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Abstract

We reexamine the problem of Multiple Description coding considered last week.
We briefly review the import concepts and results. An overview of the basic methods
of proof are provided. We further formulate this problem in the context of distributed
source coding and from this framework examine a practical coding scheme for the
symmetric problem provided by Pradhan et. al.

Introduction

The problem of multiple description (MD) coding has roots in both practical and
theoretical communities. This problem while theoretically challenging also provides a
valuable framework for reliable transmission over a packet network.

Today we will not only overview the methods that are used to prove the achievability
of the best know MD rate-distortion regions, but also overview a constructive approach
to the problem. The MD problem may be roughly described as follows [1]:

Suppose that we wish to describe a stochastic process through a communi-

cation network. Therefore, we send L descriptions in hopes that a few of

them will get through. However, due to link failures, only a random subset

of the descriptions get through. What is the region of achievable distortions

for every possible set of link failures?

A depiction of the general problem may be seen in Figure 1. In general we will consider
a discrete source that produces a sequence symbols {Xi}

∞
i=i that are independent and

identically-distributed (i.i.d.) with respect to the probability mass function p(x), for
x ∈ X for some given alphabet X . We will denote the set of received description
indices as K and denote the corresponding decoder and reconstruction space as gK and
X̂K. Note that the decoder and the reconstruction space depend on the set of received
description indices K and that the set K is unknown to the encoder.

As noted last week it is not possible in general to achieve the rate-distortion function
for every possible subset of indices. Indeed, we saw in Ozarow’s Theorem [2] (the three
receiver case with a Gaussian source and mean squared distortion) if the distortion
on the side decoders is equal to the distortion-rate function D(R) = exp−2R then
the joint decoder can not achieve a distortion that is better than D(R)/2. This is far
from D2(R) = D(R + R) if D(R) ≪ 1. Intuitively, this is due to the fact that if the
side decoders achieve the optimal distortion-rate then they must be highly correlated
and thus the extra description provides very little information. However, a precise
quantitative statement for the general L-channel problem for either a Gaussian or a
general source is still not known.
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Figure 1: The MD Problem
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Figure 2: The 2-User Multiple Description Problem

We will reexamine the general rate-distortion regions that were discussed last time.
Today, we will more closely examine the proofs of the theorem’s of El Gamal and
Cover [1], Zhang and Berger [3] as well as the region of Venkataramani, Kramer, and
Goyal [4]. This time we will focus on the perspective of decoding with side information.
Additionally, we will consider the more practically motivated question of finding “good”
achievable methods of encoding to achieve an arbitrary distortion specification. We
will first consider the common methods for proving the achievability of a given rate-
distortion vector. Then we will consider a new constructive method that uses channel
erasure codes as well as distributed source coding to encode for links with a symmetric
rate.

2-Description MD Regions

The most basic problem in multiple description coding is the 2-description with three
receiver problem. As discussed last time the exact region of achievable rates is known in
the case of a Gaussian source. Indeed, this is the result of Ozarow [2]. The exact prob-
lem setup can be seen in Figure 2. We now recall one of the earliest characterizations
of the 2-description coding problems.

Theorem 1. (The EGC Region) The quintuple (R1, R2, d1, d2, d{1,2}) is achievable if

there exist random variables X̂1, X̂2, X̂{1,2} jointly distributed with a generic source

random variable X such that:

Ri ≥ I(X; X̂i) for i ∈ {1, 2} (1)

R1 + R2 ≥ I(X; X̂1, X̂2, X̂{1,2}) + I(X̂1; X̂2) (2)

DK ≥ E

{

d
(

X, X̂K

)}

for K ∈ {1, 2, {1, 2}} (3)



The proof of this theorem follows for what is now a quite standard argument using
random codes and typical sets. We refer the reader to [5] for a complete discussion
on typical sets and their properties. We now provide a brief sketch of the proof of
Theorem 1.

Sketch of Proof. We sketch the proof with the following steps:

0) Given:

a) X1 and X2 such that X1 covers X n with distortion D1 and X2 covers X n with
distortion D2.

b) A collection of code books that X0 conditionally cover X n with distortion d0.

