
Survey Propagation for Random K-sat problems

Area I Seminar, 6.454

December 6, 2006

1 Introduction

This report will attempt to summarize some recent research on the random K-
sat problem. After a brief introduction, we will describe some recently proposed
algorithms for random K-sat, in particular the “survey propagation” algorithm.
We will explain the equivalence of survey propagation to an appropriately de-
fined belief propagation iteration, which a well-known iterative technique for
estimation problems.

2 K-sat

2.1 Introduction to the problem

A clause with d variables is a Boolean expression that can be written as the
logical OR of the variables x1, . . . , xd, or their negations. For example, if d = 3,
the following are clauses:

x1 ∨ x2 ∨ x3

x1 ∨ x̄2 ∨ x3

x̄1 ∨ x̄2 ∨ x̄3

where “∨” is the logical OR symbol and x̄ is the negation of x. The Boolean
satisfiability problem is to determine whether an expression written as

P = C1 ∧ C2 ∧ · · · ∧ Cn,

(where “∧” is the logical AND symbol and each Ci is a clause) is satisfiable for
some assignment of the input variables xi, i.e. whether we can assign each xi

the value 0 or 1 so that P = 1. If each Ci has exactly K variables, the problem
is known as the K-sat problem.

A random K-sat problem is generated by choosing each Ci, i = 1, . . . , n
via uniform sampling from the space of all

(

n
K

)

subsets size of K of the set
{x1, . . . , xn}, and negating each variable with probability 1/2.

1

2.2 Motivation

2.2.1 In computer science

K-sat is one of the NP-complete problems: any problem in the class NP may
be converted to a 3-sat problem with at most a polynomial time slowdown. An
algorithm for solving K-sat problems would thus immediately solve many other
problems (e.g. integer programming, traveling salesman problems) [11].

A random instance of K-sat, however, does not immediately translate into
natural random instances of other problems. Nevertheless, there is a relationship
between the complexity of random K-sat and hardness of approximation for
various combinatorial problems - see [4].

2.2.2 In physics

A spin glass is a disordered magnetic system, i.e. a collection of molecules with-
out a regular magnetic pattern. The disorder can arise because the molecules
are arranged in an irregular order, or due to deliberate contamination of a reg-
ular lattice of molecules. The contaminated sites may have magnetic properties
differing from the properties of the rest of the material, leading to irregularity.

Here is a model designed to encompass spin glass systems. Consider the
space ΣN = {0, 1}N of n-letter words from the alphabet {0, 1}. Each σ ∈ ΣN

is a representation of N spins which are either +1 or −1. Let HN (σ) be a real
valued function1 representing the potential of the configuration σ. Different
spins may attract or repel each other, and HN (σ) measures the energy of the
system in configuration σ. Consider the probability measure on ΣN defined by

p(σ) =
1

Z
e−HN (σ)/T

where Z is a normalizing constant and T is a parameter called the temperature
of the system. As T → 0, we have that p(σ) approaches a uniform measure over
all configurations minimizing HN .

Much of the study of spin glasses is dedicated to characterizing the properties
of the distribution p(σ), for example: the constant Z, the average spin, whether
p(σ) can be iteratively generated, and so on.

If we consider ΣN to be the set of assignments to a K-sat problem, and let
Hn(σ) be the number of violated constraints in assignment σ, we have that as
T → 0, p(σ) is a uniform measure over all the solutions of the K-sat problem.
Thus, K-sat can be cast as a zero-temperature limit of an appropriately defined
spin glass system.

2.3 Experimental results for random K-sat

There are strong experimental (but non-rigorous) results on the behavior of
random K-sat ensembles. The following summary is based on [10]; see the
references therein for more information.

1In some models of this type, H is a random variable.

2

they are subject to some
constraints. In satisfia-
bility, each constraint
forbids one specific as-
signment of some subset
of the variables (for ex-
ample, x1 = true, x2 =
alse can be forbidden).

The question is whether
there exists an assign-

α < αd αd < α < αc

Figure 1: The solution clusters of random K-sat problems. Figure is taken from
[10].

Let α = k/n be fixed, and let n be large. Then:

1). There exists a constant αc, such that for α < αc, the problem is almost
always satisfiable and for α > αc, the problem is almost always unsatisfi-
able.

2). There exists a constant αd, smaller than αc, such that for α ∈ (0, αd), the
set of solutions almost always forms a connected cluster - see left hand
side of Figure [10].

