DV�� . However, decode-
forward is not necessarily optimal when � ��� � + U 2 [	
� . A lower
bound on � ��� � + U 2 can be computed using (3) and (78). We
have� ��� � + U 2 	 �#� if U � ),+.- / � � � � / ��@� � � � ��@� � � 1 1 (81)

and, if the rate is smaller than in (81),

� ��� � + U 2 �

� � � � � + U 2 ] ��� � �# k�Z
����r0s + � + U 2�2 � � h�� + U 2 h����� � + U 2 � � (82)
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Fig. 13. Outage rates for a single-relay network with phase fading, � � �� ! � $�& , and '(�*) .
where

� + U 2 	
/ � 0 �	� � � G� � G�� � � >� �> � 0 � �4: �� � � ��: �� �

� 8 � ��� � � � �@� � � ��� � � + � 0 � � 2 �6+ ��� � � � ��� � � 2 � (83)

To illustrate the outage probability behavior, consider again
the geometry of Fig. 6. We plot the decode-forward rates for� �
	��� � 	 � � � � � � � ��� � � � ��� as the solid lines in Fig. 13 (the rates
for � �
	��� � satisfying

� h � �
	��� � h � �KJ are the all same). Observe
that as � �
	��� � - � the rates approach the decode-forward rates
in Fig. 7. The dash-dotted curves in Fig. 13 are upper bounds on
the best possible rates for � ��� � 	 � � � � � � � ��� � � � ��� . These rates
were computed using (81)–(83), and they approach the upper
bound in Fig. 7 as � ��� � - � .

Remark 35: For Rayleigh fading the decode-forward infor-
mation rate is the random variable� + #��$O ��� � 2 	 jaros � )3+4-0/<� � � � 8 O � � 8 �� � � � + �g��8 #!8 � 2 1 � ),+.- + � �� � 8 O � �#8 �� � � � � � � 8 O � �K8 �� �� � � � 8 � � � � � + # O � �?O �� � 2� ��: �� � � �4: �� � ; 
 � (84)

Note that the two random variables inside the minimization are
independent, which helps to simplify the analysis somewhat.
The outage statistics for the first random variable can be com-
puted using the incomplete gamma function as in [61, Sec. 5.1].

Remark 36: Suppose that instead of quasistatic fading we
have block fading where the O � � are chosen independently from
block to block. The relay outage probability with decode-
forward is then the same from block to block, but the destina-
tion outage probability depends on whether the relay made an
error in the previous block. Suppose the relay outage probabil-
ity is 3 � , and the destination outage probability is 3 8� if the relay
sends the correct codeword. It seems natural to define the over-
all destination outage probability to be 3 � � + � � 3 � 2 3 8� . One
should thus minimize this quantity rather than the probability
on the right hand side of (75).

H. Multi-source Networks and Phase Fading

The capacity theorems derived above generalize to several
multi-source networks. For instance, consider MARCs with
phase fading (see Sec. III-D). We find that the best input distri-
bution for (17) and (18) is Gaussian with

� � 	 � � 	
�
, i.e., the

� � are independent. One again achieves capacity if the source
and relay terminals are near each other, and we summarize this
with the following theorem.

Theorem 10: The decode-forward strategy of Sec. III-D
achieves all points inside the capacity region of MARCs with
phase fading if� ��� � � � ! � � � � � �� ! h � ��� � � � �� � � � �� ! � � � � � �� ! h � � � � �� �� ��� � � � ! � � �
� � �� ! � � � � � �� ! h � ��� � � � � � � �
� � �� � (85)

and the capacity region is the set of
+ U � ��U � 2 satisfying

� h	U � h )3+4-
�5� � � �	� � � � ! � � � � � �� ! �� h	U � h )3+4- � � � � �
� � � � ! � � � � � �� ! �
U � � U � h )3+4-
�5� � � � � � � � ! � � � � � �� ! � � � � � �� ! � � (86)

Generalizations of Theorem 10 to include more sources and
relays, as well as multiple antennas, are possible. Related ca-
pacity statements can also be made for BRCs. For example,
suppose we broadcast a common message

� )
to two destina-

tions with U � 	 U � 	 � . We apply a cut-set upper bound and
use (20) with independent � � and � � to prove the following
theorem.

Theorem 11: The decode-forward strategy of Sec. III-D
achieves the capacity of BRCs with phase fading and with a
common message if

jaros � � �� � � � � � �� �� � � � �� � � ! � � �� �� ! � h
� � � � � � � (87)

and the resulting capacity is

T 	 j ros � )3+4- / � � � ���� � � � � ����� � 1 � ),+.- / � � � ��@� � ! � � ��@�� ! 1 � �
(88)

Theorem 11 generalizes to other fading models. However,
some care is needed if U � � � or U � � � because the BRCs
might not be degraded.