1) Random Code Generation

a) Draw 2nR′
1 vectors uniformly from Tǫ(X1).

b) Draw 2nR′
2 vectors uniformly from Tǫ(X2).

c) For each jointly typical (x1(i),x2(j)) construct at codebook by drawing 2n∆

vectors from Tǫ(x0|x1(i),x2(j)).

2) Encoding: Given an x ∈ X n find an (i, j, k) such that (x,x0(k),x1(i),x2(j)) are
in the set of all jointly typical sequences if possible. Otherwise, set (i, j, k) =
(0, 0, 0). Split, k in to two so that k = (k1, k2). Description 1 is then (i, k1),
description 2 is (j, k2).

3) Decoding:

a) Decoder 1: Receives (i, k1) and announces x1(i)

b) Decoder 2: Receives (j, k2) and announces x2(j)

c) Decoder {1, 2}: Receives (i, j, k) and announces x0(i, j, k)

3) Distortion: Can show,

E {d} = (1 − Pe)(D + ǫ) + Pedmax

where under the conditions of the theorem Pe → 0.

This region is the optimal region for a Gaussian source with square error distortion
and was conjectured to be the optimal region in general. However, note that in the
decoding stage of the above proof the descriptions k1 and k2 are thrown away when
single description is received. While, this does not matter in the case of a Gaussian
source with square error distortion, a slight modification to the proof above led Zhang
and Berger to show that the EGC region is not in general optimal by examining the
case of a binary source with a Hamming distortion. The region of Zhang and Berger
(ZB) is described in the following.

Theorem 2. (The ZB Region) The quintuple (R1, R2, d1, d2, d{1,2}) is achievable if

there exist random variables X̂1, X̂2, X̂2 jointly distributed with a generic source random

variable X such that:

Ri ≥ I(X; X̂i, X̂0) for i ∈ {1, 2} (4)

R1 + R2 ≥ 2I(X; X̂0) + I(X̂1; X̂2|X̂0) + I(X; X̂1, X̂2|X̂0) + I(X̂1; X̂2) (5)

dK ≥ E

{

d
(

X, X̂K

)}

for K ∈ {1, 2, {1, 2}} (6)

where X1 = g1(X̂0, X̂1), X2 = g1(X̂0, X̂2), and X{1,2} = g{1,2}(X̂0, X̂1, X̂2) for some

functions g1, g2, g{1,2}.
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Figure 3: The Problem Zhang and Berger

The proof of this region follows much like that of the proof of Theorem 1. However,
while the technical arguments rely on many of the same properties of typical sets the
proof of Theorem 2 has two major conceptual differences. The first is that which
addresses the possible penalty by neglecting the partial descriptions k1 and k2. The
second is a common coarse description that is added to the description for each channel.
In fact, Zhang and Berger arrive at Theorem 2 by first considering the three description
and 4 receiver problem depicted in Figure 3. Note that this figure only differs from
that of Figure 2 by the addition of the common refinement X0 and the extra decoder
corresponding to X0. It is clear that any vector of achievable rate-distortion vales for
this problem can be simply related to the 2 description problem. We now sketch the
proof of Theorem 2 in order to outline the differences.

Sketch of Proof. We sketch the proof with the following steps:

0) Given: Random variables X̂0,X̂1 and X̂2 that satisfy the conditions of Theorem
2.

1) Random Code Generation

a) Draw 2nR′
0 vectors uniformly from Tǫ(X0).

b) Draw 2nR′
1 vectors uniformly from Tǫ(X1|x0(i)).

c) Draw 2nR′
2 vectors uniformly from Tǫ(X2|x0(i)).

2) Encoding: Given an x ∈ X n find an (i, j, k) such that (x,x0(k),x1(i),x2(j)) are
in the set of all jointly typical sequences if possible. Otherwise, set (i, j, k) =
(0, 0, 0). Thus, the first description is (i, k) and the second is (j, k).

