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In this report, we formulate the Multiple Description (MD) coding problem, which was created couple of

decades ago. Significant research effort has been devoted tocompletely characterizing the rate-distortion region

of the MD coding problem. Various Information-Theoreticalapproaches to this problem have been taken, which

generate beautiful results. We summarize part of the research effort in this report.

1 Introduction

The MD coding problem was not created as a pure information-theoretical puzzle. As the author stated in [1],

“Multiple Description coding has come full circle from explicit practical motivation to theoretical novelty and

back to engineering application”. MD coding was invented atBell Laboratories during the 1970s in connection

with communicating speech over the telephone network. At that time, though the telephone network enjoys good

reliability, outages of transmission is inevitable, mainly due to device failures, routine maintenance or upgrades.

Rather than diverting calls to standby transmission links in case of transmission outage, it may be clever to split

the information from a single call onto two separate links orpaths. Some early attempts by channel splitting are

summarized in [1].

The channel splitting idea inspires the following question: “If an information source is described with two

separate descriptions, what are the concurrent limitations on qualities of these descriptions taken separately and

jointly?” [1]. This question eventually came to be known as the MD coding problem.

Before presenting the problem formulation of MD coding, we shall first introduce the basic definitions of

rate-distortion theory and state Shannon’s rate-distortion theorem.

1.1 Shannon’s Rate-Distortion Theory

When information is transferred over a channel at a rate above the channel’s capacity, distortion in the recovery of

the information is inevitable. The branch of information theory devoted to characterize the relationship between
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achievable distortion and required rate is called the rate-distortion theory. The most important result in the

rate-distortion theory is perhaps Shannon’s rate-distortion theorem [2], which is restated in this section.

We assume thatXi, i = 1, 2, · · · is a sequence of i.i.d. discrete random variables drawn according to a

common probability mass functionp(x), x ∈ X . We are given a reconstruction spacêX together with an

associated distortion measure

d : X × X̂ → R. (1)

A description ofx ∈ X̂ n = X̂ × · · · × X̂ is a mapi: X̂ n → {1, · · · , 2nR}, whereR is the rate of description

in bits per source symbol ofx. A reconstruction ofx is a mapx̂: {1, · · · , 2nR} → X̂ n. The distortion incurred

through this pair of description and reconstruction is defined by

dn = E

[

1

n

n
∑

k=1

d (Xk, x̂k(i(X)))

]

. (2)

The distortiond is said to be achievable with rateR for the source sequence{Xi}
n
i=1 if for n = 1, 2, · · · , there

exists a sequence of rateR descriptionsi: X̂ n → {1, · · · , 2nR} and reconstructionŝx: {1, · · · , 2nR} → X̂ n

such thatdn ≤ d, for all n sufficiently large.

Rate-Distortion Function The rate-distortion functionR(d) is the infimum of all ratesR achieving distortion

d on a given stochastic process{Xi}
∞
i=1.

Theorem 1.1 (Shannon’s Rate-Distortion Theorem [2]). If {Xi}
∞
i=1 are i.i.d. discrete finite alphabet random

variables with probability mass functionp(x), then

R(d) = inf
P(d)

I(X; X̂), (3)

where

P(d) =







p(x̂|x) :
∑

x,x̂

p(x) p(x̂|x) d(x, x̂) ≤ d







. (4)

We can calculate the rate-distortion function for several special sources and distortion measures.

Corollary 1.2 (Bernoulli Source with Hamming Distortion). The rate-distortion function for a Bernoulli(α)

Source with Hamming Distortion is

R(d) =











H(α) − H(d), 0 ≤ d ≤ min{α, 1 − α},

0, d > min{α, 1 − α},
(5)
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whereH(·) is the entropy function of a binary random variable.

Corollary 1.3 (Gaussian Source with Squared Error Distortion). The rate-distortion function for aN (0, σ2)

source with squared error distortion is

R(d) =











1
2 log σ2

d
, 0 ≤ d ≤ σ2,

0, d > σ2.
(6)

2 MD Coding: Problem Formulation

The 2-channel 3-receiver MD coding problem is represented in Figure 1.

