An Introduction to Multiple Description Coding

Sheng Jing

October 16, 2006

In this report, we formulate the Multiple Description (MDyding problem, which was created couple of
decades ago. Significant research effort has been devotednfoletely characterizing the rate-distortion region
of the MD coding problem. Various Information-Theoretiegiproaches to this problem have been taken, which

generate beautiful results. We summarize part of the relsesdfort in this report.

1 Introduction

The MD coding problem was not created as a pure informatieoretical puzzle. As the author stated in [1],
“Multiple Description coding has come full circle from exgt practical motivation to theoretical novelty and
back to engineering application”. MD coding was invente@ell Laboratories during the 1970s in connection
with communicating speech over the telephone network. #ttime, though the telephone network enjoys good
reliability, outages of transmission is inevitable, mgidlue to device failures, routine maintenance or upgrades.
Rather than diverting calls to standby transmission limksase of transmission outage, it may be clever to split
the information from a single call onto two separate linkpaths. Some early attempts by channel splitting are
summarized in [1].

The channel splitting idea inspires the following questidhan information source is described with two
separate descriptions, what are the concurrent limitatimqualities of these descriptions taken separately and
jointly?” [1]. This question eventually came to be known las MD coding problem.

Before presenting the problem formulation of MD coding, valkfirst introduce the basic definitions of

rate-distortion theory and state Shannon’s rate-distoittheorem.

1.1 Shannon’s Rate-Distortion Theory

When information is transferred over a channel at a rateatie/channel’s capacity, distortion in the recovery of

the information is inevitable. The branch of informatioedny devoted to characterize the relationship between



achievable distortion and required rate is called the datortion theory. The most important result in the
rate-distortion theory is perhaps Shannon'’s rate-distotheorem [2], which is restated in this section.

We assume thak;,: = 1,2,--- is a sequence of i.i.d. discrete random variables drawnrditgpto a
common probability mass functiop(xz),z € X. We are given a reconstruction spatetogether with an

associated distortion measure

d: X xX—R. D)
A description ofz € X" = X x --- x X isamapi: X" — {1,--- ,2"%} whereR is the rate of description
in bits per source symbol af. A reconstruction of: is a mapi: {1,--- ,2"%} — X", The distortion incurred

through this pair of description and reconstruction is cefiby

1 n
d* = E|—= Ty (4 :
> d (X, @ (i(X)) @
k=1
The distortiond is said to be achievable with rafefor the source sequendeX;}! , if for n = 1,2,---, there
exists a sequence of rafedescriptionsi: X — {1,--- ,2"%} and reconstructions: {1,--- ,2"F} — x»

such that!” < d, for all n sufficiently large.

Rate-Distortion Function The rate-distortion functioi®(d) is the infimum of all rates? achieving distortion

d on a given stochastic proceg; }>° .

Theorem 1.1 (Shannon’s Rate-Distortion Theorem [2]f {X;}5°, are i.i.d. discrete finite alphabet random

variables with probability mass functigr(z), then

R(d) = ;;(15)I<X;X>, ®3)
where
P(d) = Splale): Y pla)plife) da,2) <d ;. (4)

We can calculate the rate-distortion function for sevepakcsal sources and distortion measures.

Corollary 1.2 (Bernoulli Source with Hamming Distortion)The rate-distortion function for a Bernouldi{
Source with Hamming Distortion is

R) = H(a)— H(d), 0<d<min{a,1—a}, )

0, d > min{a, 1 — a},



whereH (-) is the entropy function of a binary random variable.

Corollary 1.3 (Gaussian Source with Squared Error Distortiofipe rate-distortion function for &/(0, 0%)

source with squared error distortion is
R(d) = , (6)

2 MD Coding: Problem Formulation

The 2-channel 3-receiver MD coding problem is represemddgure 1.