3) Decoding:

a) Decoder 1: Receives (i, k) and announces g1(x0(k),x1(i)).

b) Decoder 2: Receives (j, k) and announces g2(x0(k),x2(j)).

c) Decoder {1, 2}: Receives (i, j, k) and announces g{1,2}(x0(k),x1(i),x2(j)).

3) Distortion: Can show,

E {d} = (1 − Pe)(D + ǫ) + Pedmax

where under the conditions of the theorem Pe → 0.



Source

p(x)

Xn Source

Encoder

x0

x1

x2

Decoder 0

Decoder 1

Decoder 2

Decoder {1, 2}

x̂0

x̂1

x̂2

x̂{1,2}

Figure 4: An alternate view of the problem Zhang and Berger

Using this framework Venkataramani, Kramer and Goyal [4] extended this result
to the general problem with L-channels.

Theorem 3. Let X1,X2, . . . ,XK, . . . ,X2L be a collection of 2L random variables in-

dexed by the subsets of the power set 2L of the description indices L = {1, 2, . . . , L}
that are jointly distributed with the source random variable X. Let X∅ take on values in

an arbitrary finite alphabet X∅ and each XK takes on values in a reconstruction alpha-

bet XK for K 6= ∅. Then, the rate-distortion region contains the rates and distortions

satisfying

DK ≥ E {dK(X,XK)} (7)

RK ≥ (|K| − 1) I(X;X∅) − I(X,X(K))

+
∑

M⊆K

H(XM|X(2M−M)) (8)

for every K ∈ 2K − ∅ and where X(K)
∆
= {XM : M ∈ K}.

It is important to note that in this framework the random variable X∅ plays the
same role as X0 in Theorem 2. That is, X∅ can be interpreted as side information that
is available at each decoder. That is, by neglecting the decoder corresponding to X0

in Figure 3 and viewing X0 as side information at the decoder we may be tempted to
think of the Theorem 2 (and for that matter Theorem 3) as that depicted in Figure
4. Note however, since this side information is not available at the decoder we must
transmit it over each channel and thus suffer the leading term in Theorem 3. This
point of view leads us to a quite practical achievable scheme studied by Pradhan et.
al. [6,7]. We begin by first reviewing a fundamental result in the distributed encoding
of correlated sources.

The Slepian–Wolf Problem

We now briefly recall the problem studied by Slepian and Wolf that we require in the
sequel. We refer the reader to [5, pg. 407–416] for a more complete discussion. Consider
a pair of jointly distributed random variables (X,Y ) with joint distribution p(x, y) and



consider jointly encoding both X and Y for transmission to a common receiver. It
should be clear that a rate at least H(X) + H(Y ) is sufficient by separately encoding
X and Y . However, in a fundamental paper by Slepian and Wolf it is shown that it is
sufficient to use a total rate of H(X,Y ) even if the encoding is done separately. This
can be shown by randomly binning the codewords then decoding based on knowledge
of the joint statistics of X and Y . That is, by uniformly assigning every codeword of
X n to a random bin and uniformly assigning every codeword of Yn to a random bin
and having each encoder transmit the bin indices. The two indices are then jointly
decoded based on joint typicality.

It should be clear that in this framework we could reprove Theorem 2 using Figure
4. It is this same approach that the authors of [6,7] take. We now briefly review these
results.

The region of Pradhan et. al.

We now turn our focus to the more practical question of the symmetric multiple descrip-
tion problem, whereby all descriptions are encoded at the same rate. Such a scenario
occurs in current data transfer protocols for example. We require equal protection for
all the data so that the distortion is a function of the number of descriptions lost only.
That is, if nlost many packets are lost and there are L total descriptions then receiving
either description indexed by {1, 2, . . . , n − nlost} or {nlost + 1, nlost + 2, . . . , n} incurs
the same distortion. Thus, the achievable rate distortion region is described by the
L + 1 vector (R,D1,D2, . . . ,DL) where Dk is the distortion incurred if k descriptions
are received.