VII. CONCLUSIONS

We considered several coding strategies for relay networks.
The decode-forward strategies are useful for relays that are
close to the source, and the compress-forward strategies are
useful for relays that are close to the destination (and some-
times even close to the source). A strategy that mixes decode-
forward and compress-forward achieves capacity if the termi-
nals form two closely-spaced clusters. It was further shown
that decode-forward achieves the ergodic capacity of a number
of wireless channels with phase fading if phase information is
available only locally, and if all relays are near the source termi-
nal. The capacity results extend to multi-source problems such
as MARCs and BRCs.
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There are many directions for further work on relay net-
works. For example, the fundamental problem of the capac-
ity of the single-relay channel has been open for decades. In
fact, even for the Gaussian single-relay channel without fading
we know capacity only if the relay is colocated with either the
source or destination. Another challenge is designing codes that
approach the performance predicted by the theory. First results
of this nature have already appeared in [67].

APPENDIX A
AUXILIARY LEMMA

The set � . Q
1� + � 2

of
_
-typical vectors ; of length % with respect

to 3 F ++� 2
is defined as (see [4, Defn. 1])

� . Q
1� + � 2 	 �

; b
�� % n + L 2 VD% � 3 F +ML 2 ��

8 �W8
] _

for all
L ��� = �

(89)

Here � is the alphabet of � and the entries of ; , and % n + L 2 is
the number of times the letter

L
occurs in ; . We will need the

following simple extension of Theorem 14.2.3 in [17, p. 387].
Lemma 1: Consider the distribution 3 +', � �������<� , �

2
, and let+', 8 � �������6� , 8 �

2
be a random vector of

�
-tuples

+', 8 � � �������<� , 8 � �
2
," 	 ���������<��% , that are chosen i.i.d. with distribu-

tion 3 +', � 2�� ���� � 3 +�, � 8 , � 2 . Then the probability � that+', 8 � �������6� , 8 �
2

is in � . Q
1� +�� � � � � �������6� � � 2

is bounded by

+ � � _A2 � * Q	� � � � ��

� h � h � * Q	� * � � � ��
��
(90)

where �
	 ��� +�� � ����� � � 8 � � 2 ����

��� � � +�� � 8 � � 2 � (91)

Lemma 1 automatically includes unconditioned bounds by
making

� �
a constant. We omit the proof because of its simi-

larity to [17, p. 387].

APPENDIX B
DECODE-FORWARD FOR MARCS

Consider MARCs with � � � source terminals, a relay terminal� � � , and a destination terminal � . In what follows, we do not
derive error probability bounds because the analysis is basically
the same as for MAC decoding (see [17, p. 403]) and MAC
backward decoding (see [16, Ch. 7]).

Let � 8 	 
 �#�$�
�������!�5� ��� � and
. ` + ��` 2 	 
 . � + � � 2 b �f�eg� . For rates, we write U^` 	 � ����� U � . Each source terminal����� 8 sends P message blocks 9 � � �59 � � �������<�59 � / in P � �

transmission blocks. The overall rate is thus reduced by the
factor P V + P � � 2 , but for large P this rate loss is negligible.

Random Code Construction:
1) For all � � � 8 choose � Q30 � i.i.d.

. � with3 +�. � 2 	 � � 3�� � +�. ��� 2 . Label these
. � + ��� 2 , ���d� � ���$��Q�0 � 
 .

2) For � � � 8 and for each
. � + ��� 2 choose ��Q�0 � i.i.d. ; � with3 + ; � 8 . � + ��� 2�2 	 � � 3�F �
E �
�
+ ;�����8 . ��� + ��� 252 .

Label these ; � + ���A� , � 2 , , �c� � �#�$��Q30 � 
 .
3) For all

. u " + � u " 2 choose an ; 7 * � with3 + ; 7 * � 8 . u " + �?u " 2�2 	 � � 3'F � E ��� " � + ; ��� 8 . u " � + �Du " 252 .
Label this vector ; 7 * � + �Du " 2 .