On the other hand, for α ∈ (αd, αc), the set of solutions almost always
consists of disconnected clusters - see right hand side of Figure [10].

Some progress towards making the above statements rigorous was made in
[8]. One way of restating the first point is that the probability of satisfiability
goes to 1 if

k ≥ (αc + ε)n

and to zero if
k ≤ (αc − ε)n

as n → ∞. In [8], it was proved that the probability of satisfiability goes to 1 if

k ≥ (a(n) + ε)n

and to zero if
k ≤ (a(n) − ε)n

where a(n) is some function of n. It has not been proved that a(n) can be taken
to be a constant. This appears to be best of what has been proved as far as
phase transitions are concerned. Some bounds on the constant αc are known -
see [3].

3

3 Factor graphs and belief propagation

3.1 Introduction

In this section we introduce factor graphs and belief propagation. We indicate
how these apply to the K-sat problem. The exposition here is is based on [7].

Let g(z1, . . . , zn) be a function of the variables z1, . . . , zn, which take values
in some discrete set. We will use the “not-sum”

∑

∼{zi}
to indicate that the

sum is over every variable except zi, i.e.

∑

∼{zi}

g(z1, . . . , zn) =
∑

z1,z2,...,zi−1,zi+1,...,zn

g(z1, . . . , zn)

Suppose g(z1, . . . , zn) factors into a product of “local functions” fj , where
each fj is defined on some subset of {z1, . . . , zn}:

g(z1, . . . , zn) =
∏

j

fj(Zj), (3.1)

Zj is a subset of {z1, . . . , zn}, and fj(Zj) is a function of the variables in the set
Zj . Our goal in this section is to efficiently compute the “marginal functions”

gi(zi) =
∑

∼{zi}

g(z1, . . . , zn)

One way to do this is by straightforwardly going through every possible value
of z1, . . . , zn and adding the corresponding evaluation of g. We will see that it
is possible to use Eq. (3.1) to compute gi more efficiently.

3.2 Factor graphs

We introduce the factor graph representation of the function g. A factor graph
has a vertex for every variable zi and a vertex for every function fj . There
is an edge between the vertex corresponding to the variable zi and the vertex
corresponding to the function fj if and only if zi ∈ Zj , i.e. if and only if variable
zi appears in function fj .

This defines a bipartite graph (i.e. none of the variable vertices are connected
to each other, and neither are the function vertices).

Example: Consider the function g defined by

g(x1, x2, . . . , x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x2, x4)fE(x2, x5)

The corresponding factor graph is shown in Figure 2.

4

Figure 2: Factor graph for function g(x1, x2, x3, x4, x5). The figure is from [7].

�
�

�
� �

�
�
�

Figure 3: Neighborhood of the root in a sample tree factor graph.

3.3 Belief propagation

Now if the factor graph of g(x1, x2, . . .) is a tree, then we can write a certain
recursive factorization for the functions gi(xi). To show this, we need the so-
called cartesian product lemma, which states that for any two disjoint sets X ,Y
and for any two functions f, h, we have that

∑

x∈X,y∈Y

f(x)h(y) = (
∑

x∈X

f(x))(
∑

y∈Y

h(y))

With this in mind, consider the factor graph shown in Figure 3. Let Za, Zb, Zc

represent the variable sets used by the functions fa, fb, fc. Let fai, i = 1, 2, . . .
be all the functions in the branch of the tree under fa, and let their variable
sets be Zai; similarly for fbi, fci and Zbi, Zci. Then,

∑

∼z1

g(z1, z2, . . .) =
∑

∼z1

fa(Za)(
∏

fai(Zai))fb(Zb)(
∏

fbi(Zbi))fc(Zc)(
∏

fci(Zci))

which is simply writing out the factor graph representations for g(z1, z2, . . .).
Now fix z1 to some real number and delete it from all the variables sets Zi; note
that now the variable sets Za, Zai, i = 1, 2, . . ., do not intersect with any of the
sets Zb, Zbi or Zc, Zci. Applying the cartesian product lemma, we have that for

5

all z1,
∑

∼z1

g(z1, z2, . . .) = [
∑

∼z1

fa(Za)
∏

fai(Zai)] · [
∑

∼z1

fb(Zb)
∏

fbi(Zbi)]

· [
∑

∼z1

fc(Zc)
∏

fci(Zci)] (3.2)

This factorization gives rise to a “bottom-up” algorithm for computing
g1(z1), which computes the quantities

∑

∼z1
fk(Zk)

∏

fki(Zki) recursively for
all subbranches of the tree. This can be done with the following steps:

1). Each leaf variable node sends an identity message to its parent; each leaf
function node sends a description of itself to its parent

2). When a variable node receives messages from all its children, it forms the
product of them and sends them to its parent (where product is the simple
pointwise product of functions).