X Encoder

j1(X)

j2(X)

Decoder 1

Decoder 1,2

Decoder 2

X̂
1

X̂
2

X̂
1,2

Figure 1: 2-Channel 3-Receiver MD Coding Problem

The encoder is presented with a sequence of i.i.d. source symbols{Xi}
∞
i=1. Each source symbol is distributed

according to a probability mass functionp(x), x ∈ X . We are given three reconstruction spacesX̂1, X̂2, X̂1,2,

together with the associated distortion measures

dt : X × X̂t → R, t = 1, 2, {1, 2}. (7)

The distortion measure onn-sequences is defined by the average per-symbol distortion

dn
t (x, x̂t) = 1/n

n
∑

k=1

dt(xk, x̂tk), t = 1, 2, {1, 2}, (8)

wherex = {x1, · · · , xn} ∈ X n and x̂t = {x̂t1, · · · , x̂tn} ∈ X̂ n
t . The encoding and decoding functions are

defined by

ft : X n → {1, · · · ,Mt}, t = 1, 2 (9)

gt : {1, · · · ,Mt} → X̂N
t , t = 1, 2 (10)

g1,2 : {1, · · · ,M1} × {1, · · · ,M2} → X̂1,2. (11)
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DenoteX = (X1, · · · ,Xn) ∈ X n. Define

X̂ t = gt(ft((X))), t = 1, 2 (12)

X̂1,2 = g1,2(f1((X)), f2((X))), (13)

and

Dt = E

[

dn
t (X, X̂t)

]

, t = 1, 2, {1, 2}. (14)

The quintuple(f1, f2, g1, g2, g1,2) is called a code with parameter(n,M1,M2,D0,D1,D1,2).

Achievable Rate-Distortion Vector We shall say(R1, R2) is achievable for distortiond = (d1, d2, d1,2) if, for

all ǫ > 0, there exists forn sufficiently large a code with parameters(n,M1,M2,D0,D1,D1,2), where

Mt < 2(Rt+ǫ)n, t = 1, 2 (15)

Dt < dt + ǫ, t = 1, 2, {1, 2}. (16)

Rate-Distortion Region The rate-distortion regionR(d) for distortiond = (d1, d2, d1,2) is the closure of the

set of achievable rate vectors(R1, R2) inducing distortions≤ d.

Achievable Rate-Distortion Region Any subset of the rate-distortion region is called an achievable rate-distortion

region. Another common name for achievable rate-distortion region is inner bound to the rate-distortion region.

3 Results on Achievable Rate-Distortion Region

The following two sets of sufficient conditions for(R1, R2, d1, d2, d1,2) to be achievable was deduced by El

Gammal and Cover in [4] which will be later referred to as the EGC⋆ resp. EGC region.

Theorem 3.1 (EGC⋆ Achievable RD Region). Let X1,X2, · · · be a sequence of i.i.d. finite alphabet random

variables drawn according to a probability mass functionp(x). Let dm(·, ·) be bounded. An achievable rate

distortion region for distortiond = (d1, d2, d1,2) is given by the convex hull of all(R1, R2) such that

R1 ≥ I(X;U), (17)

R2 ≥ I(X;V ), (18)

R1 + R2 ≥ I(X;U, V ) + I(U ;V ), (19)

for some random variablesU andV jointly distributed with a generic source random variableX such that there
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exist random variables of the forms,

X̂1 = g1(U), (20)

X̂2 = g2(V ), (21)

X̂1,2 = g1,2(U, V ), (22)

such thatE[dt(X, X̂t)] ≤ dt, t = 1, 2, {1, 2}.

Theorem 3.2 (EGC Achievable RD Region). The quintuple(R1, R2, d1, d2, d1,2) is achievable if there exist

random variablesX̂1, X̂2, X̂1,2 jointly distributed with a generic source random variableX such that

Rt ≥ I(X; X̂t), t = 1, 2, (23)

R1 + R2 ≥ I(X; X̂1, X̂2, X̂1,2) + I(X̂1; X̂2), (24)

dt ≥ E[dt(X, X̂t)], t = 1, 2, {1, 2}. (25)

Let REGC⋆ resp.REGC denote theEGC⋆ resp.EGC achievable rate-distortion region. Actually,REGC⋆

andREGC are closely related, as stated in the following theorem.

Theorem 3.3.

REGC⋆ ⊂ REGC

The EGC⋆ region is also included here since it (and also the EGC region) turns out to be optimal in the special

case of Gaussian source and squared error distortion measure, which will be summarized in the following.

3.1 Special Cases: Gaussian Source with Squared Error Distortion

For the special case of Gaussian source with squared error distortion, the MD coding rate-distortion region was

preliminarily deduced in [3] and [4]. The authors of [5] fixedsome remaining inconsistencies and characterized

the entire rate-distortion region.

Theorem 3.4 (MD Coding RD Region: Gaussian Source with Squared Error Distortion [3] [4] [5]). For i.i.d.

