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1 Purpose

We summarize some recent published research on the problem of how to
allocate bandwidth to users in a network. While all the references cited at
the end were considered, we draw most heavily from the work in [1] and [7].

2 Network Terminology

Let’s being with a physical situation to motivate the problem.
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Figure 1: A network diagram, showing links (black) and routes (color).

Say we have hosts and routers arranged in a network, connected with 7 links,
each of which has a bandwidth capacity Cj . We consider 3 paths through the
network, called routes. One or more users can move data along each route,
but the rate cannot exceed the route’s allocated bandwidth Λi. We wish
to determine the optimal bandwidth allocation to maximize some notion
of performance. We will model this network, and then consider various
performance criteria.

We start by throwing away parts not relevant to the problem, such as
the hosts and routers. The links, which we call more generally resources, are
of prime importance. A route becomes nothing more than a set of resources:
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how the links were connected is not important, and only the fact that a route
must consume the same bitrate on each link is relevant. We can capture this
information using a matrix A, whose (j, i)th entry indicates whether resource
j is used by route i.

Each route is used by a number of users (aka flows) Ni, which varies with
time. We assume that the allocated bandwidth Λi for a route is divided
equally among its users. We are left with the equivalent representations
shown in Figure 2.
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Figure 2: Two abstract views of resource usage.

We summarize the quantities introduced thus far.

Cj : capacity of resource (link) j
Ni(t) : number of users (flows) on route i at time t

Λi(N(t)) : allocated bandwidth for route i,
depending on network usage at time t

A = [Aji] : Aji = 1 if resource j is used by route i,
and Aji = 0 otherwise

Using these, we define the capacity constraint∑
i : Ni(t)>0

AjiΛi(N(t)) ≤ Cj ,
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which must hold for all resources j and for all time t. A bandwidth allocation
Λ that satisfies the capacity constraints is called feasible.

3 A Stochastic Model

We wish to study dynamic network behavior, so we model each Ni(t) as a
stochastic process. New users arrive according to a Poisson process of rate
νi, and begin transferring a document with size drawn from an exponential
distribution with parameter µi. We define the traffic intensity on route i as
ρi = νi/µi. Now N(t) is a Markov process with a countable state space, a
small portion of which is shown in Figure 3 for an example with 3 routes.
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Figure 3: Markov state transition example. State 120 indicates that there are 1,
2, and 0 users on routes 1, 2, and 3 respectively.

4 Performance Criteria

There are many desirable properties and behavior to choose from, and pick-
ing the right ones to focus on is a challenge.

4.1 Efficiency

An efficient allocation is one where no bandwidth is wasted. A feasible Λ is
efficient if we don’t have µ ≥ Λ for any other feasible allocation µ. That is,
in an efficient allocation, there is a link along every route that is at capacity.
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While efficient allocations are desirable, there are many such allocations
for a given network. Efficiency will serve as a sanity check for more compli-
cated schemes as we search for more discriminating criteria.

4.2 Stability, Utilization, and Throughput

Stability is a deeper property. We want the number of flows in progress on
each route to remain finite with probability 1. A necessary condition is that∑

i

Ajiρi < Cj (1)

for all resources j, since if one of these constraints is violated, the corre-
sponding resource’s average rate of completing active flows would not exceed
the average rate of new flows arriving. In fact, this inequality says some-
thing about the utilization of a resource. While necessary, this condition is
not sufficient for stability. We will therefore have to assess stability on a
case-by-case basis.

Maximizing overall user throughput
∑

i:Ni(t)>0 Λi may seem like a good
idea. But, there need not be a unique allocation that achieves this. Further-
more, some allocations can produce unexpected results. Consider the simple
linear network in Figure 4, where each resource has unit capacity Cj = 1.
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Figure 4: A linear network with 3 resources and 4 routes.

One way to maximize throughput at every point in time is to always
allow the short routes to preempt the long route. Assuming that the flow
arrivals at different routes are independent, we see that we must add another
condition to equation (1) for stability: ρ4 <

∏3
i=1(1− ρi).

This is because the long route can only sustain a non-zero rate of 1
for a fraction

∏3
i=1(1 − ρi) of the time. Now, if we set ρi = 1/3, we see

that equation (1) is easily satisfied, and in fact no resources are near fully
utilized, yet the network is not stable. Similar behavior is exhibited by
other class-based queueing schemes in more complicated networks. There is
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a utilization price to pay for schemes that give preferential treatment to one
route over another.

4.3 Max-Min Fairness

We now direct our attention to fair allocation schemes. We increase the
allocation for each user, unless doing so requires a corresponding decrease for
a user of equal or lower bandwidth to satisfy the capacity constraints. The
resulting allocation is uniquely determined and called max-min fair. There is
a simple greedy algorithm for computing it: starting with an empty network,
increase the allocation for all flows equally until a resource constraint is hit.
Fix the allocations for routes passing through this bottleneck, and repeat
the procedure with the rest.

Max-min fair allocations prioritize fairness over utilization and require
global information to implement. Specifically, consider the example in Fig-
ure 5, where a max-min allocation gives somewhat undesirable results.
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Figure 5: Example where max-min fairness sacrifices utilization.

4.4 Proportional Fairness

Proportional fairness seeks to remedy this by considering the proportional
increase in bandwidth for each route. Specifically, a feasible allocation Λ is
proportionally fair if for any other feasible allocation Λ∗ we have∑

i

Ni(t)
Λ∗i − Λi

Λi
≤ 0.