3). When a function node fi receives messages from all its children, it forms
the product of these messages with fi(Zi) and operates on the result with
the

∑

∼zi
operator.

Applying Eq. (3.2) recursively, it follows that when these message-passing rules
are executed, the product of the final messages to the root node z1 will be the
function g1(z1).

The update rules may be summarized as:

µzi→fj
=

∏

h∈n(zi)−{fj}

µh→zi
(3.3)

and
µfj→zi

=
∑

∼zi

(f(Zj)
∏

y∈n(fj)−{zi}

µy→fj
) (3.4)

where µa→b means the message sent by node a to node b.
The execution of Eq. (3.3) and Eq. (3.4) is known as belief propagation

or the sum-product algorithm. If the factor graph is not a tree, Eq. (3.3) and
Eq. (3.4) may still be applied, though now there are no guarantees on the
correctness of the final solution. In practice, however, one often obtains good
results by using belief propagation on graphs with cycles [6].

3.4 Parallelization

If we want to compute all gi(zi) simultaneously, it is possible to parallelize belief
propagation. All messages from node a to node b are computed as before using
Eq. (3.3) and Eq. (3.4) and assuming b is the parent of a. As before,
message passing is initiated in the leaves.

6

We claim that if the factor graph is a tree, then after n iterations the message
sent to variable node zj will be gj(zj). To see this, note that we have shown it
for the case when Eq. (3.3) and Eq. (3.4) are executed in a bottom-up schedule
after having designated zj as the root. We then show by induction that the
relevant messages in a parallelized schedule are the same as the messages in a
bottom-up schedule.

Clearly, the messages from the leafs of the tree at step 1 of the algorithm
are the same, by definition. Defining the distance of a node to be the the length
of the shortest path to the closest leaf, our inductive hypothesis is that the
messages of the vertices at distance i at time i is the same in both schedules.
To show that messages of nodes at distance i + 1 at time i + 1 are the same,
simply note that these messages are defined using the same Eq. (3.3) and Eq.
(3.4) on the same inputs. Indeed, a given node will receive a message from its
parent on the path to zj , but it will ignore this message when computing its
own message to that parent according to Eq. (3.3) and Eq. (3.4).

This proves that all the functions gj may be computed in parallel by iterating
the equations Eq. (3.3) and Eq. (3.4).

3.5 K-sat

For a given K-sat problem, we may write fi = Ci, i.e. fi = 1 if clause i
is satisfied, and 0 if it is not. Then, g(x1, . . . , xn) =

∏

i fi; we have that
g(x1, . . . , xn) = 1 if the configuration (x1, . . . , xn) satisfies the K-sat problem,
and 0 if it does not.

If the factor graph is a tree, then belief propagation will correctly compute
the functions gi(xi), which map a ∈ {0, 1} to the number of solutions to the
K-sat problem having xi = a.

4 Survey propagation

In this section, we describe the survey propagation algorithm for K-sat prob-
lems. To this end, we first introduce a related algorithm for the K-sat problem
known as “warning propagation.”

The material here is based on [1] and [9].

4.1 Warning propagation

First, we introduce some notation. Given constraint a and variable i, we will
define Cs

a(i) to be those constraints whose preferred assignment for i is the same
as that of constraint a. For example, if variable i appears in constraint a negated
as x̄i, then Cs

a(i) consists of all those constraints except a in which x̄i appears.
Similarly, Cu

a (i) consists of all those constraints whose preferred assignment for
i is not the same as that for constraint a.

Warning propagation is a message passing algorithm defined as follows. Mes-
sages from variables to constraints are either “s,” “u,” “*,” (intuitively corre-

7

sponding to, respectively, the variable being inclined to adopt a satisfying value
for the constraint, an unsatisfying value for the constraint, and indifference to-
wards which value to adopt). Messages from constraints to variables are either
empty or “w” (intuitively corresponding to a constraint warning a variable that
it must take a satisfying value for that constraint).

The message updating rules for constraints are simple: a constraint sends a
warning “w” to a variable if that variable is the only variable in the constraint;
or if the constraint has received “u”s from all the other variables. Else it sends
an empty message.

For the variables, we have the following rules.