Gaussian source sequence,Xi ∼ N (0, σ2), with squared error distortion measure, the MD coding rate-

distortion region for Figure 1 is the set of quintuples(R1, R2, d1, d2, d1,2) satisfying the following conditions.
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(1). Given that0 ≤ d1,2 ≤ d1 + d2 − σ2, then the rate pair(R1, R2) is achievable if

R1 ≥
1

2
log

1

d1
(26)

R2 ≥
1

2
log

1

d2
(27)

R1 + R2 ≥
1

2
log

1

d1,2
(28)

(2). Given thatd1 + d2 − σ2 ≤ d1,2 ≤
(

1
d1

+ 1
d1

− 1
σ2

)−1
, then the rate pair(R1, R2) is achievable if

R1 ≥
1

2
log

1

d1
(29)

R2 ≥
1

2
log

1

d2
(30)

R1 + R2 ≥
1

2
log

1

d1,2
+

1

2
log

(σ2 − d1,2)
2

(σ2 − d1,2)2 −
(

√

(σ2 − d1)(σ2 − d2) −
√

(d1 − d1,2)(d2 − d1,2)
)2(31)

(3). Given that
(

1
d1

+ 1
d1

− 1
σ2

)−1
≤ d1,2 ≤ +∞, then the rate pair(R1, R2) is achievable if

R1 ≥
1

2
log

1

d1
(32)

R2 ≥
1

2
log

1

d2
(33)

Remark: For Gaussian sources and squared error distortion measure, Theorem 3.4 not only characterizes an

achievable rate-distortion region but also states that this region is the best achievable rate-distortion region. The

rate-distortion region in Theorem 3.4 is obtained by evaluating and optimizing the EGC⋆ rate-distortion region

in Theorem 3.1. The converse part (showing the optimality ofthe region) was presented in [3]. The main

technicality of the converse part shows a lower bound to the mutual information between the two side receiver’s

reconstructions (Figure 1),I(X̂n
1 ; X̂n

2 ), for a given rate pair(R1, R2) and side receiver’s distortions(d1, d2).

Denote the reconstructions at the two side receivers asX̂n
1 andX̂n

2 . The lower bound is,

I(X̂n
1 ; X̂n

2 ) ≥
n

2
log

σ2

σ2 −
(

√

(σ2 − d1)(σ2 − d2) −
√

(d1 − d1,2)(d2 − d1,2)
)2 (34)

The above lower bound is the cause for the tradeoff between the central receiver and side receivers. On the

one hand, if the central decoder needs to approach Shannon’srate-distortion bound (Theorem 1.1), the two

descriptions need to be approximately independent, which renders the two side reconstructions also approx-

imately independent. Therefore, the approximate independence conditionI(X̂n
1 ; X̂n

2 ) ≈ 0 necessitates that

σ2 + d1,2 ≈ d1 + d2, which means at least one ofd1 andd2 is close to the source’s variance (i.e. performs
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poorly). On the other hand, if both side decoders need to approach Shannon’s rate-distortion bound, then the

above lower bound onI(X̂n
1 ; X̂n

2 ) is far away from zero, which means that the two descriptions sent over two

channels are highly correlated. Therefore, the central decoder’s distortion performance is bounded away from

the rate-distortion bound since receiving two highly correlated descriptions is not much better than receiving

only one description.

4 More Results on Achievable Rate-Distortion Region

It would be nice if the optimality of the EGC achievable rate-distortion region is also true in more general cases

other than the Gaussian source with squared error distortion case. Unfortunately, the EGC region is not always

the exact rate-distortion region. Towards this end, Zhang and Berger proposed the following achievable rate-

distortion region in [6]. In [6], a concrete example was alsoconstructed to show that the EGC region is strictly

non-optimal.

Theorem 4.1 (Berger’s Achievable Rate-Distortion Region). A rate pair(R1, R2) is achievable for the distortion

vectord = (d1, d2, d1,2) if there exist random variableŝX0, X̂1, X̂2 jointly distributed with a generic source

random variableX such that

R1 ≥ I(X; X̂0, X̂1), (35)

R2 ≥ I(X; X̂0, X̂2), (36)

R1 + R2 ≥ 2I(X; X̂0) + I(X̂1; X̂2|X̂0) + I(X; X̂1, X̂2|X̂0), (37)

and there existφ1, φ2, φ1,2 which satisfy

E

[

d(X,φt(X̂0, X̂t))
]

≤ dt, t = 1, 2, (38)

E

[

d(X,φ1,2(X̂0, X̂t, X̂2)))
]