Encoding: For block N encoding proceeds as follows.
1) Source � sends ; � + ���59 � 9 2 if N 	 � , ; � + 9 �/. 9 * �&1 ��9 � 9 2 if� ] N ] P � � , and ; � + 9 �/. 9 * �51 ��� 2 if N 	 P � � .
2) The relay knows 9 u " . 9 * �&1 from decoding step (1) and

transmits ; 7 * � + 9 u " . 9 * �&1&2 .
Decoding: Decoding proceeds as follows.
1) (At the relay) The relay decodes the messages 9^u " 9 af-

ter block N . The decoding problem is the same as for a
MAC with side information

� u " and � 7 * � . We can thus
decode reliably if (see [17, p. 403])

U ` ] v + � ` x � 7 * � 8 � u " � ` z � 7 * � 2 (92)

for all e � � 8 , where e�� is the complement of e in � 8 .
For example, for � 8 	,
 �#�$� � we have the bounds (17).

2) (At the destination) The destination waits until all trans-
mission is completed. It then decodes 9^u " 9 for N 	P �$Pi�����������<��� by using its output block

4 7 . 9 � �51 . The

techniques of [16, Ch. 7] can be used to show that one
can decode reliably if

U ` ] v + � ` � 7 * � x � 7 8 � ` z � ` z 2 (93)

for all e � � 8 , where e�� is the complement of e in � 8 .
For example, for � 8 	,
 �#�$� � we obtain (18) .

APPENDIX C
DECODE-FORWARD FOR BRCS

Consider a BRC with four terminals as in Sec. III-D. We again
do not give error probability bounds because the analysis is
based on standard arguments (see [17, Sec. 14.2],[54], [55]).

The source terminal divides its messages
� ) � �
� � � � intoP blocks 9 ) 9���9 � 9��59 � 9 for N 	 �#�$� �������'�$P , and transmits

these in P � � blocks. The 9 ) 9��59 � 9q��9 � 9 have the respec-
tive rates U ) ��U � ��U � for each N . The first encoding step is to
map these blocks into new blocks 9 8) 9 ��9 8� 9 �59 8� 9 with respective
rates U 8) �$U 8 � ��U 8� . The mapping is restricted to have the prop-
erty that the bits of

+ 9 ) 9 �59 � 9 2 are in
+ 9 8) 9 �59 8� 9 2 , and that the

bits of
+ 9 ) 9 ��9 � 9 2 are in

+ 9 8) 9 �59 8� 9 2 . This can be done in one of
two ways, as depicted in Fig. 14 (the bits 9 ) 9 in 9 8� 9 and 9 8� 9
must be the same on the right in Fig. 14). The corresponding
restrictions on the rates U ) �$U � ��U � are

U ) � U � h	U�8) � U�8�
U ) � U � h	U�8) � U�8�
U ) � U � � U � h U�8) � U�8 � � U�8� (94)

The encoding also involves two binning steps, for which we
need rates U 8 8� and U 8 8� satisfying

U�8 8� � U�8 � �HU�8 8� � U�8� � (95)

Random Code Construction:
1) Choose ��Q30 "� i.i.d. ; � with 3 + ; � 2 	 � � 3 Fy> + ; � � 2 .

Label these ; � +�� 2 , � � � �#�$��Q30 "� 
 .
2) For each ; � +�� 2 choose ��Q�0 "� i.i.d.

. )
with3 + . ) 8 ; � +�� 252 	 � � 3 � � + . ) � 8 ; � � +�� 2�2 .

Label these
. ) +�� ��� ) 2 , � ) � � ���$��Q�0 "� 
 .
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Fig. 14. Reorganization of the message bits for BRC coding.

3) For each
. ) +�� � � ) 2 choose � Q�0 " "G i.i.d.

. �
with3 +�. � 8 ; � +�� 2 � . ) +�� ��� ) 252 	 � � 3 � G +�. � ��8 ; � � +�� 2 � . ) � +�� � � ) 252 .

Label these
. � +�� � � ) � , � 2 , , � � � ������Q�0 " "G 
 .

4) For each
. ) +�� � � ) 2 choose ��Q�0 " "> i.i.d.

. �
with3 +�. � 8 ; � +�� 2 � . ) +�� ��� ) 252 	 � � 3 � > +�. � � 8 ; � � +�� 2 � . ) � +�� � � ) 252 .

Label these
. � +�� � � ) � , � 2 , , � � � ������Q�0 " "> 
 .

5) Randomly partition the set

 �#� � � � �$�#Q�0 " "G � into ��Q30 " G cells� � G with � � � � ������Q�0 " G 
 .

6) Randomly partition the set

 �#� � � � �$�#Q�0 " "> � into ��Q30 "> cells� � > with � � � � �#�$��Q30 "> 
 . Note that we are abusing nota-

tion by not distinguishing between the � � and � � cells.
However, the context will make clear which cells we are
referring to.