• If a variable i receives a warning from constraints in Cs
a(i) and no warnings

from Cu
a (i), it sends an “s” to a.

• If a variable i receives a warning from constraints in Cu
a (i) and no warnings

from Cs
a(i), it sends an “u” to a.

• If a variable i receives no warning from any nodes in Cu
a (i) or Cs

a(i), then
it sends a ∗ to a.

• If a variable i receives warnings from both nodes in Cs
a(i) and Cu

a (i) it
sends an s if it has received more warnings from Cs

a(i) and a u otherwise.

We next introduce the “warning numbers” ci:

ci = 1 if at the fixed point variable i receives warnings from two constraints with different

preferred values for i

= 0 if at the fixed point variable i receives no warnings, or all the warnings it receives are

from constraints with the same preferred value for i

We then have the following theorem.

Theorem 4.1 Consider an instance of the K-sat problem on N variables

for which the factor graph is a tree. Then at time N the warning propaga-

tion algorithm converges to a fixed point. Moreover, if any ci are nonzero, the

problem is unsatisfiable; if all the ci are zero, the problem is satisfiable.

Proof:

1). First, we prove that the algorithm converges to a fixed point in N steps.
Given a tree factor graph, let Ta→i be the subgraph defined by removing
the edge (a, i) and picking the remaining component containing a. We
will define the largest distance between constraint a and a leaf node in
Ta→i to be the “level” of the edge (a, i). We will prove convergence by
induction on the level.

8

If an edge has level zero (i.e. the constraint node is a leaf), then the
message from the constraint to the variable is “w” at time 1. Moreover,
this message does not change.

If an edge has level one, then the constraint node has a variable child
which is a leaf. That node will always send a “*” to the constraint node.
It follows that the message from the constraint to the variable on a level
1 node will be empty for t ≥ 2.

Our inductive hypothesis is that the message from constraint to variable
on an edge with level r is constant after time 1 + r. We have proven this
for r = 0, 1. To complete the induction, note that messages on an edge
with level r are completely determined by the messages on edges with level
at most r − 2. Indeed, after deleting the edge (a, i), consider edges (b, i)
in the component containing a, where b is some constraint which is not
a. This edge is on a path from a to some leaf, and hence must have level
strictly less than r - at most r − 2 in fact, since the distance between a
and b is at least 2 since a variable vertex must be traversed. Thus the
messages sent by all other constraints b appearing in Ta→i are constant
after time 1 + (r − 2) = r − 1 by the inductive hypothesis. Thus, all the
variable neighbors of a except i must send the same message to a after
time r. This means that the message from a to i is constant after time
r + 1. This proves the claim about convergence.

2). Next, we prove a useful lemma. We will refer to message from constraint
a to variable i as ua→i, and similarly ui→a will denote the message from
variable i to constraint a. We will add stars to messages at the fixed
point, i.e. u∗

a→i means the message from a to i at the fixed point of
warning propagation.

Note also that subgraphs of our factor graphs also correspond to K-sat
problems, obtained by simple omitting the constraints and variables not
in the subgraph.

Lemma 4.2 If u∗
a→i = w, then clause a is violated in the K-sat problem

defined by the subgraph Ta→i.

Proof: Obviously true if the level of the edge (a, i) is 0. Its easy to see
that the assumptions of the lemma can never happen if the level of (a, i)
is 1.

For higher levels, we prove the statement by induction. Suppose the as-
sumptions of the lemma hold for some edge (a, i) with level at least 2.
Consider a variable node j which is (i) a neighbor of the constraint node
a (ii) not i. At the fixed point, j must have received a warning from some
constraint cj , leading it to send “u” to constraint a. But then, by the
inductive hypothesis, the K-sat problem corresponding to the subgraph
Tcj→j is unsatisfiable! This means that either the problem corresponding
to Ta→i is unsatisfiable, in which case we are done; or the value of node

9

j is fixed by constraint cj to satisfy the problem. This value must not be
the value constraint a prefers for node j, as j sent a “u” to a. It follows
that all of the neighbors j except i of a are fixed to values which do not
satisfy a. This proves that the problem defined by the subgraph Ta→i is
unsatisfiable.

3). Having shown that u∗
a→i = “w′′ implies that constraint a fixes the value

of i, it now immediately follows that the formula is unsatisfiable if there
is a conflict represented by ci = 1 for some i.