≤ d1,2. (39)

Remark The example in [6], which shows the non-optimality of the EGCregion, deals with the binary symmetric

Hamming problem. Define the the following two functions,

R̄EGC(D) = inf
(R1,R2,d1,d2,d1,2)∈R̄EGC

{R1 + R2 : d1,2 = 0, d1 + d2 ≤ 2D} , (40)

RZB(D) = inf
(R1,R2,d1,d2,d1,2)∈RZB

{R1 + R2 : d1,2 = 0, d1 + d2 ≤ 2D} , (41)

whereR̄EGC is the (closure) EGC region andRZB is Berger’s region. In [6],̄REGC(D) is explicitly calculated
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to take the following form,

R̄EGC(D) = 2H(1/2 + D) − (1/2)H(4D) − 2D. (42)

In [6], an upper bound onRZB(D) is also derived. ComparinḡREGC(D) and the upper bound onRZB(D)

verifies the non-optimality of the EGC region.

Though Berger’s region exceeds the EGC region in the constructed example, no concrete evidence shows

that the former region subsumes the latter region. More recently, the authors in [7] presented a new achievable

rate-distortion region, which is claimed to subsume both the EGC region and Berger’s region. The main theorem

in [7] is for the L-channel(2L − 1)-receiver MD coding problem. We present in the following itssimplified

version for the 2-channel 3-receiver MD coding problem.

Theorem 4.2 (Goyal’s Achievable Rate-Distortion Region). The rate vector(R1, R2) is achievable for the dis-

tortion requirementd = (d1, d2, d1,2) if there exist random variableŝX0, X̂1, X̂2, X̂1,2 (X̂0 takes value in some

finite alphabetX0 and eachX̂t takes value in the reconstruction alphabetXt, t = 1, 2, {1, 2}) such that

R1 ≥ I(X; X̂0, X̂1), (43)

R2 ≥ I(X; X̂0, X̂2), (44)

R1 + R2 ≥ 2I(X; I(X; X̂0) + I(X̂1; X̂2|X̂0) + I(X; X̂1, X̂2|X̂0), (45)

dt ≥ E

[

dt(X, X̂t)
]

, t = 1, 2, {1, 2}. (46)

Remark By letting X0 in Theorem 4.2 be a constant, the Goyal’s achievable rate-distortion region reduces to

the EGC region. Therefore, Goyal’s region subsumes the EGC region. Furthermore, simple argument shows that

Goyal’s region also contains all points in Berger’s region.However, it is not known yet if Goyal’s region strictly

improves Berger’s region or not.

5 L-Channel MD Coding

Up to now, we have focused on the 2-channel 3-receiver MD coding problem. The generalization toL-channel

(2L − 1)-receiver MD coding problem (Figure 2) is a natural next step. In the L-channel(2L − 1)-receiver

MD coding problem, there areL encoding functionsfl(·) : X → {1, · · · ,Ml}, l ∈ L = {1, · · · , L}. TheL

descriptionsjl = fl(X), l ∈ L are sent overL channels. There are2L − 1 receivers, denoted asgK(·), for each
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K ∈ L andK 6= ∅. The reconstruction at each receiver is represented by

X̂K = gK(jk : k ∈ K). (47)

The distortionsdn
K are also defined as the average per-symbol distortion. The rate-distortion region of theL-

channel(2L − 1)-receiver MD coding problem is composed of all achievable length-(L + (2L − 1)) vectors

(Rl : l ∈ L; dK : K ⊂ L,K 6= ∅).

Figure 2:L-Channel(2L − 1)-Receiver MD Coding Problem

In [7], the authors presented an achievable rate-distortion region for theL-channel(2L − 1)-receiver MD coding

problem.

Theorem 5.1 (L-Channel MD Coding: Achievable Rate-Distortion Region [7]). Let X(2L) be any set of2L

random variables jointly distributed withX, whereX0 takes value in some finite alphabet̂X0 and eachXK

takes value in the reproduction alphabet̂XK,K 6= ∅. Then the rate-distortion region contains the rates and

distortions satisfying

dK ≥ E [dK(X,XK)] , (48)

RK ≥ (|K| − 1)I(X;X0) − H(X(2K)|X) +
∑

M⊂K

H(XM|X(2M−{M})). (49)

6 Conclusions

The Multiple Description Coding problem is recapped in thisreport. Historical results are summarized and

restated. Most of the references cited in this report are on the theoretical side of the MD coding problem. Though

beautiful results exist, the rate-distortion region of theMD coding problem still remains an open problem at the

current stage.
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