7) For each
� ��� ) � , � � , � choose an ; � with3 + ; � 8 ; � +�� 2 � . ) +�� ��� ) 2 � . � +�� � � ) � , � 2 � . � +�� � � ) � , � 2�2 	� � 3�FHGAE F > � � � G � > + ; � �A8 ; � � +�� 2 � . ) � +�� ��� ) 2 � . � � +�� ��� ) � , � 2 �. � � +�� ��� ) � , � 252 . Label this vector ; � +�� ��� ) � , � � , � 2 .

Encoding: For block N encoding proceeds as follows.

1) Map 9 ) 9 �59 � 9 ��9 � 9 into 9 8) 9 �59 8� 9 �59 8� 9 as discussed above.
Set 9 8) ) 	 � .

2) The source terminal finds a pair/ . � + 9 8) . 9 * �&1 ��9 8) 9 � , � 9 2 � . � + 9 8) . 9 * �51 ��9 8) 9 � , � 9 2 0
with

, � 9 � �&% "G(' , , � 9�� �&% ">)' , and such that this pair is
jointly typical with ; � + 9 8) . 9 * �51 2 and

. ) + 9 8) . 9 * �51 �59 8) 9 2 .
The source terminal transmits ; � + 9 8) . 9 * �&1 �59 8) 9 � , � 9 � , � 9 2 .

3) The relay knows 9 8) . 9 * �51 from decoding step (1) and
transmits ; � + 9 8) . 9 * �&1 2 .

The second encoding step can be done only if there is a pair
of codewords

+�. � � . � 2 satisfying the desired conditions. Stan-
dard binning arguments (see [55]) guarantee that such a pair
exists with high probability if % is large and

+ U 8 8� � U 8� 2�� + U 8 8� � U 8� 2 � v + � � x � � 8 � ) � � 2 � (96)

Decoding: After block N decoding proceeds as follows.

1) (At the relay) The relay decodes 9 8) 9 by using
4 � 9 , and

this can be done reliably if

U 8) ] v + � ) x � � 8 � � 2 � (97)

2) (At the destinations) Terminal 3 decodes 9 8) . 9 * �51 and, � . 9 * �51 by using its past two output blocks
4
� . 9 * �51 and4

� 9 (see Fig. 5). Similarly, terminal 4 decodes 9 8) . 9 * �&1
and

, � . 9 * �&1 by using
4 ! . 9 * �51 and

4 !
9 . The techniques

of [15], [21] can be used to show that both terminals can

*,+

*,-

*/.

Fig. 15. Achievable rate region for the BRC.

decode reliably if

U 8 8� ] v + � � x ���#8 � ) � � 2U�8) � U�8 8� ] v + � ) � � � � x ��� 2U 8 8� ] v + ��� x �
! 8 � ) � � 2

U�8) � U�8 8� ] v + � ) ��� � � x �
! 2 � (98)

Terminals 3 and 4 can recover 9 8� 9 and 9 8� 9 from
the respective

, � 9 and
, � 9 . They can further recover+ 9 ) 9 �59 � 9 2 and

+ 9 ) 9 �59 � 9 2 from the respective
+ 9 8) 9 �59 8� 9 2

and
+ 9 8) 9 �59 8� 9 2 .

The rate region of (19) has the form depicted in Fig. 15. We
proceed as in [54, Sec. III] and show that one can approach the
corner point

U ) 	 jaros + v � � v ��� v
! 2

U � 	 jaros + v � � v � 2 � v + � � x ���#8 � ) � � 2 � jar0s + v � � v �#� v
! 2

U � 	 jaros + v � � v ��� v
! 2 � v + � � x �

! 8 � ) � � 2
� v + � � x � � 8 � ) � � 2 � jaros + v � � v � 2 (99)

where we recall that

v � 	 v + � ) x � � 8 � � 2 � v � 	 v + � ) � � x ��� 2 � v
! 	 v + � ) � � x �

! 2
and 3 +�. ) � . � � . � ��; � ��; � 2 is fixed. We begin by choosing

U�8 8� 	 U�8 �
U 8 8� 	 U 8� � v + � � x � � 8 � ) � � 2���_

(100)

for a small positive
_
. This choice satisfies (95) and (96). We

next consider two cases separately.
1) Suppose we have jar0s + v � � v �#� v

! 2 [	 v
!
. We choose

U ) 	 U 8) 	 jaros + v � � v � 2 � _
U � 	 U 8 � 	 v + � � x � � 8 � ) � � 2 � _
U � 	 U�8� 	 v + � � x �

! 8 � ) � � 2 � v + � � x � � 8 � ) � � 2 � � _
(101)

to satisfy (94), (97), and (98). We can thus approach the
corner point (99) by letting

_ - �
.