4). If all ci are 0, we use the fixed point messages of warning propagation
to produce a satisfactory assignment. We fix the variables which have
received a warning (since all ci are zero, there are no conflicts). One then
“cleans” the graph by removing the satisfied constraints and removing
the fixed variables from all other constraints. Note that the only vari-
ables which are left are those which did not receive any warnings and
consequently picked “*” values.

Next, pick randomly a variable i, fix it to any value, and clean the graph
once again.

This process has split our original tree into a set of disjoint trees. We
run warning propagation on each of these trees, initialized with the fixed
point messages of the previous iteration of warning propagation. Since no
warnings were sent on any edges of the new trees at this fixed point, the
only constraints which will send a warning are those who are adjacent to
the variable i that was fixed. However, each variable can receive only one
warning, coming from the unique constraint on the path to i. Thus, ci

must be all 0 after running warning propagation on the strictly smaller
graph.

Thus we’ve produced a strictly smaller graph with all ci zero. Since it is
trivial that all ci being zero is sufficient for satisfiability for graphs of size
1 and 2, by induction this completes the proof for an arbitrary graph.

4.2 Survey propagation

Now consider the statistics of warning propagation, i.e. the probabilities that a
given constraint will send a “w” at time t. How do these evolve?

Let us denote the probabilities of sending a “u,” ”s,” and ”*” on link (i, a)
by Πu

i→a,Πs
i→a, and Π∗

i→a; and let us denote the probability of warning on link
(i, a) as ηa→i.

Assuming all warning events are independent, we have that a warning is sent
on a link if and only if the constraint receives “u”s from all other links. Thus:

ηa→i =
∏

j∈N(a)−{i}

Πu
j→a

Πu
j→a + Πs

j→a + Π∗
j→a

(4.5)

where N(a) is the set of neighbors of a in the factor graph.

10

A link will send a ∗ message if and only if it will get no warnings at all:

Π∗
i→a =

∏

b∈N(i)−{a}

(1 − ηb→i) (4.6)

Now we make another assumption: that no node gets contradictory warn-
ings. Intuitively, we assume that warning propagation stays within the cluster of
satisfying assignments which dampens the likelihood of contradictory warnings.

Then, we will have that a node i sends a “u” to constrain a if and only
if it receives no warnings from constraints that agree with a, and at least one
warning from a constraint that disagrees with a:

Πu
i→a = [

∏

b∈Cs
a(i)

(1 − ηa→i)][1 −
∏

b∈Cu
a (i)

(1 − ηa→i)] (4.7)

Similarly,

Πs
i→a = [

∏

b∈Cu
a (i)

(1 − ηa→i)][1 −
∏

b∈Cs
a(i)

(1 − ηa→i)] (4.8)

Equations 4.5,4.6, 4.7, 4.8 are the survey propagation algorithm. Node i
sends the triple Πu

i→a,Πs
i→a,Π∗

i→a to constraint a, which sends back ηa→i. The
above equations constitute the update rules.

5 Belief propagation on generalized state real-

izations

In this section, we summarize an extension of factor graphs and belief propaga-
tion. The exposition here follows [5].

A generalized state realization has a set of state variables in addition to a set
of symbol variables and function variables. Each state variable can take values
in some discrete set. Functions will now involve both state variables and symbol
variables. There is an edge from (i, j) if one of i, j corresponds to a function,
and the other corresponds to a variable or state used by the function.

From now on we will restrict our functions fj to have range in {0, 1}. In-
tuitively, we will think of functions as constraints. A value of fj = 1 means
constraint Cj is satisfied; a value of fj = 0 means it is not.

We will further assume that our factor graph is normal, which means that
all symbol variables have degree 1 and all state variables have degree 2. All
factor graphs may be made normal by replication; see [5] for details.

A configuration (z1, . . . , zn, s1, . . . , sm), where zi are variables, and si are
states, will be called admissible if satisfies all the constraints. A configuration
of symbol variables only (z1, . . . , zn) will be called admissible if it satisfies all
the constraint for some state assignment (s1, . . . , sm).

Let z = (z1, . . . , zn) be an admissible configuration. We assume that we have
some weight function which factorizes as w(z) =

∏

j wj(zj) mapping admissible

11

Figure 4: Local configuration for a sum-product update rule. Figure is from [5].

configurations to real numbers; we assume w maps inadmissible configurations
to 0. We are interested in computing

wk(sk) =
∑

z∈Ck(sk)

w(z)

where Ck(sk) is the set of all admissible configurations consistent with sk.
We define wk to be the vector which stacks up wk(sk). As before, we are

assuming that the factor graph is a tree; thus we assume all configurations can
be broken up into “upstream” and “downstream” parts. Define wk↑(sk) to be
the sum of the weights of all upstream configurations consistent with sk; and
wk↓ to be the sum of the weights of all the downstream configurations consistent
with sk. We can similarly define wk↑↑ and wk↓↓. See Figure 4 for an illustration,
though note that state variable are shown as edges (without a dongle sign) in
the picture.