J(X) 5
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Figure 1: 2-Channel 3-Receiver MD Coding Problem

The encoder is presented with a sequence of i.i.d. sourcbagfiX;}>°,. Each source symbol is distributed
according to a probability mass functigiiz), = € X'. We are given three reconstruction spaggsXs, X 2,

together with the associated distortion measures

di: XxX—R, t=12/{12. (7)

The distortion measure onsequences is defined by the average per-symbol distortion

df(z, &) =1/ di(ag, dw), t=1,2,{1,2}, ®)
k=1
wherezx = {1, -+ ,z,} € X" andz, = {&4, - , T} € Q?t”. The encoding and decoding functions are
defined by
ft: Xn%{lv"'th}> t:172 (9)
gt : {17 >Mt}_>‘)etN7 t= 172 (10)
gia: Al My} x {1, , Mo} — Xy (11)



DenoteX = (Xi,---,X,) € A™. Define

X, = a(fi((X)), t=12 (12)
X,y = gi2(f1((X)), f2((X))), (13)

and
Dy =E (X, X)], t=12{12} (14)

The quintuple(f1, f2, g1, 92, 91,2) is called a code with parametet, M, Ma, Dy, D1, D1 2).

Achievable Rate-Distortion Vector We shall say(R1, R») is achievable for distortiod = (d;, d2, d; ) if, for

all e > 0, there exists for. sufficiently large a code with parametérs M, My, Dy, D1, D, 2), where

M, < 2Weton 419 (15)

Dy < di+e t=1,2,{1,2}. (16)

Rate-Distortion Region The rate-distortion regiofk (d) for distortiond = (d1, d2, d1 2) is the closure of the

set of achievable rate vectofR;, R2) inducing distortions< d.

Achievable Rate-Distortion Region Any subset of the rate-distortion region is called an acid rate-distortion

region. Another common name for achievable rate-distont@gion is inner bound to the rate-distortion region.

3 Resultson Achievable Rate-Distortion Region

The following two sets of sufficient conditions fQRR;, R», d1,d2, d; 2) to be achievable was deduced by El

Gammal and Cover in [4] which will be later referred to as tl@&®E resp. EGC region.

Theorem 3.1 (EGC* Achievable RD Region)Let X1, X5, --- be a sequence of i.i.d. finite alphabet random
variables drawn according to a probability mass functipfx). Letd,,(-,-) be bounded. An achievable rate

distortion region for distortiond = (d1, d2, d1 2) is given by the convex hull of glR;, R») such that

Ry > I(X;U), (17)
Ry > I(X;V), (18)
Ri+Ry, > I(X;UV)+IU;V), (19)

for some random variables andV jointly distributed with a generic source random variabfesuch that there



exist random variables of the forms,

X1 = qU), (20)
Xy = gV), (21)
Xi2 = q12(U V), (22)

such thatE[d, (X, X;)] < dy, t = 1,2,{1,2}.

Theorem 3.2 (EGC Achievable RD Region)The quintuple(R, Ry, d1,d2,d; 2) is achievable if there exist

random variablesX, X, X » jointly distributed with a generic source random variabtesuch that

Ry > I(X;Xy), t=1.2, (23)
Ri+ Ry > I(X;X1, X0, X12)+I(X1;X2), (24)
di > Eldi(X,Xy)], t=1,2,{1,2}. (25)

Let Rpge+ resp.Reqce denote the GC* resp. EGC' achievable rate-distortion region. Actualf,zccox

andR gqc are closely related, as stated in the following theorem.

Theorem 3.3.

REecc+ C Rege

The EGC region is also included here since it (and also the EGC régimns out to be optimal in the special

case of Gaussian source and squared error distortion neeaguch will be summarized in the following.

3.1 Special Cases: Gaussian Source with Squared Error Distortion

For the special case of Gaussian source with squared estortthn, the MD coding rate-distortion region was
preliminarily deduced in [3] and [4]. The authors of [5] fixedme remaining inconsistencies and characterized

the entire rate-distortion region.

Theorem 3.4 (MD Coding RD Region: Gaussian Source with Squared Errototien [3] [4] [5]). For i.i.d.
Gaussian source sequenc&, ~ N(0,0?), with squared error distortion measure, the MD coding rate-

distortion region for Figure 1 is the set of quintupleB;, R, d;, d2, d; 2) satisfying the following conditions.