2) Suppose we have jar0s + v � � v �#� v
! 2 	 v

!
. We choose

U ) 	 v
! � _

U 8) 	 j ros + v � � v � 2 � _
U � 	 j ros + v � � v � 2�� v + � � x � � 8 � ) � � 2 � v

! � _
U�8 � 	 v + � � x � � 8 � ) � � 2 � _
U � 	 U 8� 	 v + � � x �

! 8 � ) � � 2 � v + � � x � � 8 � ) � � 2� v
! � jar0s + v � � v � 2 � � _ (102)
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which satisfies (94), (97), and (98) (note that we are us-
ing the mapping on the left in Fig. 14). We can again
approach the corner point (99) by letting

_ - �
.

One can thus approach both U ) 	 jar0s + v � � v � � v
! 2

corner
points in Fig. 15. One can approach the U ) 	 �

corner points
by operating at one of the U ) 	 jar0s + v � � v � � v

! 2
corner points

and assigning all of the
� )

bits to either
� �

or
� �

. The re-
maining points in the region of Fig. 15 are achieved by time-
sharing.

APPENDIX D
PROOF OF THEOREM 3

Our proof follows closely the proof of Theorem 6 in [4]. Recall
that � 	 
 �
���
�������'��� � ��� and � ` 	 
 ��� b � � e � . We
write

. ` + ��` 2 	 
 . � + � � 2 b � � eg� . For rates, we write U^` 	� ����� U � . We send P message blocks 9 � �59 � �������6�59�/ in P � �
transmission blocks. The overall rate is thus reduced by the
factor P V + P � � 2 , but for large P this rate loss is negligible.
The code construction is illustrated for 2 relays in Fig. 16.

Random Code Construction:
1) Choose ��Q�0 G i.i.d. ; � with 3 + ; � 2 	 � � 3 FHG + ; � � 2 .

Label these ; � + 9 2 , 9 � � ���$��Q�0 G 
 .
2) For all � � � choose �#Q�0 "� i.i.d.

. � with3 +�. � 2 	 � � 3 � � +�. ��� 2 .
Label these

. � + � � 2 , � � � � ������Q�0 "� 
 .
3) For all � � � and for each

. � + � � 2 , choose ��Q . 0�� * 0 "� 1 i.i.d.; � with 3 + ; � 8 . � + � � 252 	 � � 3�F �
E �
�
+ ; ��� 8 . ��� + � � 252 .

Label these ; � +', � 8 � � 2 , , � � � �#�$��Q . 0�� * 0 "� 1 
 .
4) For all � � � and for each

+ ; � +�, � 8 � � 2 � . u + �Du 2�2 ,
choose ��Q �0�� i.i.d. )4 � with 3 + )4 � 8 ; � +�, � 8 � � 2 � . u + �?u 252 	� � 3 �=

�
E F

�
� � + )4 ��� 8 ; ��� +', � 8 � � 2 � . u � + �?u 252 .

Label these )4 � + � �A8 , ����� u 2 , � �H� � �#�$��Q �0 � 
 .
5) For all � � � randomly partition the set


 �#� � � � �$�#Q �0����
into ��Q�0 � cells

� � � p � � , ���d� � �#�$��Q�0 "� 
 , , �d� � ������Q . 0 � * 0 "� 1 
 .
We remark that the

. � are decoded by the destination termi-
nal and the relays, while the ; � are decoded by the destination
terminal only. One can think of the

. � as cloud centers (coarse
spacing) and the ; � as clouds (fine spacing).

Encoding:
1) Let 9 9 be the message in block N . The source terminal

sends ; � + 9 9 2 .
2) For all � �i� terminal � knows � �/. 9 * �&1 from decoding

step (4), and chooses
+ � � 9�� , � 9 2 so that � �/. 9 * �&1 � � � � ' p � � ' .

Terminal � transmits ; � +�, � 9 8 ��� 9 2 .
Decoding: After block N decoding proceeds as follows.
1) (At the destination) The destination terminal first decodes

the � � � indexes � u 9 using
4 7 9 . This can be done reli-

ably if (see [17, p. 403])

U 8` ] v + � `Ix � 7 8 � ` z 2 (103)

for all e �i� , where e � is the complement of e in � .
The destination terminal next decodes

, u 9 . This can be
done reliably if

U ` � U 8` ] v + � ` x � 7 8 � u � ` z 2 (104)

for all e �	� .