Now the weight of an upstream configuration consistent with sj is the prod-
uct of the weights of subconfigurations along each branch wk↑↑ in the picture,
times the weight of any symbol variable connected to Cj↑, which we will denote
as wj↑. Summing over all possible choices for the configurations and applying
the cartesian product lemma, we have:

wk↑ =
∑

Cj(sj)

∏

wk↑↑(sj′) (5.9)

where Cj(sj) is the set of neighboring upstream states consistent with sj .
Equation (5.9) is the equation corresponding to belief propagation on the

general state realization. As before, if executed sequentially from the leaf to
the root, the final iteration will compute wk(sk) for the root node. Parallel
execution is possible as well.

6 Survey propagation as belief propagation

In this section, we show how survey propagation is equivalent to belief propaga-
tion on a normal realization of the K-sat problem. The material is taken from
[12]. See [2] and [9] for similar results.

12

problems the common nature of finding constraint-satisfying
configurations. We believe that the normal realization intro-
duced in this paper allows this important algorithm to be
more accessible to the wider engineering community. For this
reason, we have chosen to present this paper in a way slightly
deviating from the “canonical” computer-science language
on this subject, with the hope that it may suit better the

The remainder of this paper is organized as follows. In
-SAT problem and generalized

SP. In Section III, we present our normal realization formalism
-SAT problems and its representation using Forney

graphs. In Section IV, we show that SP message-passing rule
can be reduced from the BP message-passing rule on the
Forney graphs. We briefly conclude the paper in Section V.
Length constraints often preclude our desire of elaboration, x5

za

zb

zc

x1

x2

x3

x4

Figure 5: Factor graph for a K-sat problem. The figure is from [12].

6.1 State realization of the K-sat problems

We will construct a normal realization of the K-sat problem as follows. Each
variable i will be connected to a new constraint node gi, and to no other nodes.
If before, the link (i, a) was in the factor graph, we add a state si,a and connect
gi to si,a and in turn si,a to the constraint node a. See for example Figures 5
transformed into the graph in Figure 6.

Note that the new state realization is normal as all the state nodes have
degree two and all the symbol variables have degree one.

Each variable node will take on a possible value of {0, 1, ∗}. Each state node
will take a value from the alphabet {F, F̄ , ∗} × {F, F̄ , ∗}, where × represents
the cartesian product. We will represent the state as an ordered pair, si =
(li, ri), where li will be called the left state, and ri will be called the right
state. Alternatively, we will sometimes write l(s) and r(s) for the left and right
components of state s. Intuitively, left or right state values of “F” will denote
that the variable is inclined to take on a value that satisfies the constraint, and
conversely with “F̄”.

We next explicitly state the constraints. For simplicity, let [X] be the indi-
cator function of the event X , i.e. [X] = 1 if X is true, and [X] = 0 if X is not
true. We will write u = v to indicate that both u and v must take on the same
value, and u ∼ v to indicate that either u = v or v = ∗. Moreover, Ai,a will

denote the map which maps {0, 1} into ¯F, F̄ by outputing F if the input is the
preferred assignment of constraint a for node i and F̄ otherwise.

The constraint associated with a constraint node a carried over from the
original factor graph is a function of the state nodes si = (l(s), r(s) incident to
the constraint:

fa =
∏

s∈N(a)

([r(s) = F and all neighboring states ŝ 6= s have l(ŝ) = F̄] +

[r(s) = ∗ and at least one state ŝ 6= s has r(ŝ) 6= F̄])

13

g1

g2

g3

g4

g5

fa

fb

fc

y2

y3

y4

y5

y1

s2,a

s1,b

s2,c

s3,b

s4,a

s5,b

s4,c

s1,a

s5,c

Figure 6: Normal realization of the K-sat problem from Figure 5. The figure is
from [12].

In words, each state node must have that some other neighboring state node
has right state thats not F̄ , or all the other state nodes have right state F̄ and
it has state F .