(1). Giventhat < d;» < di +dy — o2, then the rate paif Ry, Ry) is achievable if

1 1
> —log — 2
Ry > 5108 & (26)
1 1
—log — 27
Ry > 5 108 & (27)
1 1
Ri+Ry > <log— (28)
2 dy2
-1
(2). Given thatd; + dy — 0% < dy 2 < (% + 4 - %) , then the rate pai R, R») is achievable if
1 1
Zlog — 29
Ry > 5 108 & (29)
1 1
Zlog —
Ry > 5108 A (30)
1 1 2 _dy9)?
Ri+ Ry > glog——+;log (0" = du) {31)

diz 2 (02 — dy0)? — (\/(02 —d1)(02 —do) — \/(d1 —d12)(d2 — dl,z))

-1
(3). Given that(d—l1 + d—ll - 0—12) < dj 2 < 400, then the rate paif R, Ry) is achievable if

> — —

R, > 210g @ (32)
1 1
> ] —

R2 = 5 og dg (33)

Remark: For Gaussian sources and squared error distortion measueerem 3.4 not only characterizes an
achievable rate-distortion region but also states thatrtgion is the best achievable rate-distortion region. The
rate-distortion region in Theorem 3.4 is obtained by eviitdgaand optimizing the EGCrate-distortion region

in Theorem 3.1. The converse part (showing the optimalitghef region) was presented in [3]. The main
technicality of the converse part shows a lower bound to thiiad information between the two side receiver’s
reconstructions (Figure 1),(X7; X1'), for a given rate paifR;, R;) and side receiver's distortion@, dy).

Denote the reconstructions at the two side receiver§/aand X5. The lower bound is,

o2

5 (34)
O‘2 — (\/(0'2 — dl)(0'2 — dg) — \/(dl — dLQ)(dQ — dLg))

I(X5X5) > Slog

The above lower bound is the cause for the tradeoff betweerehtral receiver and side receivers. On the
one hand, if the central decoder needs to approach Shanraeslistortion bound (Theorem 1.1), the two
descriptions need to be approximately independent, wheddars the two side reconstructions also approx-
imately independent. Therefore, the approximate indepecel condition[(X?;Xg) ~ (0 necessitates that

o2 4+ dy 2 ~ di + dz, which means at least one @f andd; is close to the source’s variance (i.e. performs



poorly). On the other hand, if both side decoders need tooagpr Shannon’s rate-distortion bound, then the
above lower bound ofi(X?; X7) is far away from zero, which means that the two descripti@m ever two

channels are highly correlated. Therefore, the centrabakets distortion performance is bounded away from
the rate-distortion bound since receiving two highly clatied descriptions is not much better than receiving

only one description.

4 More Results on Achievable Rate-Distortion Region

It would be nice if the optimality of the EGC achievable rdistortion region is also true in more general cases
other than the Gaussian source with squared error distoctise. Unfortunately, the EGC region is not always
the exact rate-distortion region. Towards this end, Zham) Berger proposed the following achievable rate-
distortion region in [6]. In [6], a concrete example was atsastructed to show that the EGC region is strictly

non-optimal.

Theorem 4.1 (Berger's Achievable Rate-Distortion Regio rate pair(R1, R2) is achievable for the distortion
vectord = (dy,dy,d; 2) if there exist random variableX, X1, X jointly distributed with a generic source

random variableX such that

Ry > I(X;Xo,X1), (35)
Ry > I(X;Xo,Xy), (36)
Ri+Ry > 2I(X;Xo)+ I(Xy; Xs|Xo) + I(X; X1, X,| Xo), (37)

and there exisi1, g2, ¢1 2 Which satisfy

E |:d(X7 ¢t(X07Xt))] < dta l= 17 27 (38)

E [d(X,612(X0, %1, X)) < dio. (39)

Remark The example in [6], which shows the non-optimality of the EX@@ion, deals with the binary symmetric