����

��������	�

 ��� 
 ��� ����� � �


 ��� 
���� �

� ����������� 
���� �


 ��� ����� ��� 
�� � � ����� �� ��� ! ��� ����� � � � ��� ����� ���� � ��� ��� ����� � � 
 ��� ����� � �

��	�


 � � 
�� � ����� � �

��	�

���"�#��	�

Fig. 16. The code used by terminal 2 (the first relay) for compress-forward.

2) (At the destination) The destination terminal determines
the set $ +M4 7 . 9 * �&1 2 of � u such that

� 
 . � + � �/. 9 * �&1�2 �5; � +�, �/. 9 * �51 8 � �/. 9 * �5152 �
)4 � + � � 8 , �/. 9 * �51 ��� u . 9 * �&1�2 b �d� ���K� 4 7 . 9 * �&1 0 (105)

is jointly
_
-typical, where the � �/. 9 * �51 and

, �/. 9 * �&1 were
obtained from the first decoding step. The destination
terminal declares that � u . 9 * �&1 was sent in block Nc� � if

� u � +�� � >)'$p � >)' � � � � � � � � C JKG � ' p � � C JKG � ' 2&% $ +�4 7 . 9 * �&1 2
(106)

where � u 	 � u . 9 * �&1 .
We compute the error probability of this decoding step, i.e.,

the probability that � u . 9 * �51 was incorrectly chosen. We first
partition $ +�4 7 . 9 * �&1 2 into � 7 * � sets:

$c` 	 
 � u b � u �'$ +�4 7 . 9 * �&1 2 � � � [	 � �/. 9 * �51 for � �fe �
� � 	 � �/. 9 * �51 for �:V�feg� (107)

where e � � . These sets could be empty. We proceed to
determine their average size. We follow [4] and write (*)9 * � for
the event that all decisions in block N!� � were correct. We have
 � 8o8 $d`I8o8 �� ( )9 * � 
 	 �

+ � �-, � 
 � . +!� u^8 4 7 . 9 * �51 2 8 ( )9 * � 
 (108)

where
� u is the random variable that maps to � u , and where

. + � u 8 4 7 . 9 * �51 2 	 ' �#� if (105) is jointly typical� � otherwise.
(109)
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Now if � u�� $d` then
+ )� ` z � � 7 2 and the )� � with �f� e are

jointly independent given
+ � ug� � u 2 . Lemma 1 thus ensures

that
 � . +!� u^8 4 7 . 9 * �&1 2 8 ( )9 * � 

h � * Q � *

� . E ` E � �$1 � * � . �= � �= ���#= C E � � F � 1 � � . �= � z = C E � � F � 1
���

��� � � . �= � E � � F � 1 

	 � * Q � *

� . E ` E � �$1 � * � . �= � E � � F � �= � z = C 1 ��� �	� � � . �= � E � � F � 1 
 �
(110)

There are � Q �0 � �W� choices for � ` [	 � ` . 9 * �51 . Hence, using the
union bound, we upper bound 
 � 8o8 $ `H808 �� ( )9 * � 
 by

� Q �0 � � * Q � * � . E ` E � �$1 � * � . �= � E � � F � �= � z = C 1 � � �	� � � . �= � E � � F � 1 
 �
(111)

As long as the
, � 9 of block N have been decoded correctly, an

error is made only if there is a � u [	 � u . 9 * �&1 in $ +M4 7 . 9 * �51 2
which maps back to

, u 9 . We thus compute

YHZ + error in step (2)
2

h YcZ

� �
`!t<u p ` ���
 �

+ � �-, � event (106) occurs

������ ( )9 * ����
h �
`!t<u p ` ���
 YHZ 5 �

+ � �-, � event (106) occurs

����� ( )9 * � ;
h �
`!t<u p ` ���
 YHZ 5 �

+ � �-, � 
 � �c� � � � '$p � � ' for all �d� eg�
����� ( )9 * � ;

	 �
`!t<u p ` ���
 
 � 8o8 $d`c808 �� ( )9 * �

�
� * Q�0 � � (112)

Inserting (111) into (112), we see that as long as

U ` � )U^` � � + )��`c8 � u � u )� ` z � 7 2 � � ��� ` � + )� � 8 � u ��u 2
(113)

for all e � � then decoding step (2) can be made reliable.
Decoding (continued):
3) (At the destination). Assuming that the � u . 9 * �&1 , , u . 9 * �51

and � u . 9 * �51 were decoded correctly, the destination fi-
nally declares that 9 9 * � was sent in block Nd� � if

� ; � + 9 9 * � 2 � 
 . � + � �/. 9 * �&152 �5; � +�, �/. 9 * �51 8 � �/. 9 * �51&2 �
)4 � + � �/. 9 * �51 8 , �/. 9 * �&1 � � u . 9 * �51&2 b � � ���#� 4 7 . 9 * �51 0