This corresponds to maximizing a logarithmic utility function
∑

i Ni(t) log Λi,
since a small perturbation Λ + ∆ would increase the utility function by∑

i Ni(t)∆i
Λi

. Moreover, distributed algorithms to implement proportional
fairness are known [6].
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4.5 α-Fair Allocations

The utility maximization interpretation of proportional fairness motivates
generalizing to weighted α-fair allocations, which are solutions to the maxi-
mization of

G(Λ, t) =


∑

i : Ni(t)>0 κiN
α
i (t)Λ1−α

i
1−α if α ∈ (0,∞), α 6= 1∑

i : Ni(t)>0 κiNi log Λi if α = 1
, (2)

subject to the capacity constraints∑
i : Ni(t)>0

AjiΛi ≤ Cj ,

over
Λi ≥ 0.

Various special cases are evident for specific values of α and the weights
κi. First set κi = 1. When α → 0, we are just maximizing throughput.
When α → ∞, the smallest allocations dominate the objective function G.
This leads to max-min fairness. Setting α = 1 gives proportional fairness,
seemingly by definition of the objective function. But this is just a technical-
ity – maximizing the bottom part of equation (2) when α = 1 is equivalent
to maximizing the top for α ≈ 1. To see this, expand about Λi = 1 using a
Taylor series:

Λ1−α
i

1− α
=

1
1− α

+
1
1!

(Λi − 1)− α

2!
(Λi − 1)2 +

α(1 + α)
3!

(Λi − 1)3 + · · · .

The leading constant 1
1−α is irrelevant to the optimization, so we drop it.

Setting α = 1 then gives us log Λi.
TCP corresponds to α = 2 and κi = 1

RTT2
i
, where RTTi is the round-trip

transit time on route i. This is because TCP is biased against long round-
trip delays. A TCP source sets the size of a window of data which it will
attempt to send ahead of what the receiver has acknowledged. This window
is incremented in size (up to a maximum) whenever an acknowledgment is
received, which happens once every RTT.

4.6 α-Fair Allocation Properties

α-fair allocations have a number of useful properties. We assume that
Ni(t) > 0 for simplicity.

6



1. Uniqueness and positivity. The constraints define a compact convex
set. Treat the cases α ∈ (0, 1) and α ∈ [1,∞) separately. In both
cases, the objective function G is continuous and strictly concave in
Λ, so there is a unique maximum. In the first case ∂G

∂Λi
→ +∞ as

Λi → 0, and in the second G → −∞ when Λi → 0, so an optimum
solution must have strictly positive components.

2. Scaling. The solution is invariant to scaling: Λ(rN) = Λ(N) for all
r > 0. Scaling N by r amounts to scaling G by rα, a constant. The
optimal allocation does not change.

3. Continuity. The optimal solution for Λ is continuous in N. A proof
requires some work, but essentially follows by continuity of the other
quantities and uniqueness.

The big question is what can we say about the stability of an α-fair
allocation? It turns out that equation (1) becomes a necessary and suffi-
cient condition for stability in this case. The result even holds under more
general modeling conditions, without assumptions on Poisson arrivals and
exponential document sizes [4].

5 A Fluid Model to Prove Stability

In theory, given joint distributions for the Ni(t), we can solve the optimiza-
tion problem for the distribution of the optimal α-fair allocation Λ(t), and
then answer the stability question. But this is very difficult to do, unless
the distribution for Ni(t) is very simple (e.g., Poisson). But simplifying
our model in this way ignores one of the key features we are attempting to
capture: how service time is impacted under high load.

Our strategy is therefore to simplify our stochastic model in another
way, by approximating it with a fluid model. The result is easier to work
with, yet still captures the behavior we are interested in. We can prove
results such as stability with the fluid model, and then carry them over to
our original model.

A fluid model solution is an absolutely continuous function N̄(t) so that
at each regular point t and each route i

d
dt

N̄i(t) =
{

νi − µiΛi(N̄(t)) if N̄i(t) > 0
0 if N̄i(t) = 0

, (3)
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and for each resource j∑
i : N̄i(t)>0

AjiΛi(N̄(t)) +
∑

i : N̄i(t)=0

Ajiρi ≤ Cj . (4)

Equation (3) captures the infinitesimal drift of our original stochastic
processes Ni(t). We can interpret equation (4) as saying that the allocated
bandwidth cannot exceed the capacity for any resource, whereas the alloca-
tion of any currently unused route is considered to be ρi.

To connect the two models, we decompose our Markov process into non-
decreasing counting processes:

Ni(t) = Ni(0) + Ei(t)− Si(Ti(t)),

which track the initial state, arrivals, and departures separately. For exam-
ple, Ei(t) is a Poisson process with rate νi. We scale each process, obtaining
a family Ei(rt)

r indexed by r. As r → ∞, we can apply tools such as the
strong law of large numbers for renewal processes [3] to conclude, for ex-
ample, that Ei(rt)

r → νit with probability 1. Together with the scaling and
continuity properties discussed above, one can show how a sequence of scaled
stochastic models converges to a fluid model solution. (See Appendix B of
[7] for further details.)

Now, one can show that if a fluid model solution empties in finite time,
N̄(t) = 0 for t ≥ T , then the original Markov process is positive recurrent
[2]. Finally, a Lyapunov function can be found that shows that this indeed
happens [1].

6 Further Reading

The 4 primary papers are [1], [7], [8], and [4]. Bonald and Massoulié give a
concise overview of the problem and main stability result in [1]. However,
their argument for generalizing the model is wrong. Kelly and Williams
describe the fluid model in detail in [7]. Massoulié uses duality theory and
convex analysis to give an alternative proof of stability for proportional
fairness in [8]. Gromoll and Williams correctly prove the general stability
result using a measure theoretic argument in [4].

There are other, older papers listed below that provide more background.
Dai shows how fluid model properties carry over to the original model in [2].
Kelly motivates proportional fairness in [5], and specifies algorithms in [6].
Finally, Mo and Walrand assess TCP fairness in [9].
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