The constraint associated with the new constraint nodes gi is a function of
the the state values si = (li, ri) and the values of the variable nodes, which we
will denote as yi:

gi =
∏

s∈N(gi)

[Ai,a(yi) ∼ l(si)]
∏

si∈N(gi)

[li ∼ ri]

In words, variable node values must be compatible with all left states, and
each left state must be compatible with each right state, where a is compatible
with b means a = b or b = ∗.

Next, we introduce the concept of constrained and unconstrained variable.
Given some assignment of state and variable values, a variable i is called con-
strained if for some a, l(si,a) ∈ {F, F̄}, i.e. not all associated left-states are
“*.”2 A variable is called unconstrained if it is not constrained, but its value is
not “*.” Define the function Wi as,

Wi = ω∗ if yi = ∗

2Of course, since constraint gi must hold, this would also imply that all the left states

associated with i are equal to the same element of {F, F̄}.

14

= ωu if yi is unconstrained

= 1 if yi is constrained

We define the weight of an assignment of values to state and variable nodes
as

W =
∏

i,a

Wigifa

where the sum is taken over all variable and constraint nodes. Clearly, for
assignments of variables which satisfy all the constraints,

W = (number of unconstrained variables)ωu(number of star variables)ω∗

6.2 Survey propagation as belief propagation

Let us apply the belief propagation formula

wj↑ =
∑

Ci(sj)

∏

wj′↑↑(sj′)

to the normal realization just created. We denote by ρa→i to be the message
from constraint a to constraint gi and λi→a to be the message from constraint
gi to constraint a.

We next write down the message iteration rules.
The state FF for example will appear in si,a only if all the other state

variables adjacent to a have (l(s), r(s)) = (F̄ , ∗). Thus,

ρa→i(FF) =
∏

j∈N(a)−{i}

λj→a(F̄∗) (6.10)

The state ∗∗ will appear in si,a only if every other right state adjacent to a
is a ∗ (there can’t be any F right states: sending an F to a node implies all the
other nodes take left states F̄ . But our node has a ∗ state, so this is not the
case). But though all right states are ∗, not all the left states can be F̄ , because
then the state of si,a would be FF . Thus, the set of compatible states Ci(si) is
F̄∗ for every other neighbor of a:

ρa→i(∗∗) =
∏

j∈N(a)−{i}

(λj→a(F∗)+λj→a(F̄ ∗)+λj→a(∗∗))−
∏

j∈N(a)−{i}

λj→a(F̄∗)

The state F̄∗ will appear in si,a if all the other nodes get ∗ right states but
not all of them take the left state F̄ (because that would imply we get an F right
state). Alternatively, there may be a single FF state among the other nodes;
but not more than one because that would violate constraint fa. Moreover, the
existence of an FF state automatically implies all other states must be F̄∗. So:

15

ρa→i(F̄ ∗) =
∏

j∈N(a)−{i}

(λj→a(F∗) + λj→a(F̄∗) + λj→a(∗∗)) −
∏

j∈N(a)−{i}

λj→a(F̄ ∗)

+
∑

k∈N(a)−{i}

(λk→a(FF) − λk→a(F∗) − λk→a(∗∗))
∏

m∈N(a)−{i,k}

λm→a(F̄∗)

Finally, the state F∗ is valid with exactly the same combination of states as
∗∗, so that their update equations are the same.

For the messages from constraints gi to a we have the following update rules.
The state si,a will take the value FF if it gets no F s from those constraints

which disagree with a and F s or ∗s from those constraints which agree. In all
these possibilities, i will be a constrained variable. Thus:

λi→a =
∏

v∈Cu
a (i)

ρb→i(F̄∗)
∏

v∈Cs
a(i)

(ρb→i(FF) + ρb→i(F∗))

The state si,a will take the value ∗∗ only if all of its incoming values are ∗s.
Since i is a star, this assignment has weight ω∗. Thus:

λi→a(∗∗) = ω∗

∏

b∈N(i)−{a}

ρ(b → i)(∗∗) (6.11)

The state si,a will take the value F̄∗ if it receives only ∗s from those con-
straints which agree with a, and F and ∗s from those which do not. However,
we must also take note that the assignment where i receives all ∗s and takes the
value of F̄ must be weighed by ωu, because here i is an unconstrained variable.
Thus:

λi→a(F̄∗) =
∏

b∈Cs
a(i)

ρi→a(F̄∗)(
∏

b∈Cu
a (i)

(ρi→a(F∗)+ρi→a(FF))−(1−ωu)
∏

b∈Cu
a (i)