(114)

is jointly
_
-typical. Using Lemma 1, the probability that

there exists a 9 [	 9 9 * � such that ; � + 9 2 satisfies (114)
is upper bounded by

� * Q .���. F G�� � � F � �= � = C 1 ��� � 1 � (115)

Applying v + � � x � u � u 2 	
� , we find that if

U � ] v + � � x-)�!u � 7 8 � u�� u 2 (116)

then this decoding step can be made reliable.
4) (At the relays). Relay � estimates the � � 9 with

, [	 � ,
which can be done reliably if

U 8` ] v + � ` x ���q8 � ` z �a� 2 (117)

for all e � � �K
 ��� . The set e � is again the complement
of e in � , but one can remove the

� � in the condition-
ing of (117). Suppose the ��� � estimates of the � � 9 are
correct. Relay � chooses any of the � � so that/ 
 . � + ��� 9 2 b � � � �#��; � +�, � 9 8 ��� 9 2 � )4 � + � �q8 , � 9 ��� u 9 2 � 4 � 9 0
is jointly

_
-typical.

The probability � that there is no such � � is bounded by�ih / � � + � � _A2 � * Q � ! � � ��. �= � � = � E � � F �
1 � 0 ������ �

(118)

as follows from Lemma 1. We use )3+4-H; h + ; � � 2 to bound),+.- � h�� Q �0 � ),+.- / � � + �g� _A2 � * Q	� ! � � ��. �= � � = � E � � F �
1 � 0

h � + � � _�2 � Q �0 � � * Q � ! � � ��. �= � � = � E � � F �
1 �

(119)

This expression can be made to approach � � with large % if

)U^� 	 v + )���Ax ���q8 � u �a� 2���� � (120)

for
� � * _ � � .

Finally, we combine (113) and (120), and use (see (26))� + )� � 8 � u�� � � � 2 	 � + )� � 8 � u�� u )� `�z �!u � 7 2
to obtain the left hand side of (25). We combine (103), (104)
and (117) to obtain the right hand side of (25).

APPENDIX E
PROOF OF THEOREM 5

One could prove Theorem 5 by using backward or window
decoding. Instead, we use the proof technique of [4]. The code
construction is illustrated in Fig. 17.

Random Code Construction:
1) Choose ��Q30 "> i.i.d.

. �
with 3 +�. � 2 	 � � 3 � > +�. � � 2 .

Label these
. � + � � 2 , � � � � �#�$��Q30 "> 
 .

2) For each
. � + � � 2 choose ��Q . 0 > * 0 "> 1 i.i.d. ; � with3 . ; � 8 . � + � � 2�2 	 � � 3'F > E � > + ; � � 8 . � � + � � 252 .

Label these ; � +', � 8 � � 2 , , � � � �#�$� Q . 0 > * 0 "> 1 
 .
3) For each ; � +', � 8 � � 2 choose ��Q�0 G i.i.d. ; � with3 + ; � 8 . � + � � 2 �5; � +', � 8 � � 252	 � � 3'F G E � > F > + ; � � 8 .�� � + � � 2 �5; � � +�, � 8 � � 2�2 .

Label these ; � + 9�8 , � ��� � 2 , 9,� � ������Q�0 G 
 .
4) Choose ��Q30 � i.i.d. ; � with 3 + ; � 2 	 � � 3 F � + ;�� � 2 .

Label these ; � +', � 2 , , � � � ���$��Q�0 � 
 .
5) For each

+ ; � +�, � 2 � . � + � � 252 choose � Q �0 � i.i.d. )4 � with3 + )4 � 8 ; � +', � 2 � . � + � � 2�2	 � � 3 �= � E � >$F � + )4 � ��8 . � � + � � 2 �5; � � +�, � 2�2 .
Label these )4 � + � �#8 , ����� � 2 , � � � � ������Q �0 � 
 .

6) Randomly partition the set

 ��� � � � ����Q30 G � into ��Q30 > cells� � >qp � > , � � � � �#�$��Q�0 "> 
 , , � � � ������Q . 0 > * 0 "> 1 
 .
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Fig. 17. The code construction for Theorem 5.

7) Randomly partition the set

 �#� � � � �$�#Q �0 � � into ��Q�0 � cells� � � , , � � � ������Q�0 � 
 .

Encoding:
1) The source transmits ; � + 9 9 8 , � . 9 * �51 ��� � . 9 * �5152 in block N .

It chooses
+ � � 9 � , � 9 2 so that 9 9 * � � � � >)'�p � >)' .