Hamming problem. Define the the following two functions,

REgc(D) = inf ~ {Rl + Ry : d172 =0,d1 +dy < 2D}, (40)
(R1,R2,d1,d2,d12)EREGC
RZB(D) = inf {Rl + Ry : d172 =0,d1 +dy < 2D}, 41)

(R1,R2,d1,d2,d1,2)€ER 2B

whereR g is the (closure) EGC region arly g is Berger’s region. In [6]Reac(D) is explicitly calculated



to take the following form,
Rpce(D) = 2H(1/2+ D) — (1/2)H(4D) — 2D. (42)

In [6], an upper bound oz (D) is also derived. Comparingzac(D) and the upper bound oRz (D)
verifies the non-optimality of the EGC region.

Though Berger’s region exceeds the EGC region in the castetiuexample, no concrete evidence shows
that the former region subsumes the latter region. Morentbcehe authors in [7] presented a new achievable
rate-distortion region, which is claimed to subsume bothEC region and Berger’s region. The main theorem
in [7] is for the L-channel(2” — 1)-receiver MD coding problem. We present in the followingstsplified

version for the 2-channel 3-receiver MD coding problem.

Theorem 4.2 (Goyal's Achievable Rate-Distortion Region)he rate vectof Ry, Rs) is achievable for the dis-
tortion requirement] = (dy, dy, d; ») if there exist random variableX, X, X5, X1 o (X, takes value in some

finite alphabetY, and eachX;, takes value in the reconstruction alphabét ¢t = 1, 2, {1,2}) such that

Ry > I(X;Xo,X;), (43)
Ry > I(X;Xo,X), (44)
Ri+Ry > 2I(X;I(X;Xo0) + I(X1; X2|Xo) + I(X; Xy, Xo| Xo), (45)
4 > E[dt(X,Xt)}, t=1,2,{1,2}. (46)

Remark By letting X in Theorem 4.2 be a constant, the Goyal's achievable ratertion region reduces to
the EGC region. Therefore, Goyal’s region subsumes the E@iGm. Furthermore, simple argument shows that
Goyal’s region also contains all points in Berger’s regiBlowever, it is not known yet if Goyal’s region strictly

improves Berger’s region or not.

5 L-Channel MD Coding

Up to now, we have focused on the 2-channel 3-receiver MDngpdroblem. The generalization fachannel
(2L — 1)-receiver MD coding problem (Figure 2) is a natural next stépthe L-channel(2X — 1)-receiver
MD coding problem, there aré encoding functions;(-) : X — {1,--- ,M;},l € L ={1,--- ,L}. TheL

descriptionsj; = f;(X),l € L are sent ovel. channels. There a@ — 1 receivers, denoted ag(-), for each



K € £ andK # (. The reconstruction at each receiver is represented by

X = gc(Ur:keK). 47)

The distortionsdy. are also defined as the average per-symbol distortion. Thedistortion region of the -
channel(2” — 1)-receiver MD coding problem is composed of all achievabtegta{L + (2 — 1)) vectors

(Ri:leLl; de:KCL,K#0D).

Jh
P(x)
XN | Source B SN ]
Source - Encoder ; : Decoder Dest.
L

Figure 2: L-Channel(2* — 1)-Receiver MD Coding Problem

In [7], the authors presented an achievable rate-distoréigion for theL-channel(2” — 1)-receiver MD coding

problem.

Theorem 5.1 (L-Channel MD Coding: Achievable Rate-Distortion Region)[Alet X ,-y be any set okl
random variables jointly distributed wittk', where X, takes value in some finite alphab#& and eachXy
takes value in the reproduction alphab&k, K # 0. Then the rate-distortion region contains the rates and

distortions satisfying

de > Elde(X, Xk)], (48)

R

v

(1K = DI(X; Xo) — H(X )1 X) + Y HXmIX om—ay)- (49)
MCK

6 Conclusions

The Multiple Description Coding problem is recapped in treport. Historical results are summarized and
restated. Most of the references cited in this report ar@etiteoretical side of the MD coding problem. Though
beautiful results exist, the rate-distortion region of B coding problem still remains an open problem at the

current stage.
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