ρi→a(F∗))

(6.12)
Similarly, we have,

λi→a(F∗) =
∏

b∈Cu
a (i)

ρi→a(F̄∗)(
∏

b∈Cs
a(i)

(ρi→a(F∗)+ρi→a(FF))−(1−ωu)
∏

b∈Cs
a(i)

ρi→a(F∗))

(6.13)
These are the updates of belief propagation on the generalized state realiza-

tion. Can we recover survey propagation from these updates?
The answer is yes. The following is the main theorem of [12]. Let ωu+ω∗ = 1,

and let us initialize the algorithm with ρa→i(F∗) = ρa→i(∗∗) = ρa→i(F̄∗) and
ρa→i(F̄ ∗) + ρa→i(FF) = 1 for all messages ρa→i. Then, these relations persist
throughout the execution of the algorithm, and

ρa→i(FF) = ηa→i (6.14)

16

λj→a(F∗) + λj→a(∗∗) = Πs
j→a + Π∗

j→a (6.15)

λi→a(F̄∗) = Πu
i→a (6.16)

We show how to prove the last two equations.

1). To see that Eq. (6.16) is correct, note that because ρb→i(F̄ ∗) = 1 −
ρb→i(FF) and because ρb→i(F∗) + ρb→i(FF) = 1, we have

λi→a(F̄∗) =
∏

b∈Cs
a(i)

(1−ρi→a(FF))(
∏

b∈Cu
a (i)

1−(1−ωu)
∏

b∈Cu
a (i)

(1−ρi→a(FF))

And using the fact that ρv→i(FF) = ηv→i, we immediately have the
update rule of Eq. (4.7) with ωu = 0.

2). To see that Eq. (6.15) is correct, make the substitutions ρi→a(F∗) +
ρi→a(FF) = 1, and ρi→a(∗∗) = ρi→a(F̄∗) into Eq. (6.13) and Eq. (6.11)
and add them. Using w∗ + wu = 1, the result is:

λi→a(F∗) + λi→a(∗∗) =
∏

b∈Cu
a (j)

ρb→i(F̄ ∗) (6.17)

On the other hand, from Eq. (4.6) and Eq. (4.8), we have

Πs
i→a + Πu

i→a =
∏

b∈Cu
a (i)

(1 − ηa→i)

Since 1 − ηa→i = 1 − ρa→i(FF) by Eq. (6.14) and 1 − ρa→i(FF) =
ρa→i(F̄∗) due to the initializations, it follows that:

λi→a(F∗) + λi→a(∗∗) = Πs
i→a + Πu

i→a

References

[1] A. Braunstein, M. Mezard, R. Zecchina, “Survey propagation: an algorithm for
satisfiability,” Random Structures and Algorithms, vol. 27, no. 2, 201–226, 2005.

[2] A. Braunstein, R. Zecchina, “Survey propagation as local equilibrium equations,”
Journal of Statistical Mechanics, 2004.

[3] O. Dubois, Y. Boufkhad, J. Mandler, “Typical random 3-SAT formulae and the
satisfiability threshold,” Proceedings of the eleventh annual ACM-SIAM sympo-
sium on Discrete algorithms (SODA ’00), 2000.

[4] U. Feige, “Relations between average case complexity and approximation com-
plexity,” Proceedings of 34th STOC, 2002, 534–543.

[5] D. Forney, “Codes on graphs: Normal realizations,” IEEE Transactions on In-
formation Theory, Vol. 47, No. 2, February 2001.

17

[6] B. Frey, D. MacKay, “A revolution: belief propagation on graphs with cycles,”
NIPS, 1997.

[7] F.R. Kschischang, B.J. Frey, H.-A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Transactions on Information Theory, Vol. 47, No. 2, February
2001.

[8] E. Friedgut, “Sharp thresholds of graph properties and the k-SAT problem,”
Journal of the American Mathematical Society, 12:4, pp. 1017-1054, 1999.

[9] E. Maneva, E. Mossel, M.J. Wainwright, “A new look at survey propagation
and its generalizations,” Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms 2005 (SODA ’05), cs.CC/0409012

[10] M. Mezard, “Passing messages between disciplines,” Science, 301, 2003.

[11] C. Papadimitriou, Computational Complexity, Addison Wesley, 1994.

[12] R. Tu, Y. Mao, J. Zhao, “On generalized survey propagation: normal realization
and sum-product interpretation,” Proceedings of ISIT ’06.

18