We note that in the case of two descriptions our intuition is well grounded. For
example, as we noted earlier in the 2 description problem we know that the two descrip-
tions must be nearly independent if we wish to approach the rate distortion function
for the combined rate, i.e. if d{1,2} ≈ D(R1 + R2) then X1 and X2 must be nearly in-
dependent. Further, it is rather straight forward to encode for this case since we know
exactly which two descriptions are received. However, in the L channel case there is
inherent uncertainty at the encoder about which descriptions are received.

Suppose for now that we know that at least k descriptions are received. Then one
may as a first approach employ a rate kR rate-distortion code that achieves the optimal
distortion and encode it for the multiple channels using a (L, k) erasure code. Thus,
if any k descriptions are received we may recover the data and obtain the optimal
distortion. However, if more than k descriptions are received the decoder does not
gain any new information. Alternatively, we could generate L independent codebooks
in order to gain new information for each received description. It is now not clear,
however, if we may still achieve the optimal distortion for a rate kR code. It is a key
result of [6,7] that in the case of a Gaussian source one may use independent codebooks
in order to continually decrease the distortion as more descriptions are received while
simultaneously achieving the optimal distortion for a rate kR code. To be more precise,
we let D(k)(R) = D(kR) be the distortion achieved by receiving k or more descriptions
using a (L, k) erasure code. Then if the decoder receives r extra descriptions the result
of [6, 7] states that a distortion of

D(k)
r (R) =

k
k+r

D(k)(R)
− r

is achievable. Note that if r = 0, i.e. exactly k descriptions are received, then this
scheme achieves the optimal distortion. Further, since D(k)(R) < 1, the distortion



decreases as we receive extra information (which was not the case for the erasure code
approach). The authors of [6,7] provide the following more general theorem for which
the preceding results are a consequence.

Theorem 4. Let X1,X2, . . . ,Xn be a collection of random variables that are jointly

and symmetrically distributed with an arbitrary source random variable X. Then, if at

least k descriptions are received and

DK ≥ E {d(X, gK(XK))} for J ∈ Lk (9)

R ≥
1

k
H(X1,X2, . . . ,Xk) −

1

n
H(X1,X2, . . . ,Xn|X) (10)

for some decoding functions gJ , where Lk = {M ⊂ {1, 2, . . . , L} : |M| ≥ k}, the

rate-distortion vector (R,Dk,Dk+1, . . . ,DL) is achievable.

Sketch of Proof. We sketch the proof with the following steps:

0) Given: A joint distribution p(x1, x2, . . . , xL|x) such that the conditions of the
theorem are satisfied.

1) Random Code Generation: Construct a random codebook Xi independently
for i ∈ {1, 2, . . . , L} by selecting 2nR′

codewords uniformly from Tǫ(Xi).

2) Random Binning: To each codebook associate 2nR bins each containing ap-

proximately 2n(R′−R) codewords which are assigned by drawing uniformly from
Xi with replacement.

3) Encoding: Given an x ∈ X n find indices i1, i2, . . . , iL such that the corresponding
codewords and source, (x,x1(i1),x2(i2), . . . ,xL(iL)), are jointly typical. Let il =
0 if no such indices exist. Transmit the smallest bin index that contains x1(il)
over channel l if such an index exists. Otherwise, transmit 0.

4) Decoding: For a set of received bin indices indexed by K the decoder finds for
ki ∈ K the (x,xk1 ,xk2 , . . . ,xkL

) that are jointly typical and each are contained
in the bin corresponding to the received index. If more than one such set exists
declare an error. Otherwise, decode to gK(xK).

5) Distortion: Can show,

E {d} = (1 − Pe)(D + ǫ) + Pedmax

where under the conditions of the theorem Pe → 0.

Conclusion

We have presented the results of [3, 4] in terms of distributed source coding and have
presented the achievable scheme of [6]. While it is still unclear whether the many user
regions of [4,6] are the optimal characterization of the achievable rate-distortion pairs,
they provide valuable insights in to practical encoding schemes.
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