2) Terminal 2 knows 9 9 * � (decoding step (1)), and chooses+ � � 9�� , � 9 2 so that 9 9 * � � � � > ' p � >)' . It transmits; � +�, � 9?8 � � 9 2 .
3) Terminal 3 knows � � . 9 * �&1 (decoding step (4)), and

chooses
, � 9 so that � � . 9 * �51 � � � � ' . It transmits ; � +�, � 9 2 .

Decoding: After block N decoding proceeds as follows.
1) Terminal 2 chooses (one of) the message(s) 9 9 so that+�. � + � � 9 2 �5; � + 9 9 8 , � 9 2 ��; � +', � 9 8 � � 9 2 � 4 � 9 2 is jointly typical.

This step can be made reliable if

U � ] v + � � x � � 8 ��� � � 2 � (121)

2) The destination terminal decodes � � 9 and
, �-9 . This step

can be made reliable if

U�8� ] v + � � x �
! 8 � � 2 (122)

U � ] v + � � x �
! 8 � � 2 (123)

U�8� � U�� ] v + ��� � ��x �
! 2 � (124)

3) The destination terminal determines the set] $ +M4 ! . 9 * �51 2
of � � such that

� . � + � � . 9 * �5152 ��; � +�, � . 9 * �&1&2 �
)4 � + � �K8 , � . 9 * �51 ��� � . 9 * �5152 � 4 ! . 9 * �&1 0

is jointly typical. The intersection of this set with the � �
in

� � � ' determines � � . 9 * �&1 . The correct � � . 9 * �&1 can be

found reliably if % is large and (see (113))

U�� � )U�� � � + )���#8 ��� � � � ! 2 � � + )���K8 � � � � 2
	 )U�� � v + )���#x �

! 8 ��� � � 2 � (125)

This is identical to step (ii) of the proof of [4, Thm. 6].
4) The destination terminal chooses

, � . 9 * �51 so that

� . � + � � . 9 * �&1�2 �5; � +', � . 9 * �&1 8 � � . 9 * �5152 ��; � +�, � . 9 * �51&2 �
)4 � + � � . 9 * �51 8 , � . 9 * �51 ��� � . 9 * �5152 � 4 ! . 9 * �&1 0

is jointly typical. Using Lemma 1, this step can be made
reliable if

U � � U 8� ] v + � � x6)� � �
! 8 � � � � 2 � (126)

5) The destination terminal determines the set $ +M4 ! . 9 * �51 2 of
9 such that

� . � + � � . 9 * �5152 ��; � + 9�8 , � . 9 * �&1 ��� � . 9 * �51&2 ��; � +�, � . 9 * �51 8 � � . 9 * �&1&2 �
; � +', � . 9 * �5152 � )4 � + � � . 9 * �51 8 , � . 9 * �51 ��� � . 9 * �&1�2 � 4 ! . 9 * �51 0

is jointly typical. The destination terminal knows+�, � 9 � � � 9 2 , and generates the intersection of $ +�4 ! . 9 * �&1 2
with those 9 in

� � >)' p � >)' . The correct 9 9 can be found
reliably if

U � ] v + � � x-)� � �
! 8 � � � � � � 2�� U � � (127)

This is the analog of step (iii) of the proof of [4, Thm. 6].
6) Terminal 3 decodes � � 9 . This can be done reliably if % is

large and

U�8� ] v + � � x ���K8 � � 2 � (128)

Finally, terminal 3 tries to find a � � such that+ )4 � + � �#8 , �-9���� � 9�� 4 � 9 ��; � +�, � 9 2 � . � + � � 9 2�2 is jointly typical.
Such a � � exists with high probability for large % if

)U � � v + )� � x � � 8 � � � � 2 � (129)

This is the analog of step (iv) of [4, Thm. 6].
In summary, U � is bounded by (121) and (127). Inserting

(126) into (127), we have

U � ] jar0s 
 v + � � � � x6)� � �
! 8 � � � � 2�� U 8� �

v + � � x � � 8 � � � � 2 �#� (130)

Combining (129) with (125) yields

U�� � v + )���#x ���#8 ��� � � �
! 2

(131)

where we have used (40). Furthermore, U 8� and U�� have to
satisfy (122)–(124) and (128), i.e., we have

U 8� ] jaros 
 v + � � x � � 8 � � 2 � v + � � x �
! 8 � � 2 � (132)

U � ] v + � � x �
! 8 � � 2 (133)

U�8� � U � ] v + � � � � x �
! 2 � (134)

Equations (130)–(134) are the same as (35)–(39).
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