
































6. Witsenhausen’s Counterexample In this section we introduce the well known Witsen-
hausen counterexample [Witsenhausen2]. The counterexample is a simple discrete time stochas-
tic control problem over two stages. The dynamics of the system are linear, the noise is Gaussian,
the cost is a quadratic function of the state and inputs, yet the problem is surprisingly hard
to solve. It is sometimes erroneously believed that under this setting, the problem always has
optimal control laws with affine structure. We will prove that this is in fact not the case using
the approach in [MitterSahai]. It is appropriate to mention at this point that the emphasis in
this section is not separability of estimation and control (the counterexample does satisfy sepa-
rability). The counterexample is meant to illustrate that nonclassical information patterns lead
to difficult optimal control problems where fundamental techniques like dynamic programming
fail. (As an interesting aside, the optimal controller for Witsenhausen’s counterexample is not
yet known, and is an open problem. In fact, in the original paper [Witsenhausen2], considerable
effort is spent in proving just the existence of optimal control laws.)

6.1 Formulation Let x0 be a randomly generated initial state with Gaussian distribution
with zero mean and variance σ2. Let v, the noise variable, be a random variable independent of
x0 with Gaussian distribution with zero mean and unit variance. The system evolves according
to the following dynamics:

y1 = x0

x1 = x0 + u1

y2 = x1 + v
x2 = x1 + u2

(1)

The control laws are constrained to be of the form:

u1 = γ1(y1)
u2 = γ2(y2)

(2)

The cost is given by:
J = E

[

k2u2
1 + x2

2

]

. (3)

Let us examine the formulation of the problem more closely. There is a single input station, and
a single output post. As mentioned earlier, the dynamics are linear, the noise is Gaussian, and
the cost is quadratic. The first stage output y1 is a perfect observation of the initial state x0.
However, the problem is not in the standard LQG setup because the input at the second stage
does not have direct access to the state, rather it only has access to a noisy state measurement
(partial information). The second stage cost could be driven to zero if x2 could be driven to zero.
This would require u2 to form a perfect estimate of the state x1. This is of course not possible,
since u2 can only depend on y2, a noisy version of x1. Hence the role of u2 is estimation. The
control designer, aware of this difficulty, would try to encode the state x1 efficiently using the
input u1. Hence the first stage can be thought of as an encoder, with associated coding cost,
and the second stage can be thought of as an estimator with the associated cost being the mean
square estimation error.

In terms of the language introduced earlier, what is the information pattern corresponding

1



to this problem?
Y1 = {(1, 1)}
U1 = ∅

Y2 = {(2, 1)}
U2 = ∅.

The important observation to make here is that the information pattern fails to satisfy perfect
recall. Hence the information pattern is nonclassical. If the information pattern were classical
(i.e. if input y1 were remembered by the system at the second stage, and u2 = γ(y1, y2)), then
the solution to the problem would be trivial. Indeed, one could set u1 = 0, and u2 = −y1 = −x1

giving a policy with J = 0.
Nonclassical information patterns can affect analysis and design of systems in two completely

different adverse ways: (1) Separation may fail, and (2) Dynamic programming may fail. It is
interesting to note that separation of estimation and control holds for this example. In the first
stage, perfect knowledge of x0 is available, since y1 = x0 almost surely. Since the control law
is constrained to be of the form u1 = γ1(y1) = γ1(x0), separation holds for the first stage. As
commented earlier, the optimal action in the second state is estimating the state x1 given the
input y2. Hence separation holds for the second stage also. Hence, it is sometimes possible to
have separation for nonclassical systems. Finally, we would like to point out that the optimal
solution for this problem cannot be determined via dynamic programming.

6.2 Best Affine Controller In this section we compute the best affine controller, which is
of the form:

u1 = ay1 + c1

u2 = by2 + c2.

It is not hard to see that since the primitive random variables are zero mean, c1 = c2 = 0. Due
to the dynamics of the system, x1 = (1 + a)x0, and thus x1 is a Gaussian random variable with
zero mean and variance (1 + a)2σ2. Also, the first stage cost is E[a2x2

0] = k2a2σ2.
The second stage cost is the mean square error E[(x1 − (−u2))

2] between the state x1 and
its estimate formed by the input u2. The optimal choice for u2 is MMSE estimate:

u2(y2) = −E [x1|y2] = −
(1 + a)2σ2

1 + (1 + a)2σ2
y2.

The corresponding mean square error is:

E[x2
2] =

(1 + a)2σ2

1 + (1 + a)2σ2
.

The total cost for a fixed a is:

J(a) = k2a2σ2 +
(1 + a)2σ2

1 + (1 + a)2σ2
. (4)

To find the optimal design, one should optimize over a to minimize (4) by setting dJ(a)
da

= 0.
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6.3 Quantizing Controller In this section we show a way to construct nonlinear controllers
through quantization as described in [MitterSahai]. The problem described in (1) is parameter-
ized by k and σ2. We show that in a certain regime of these parameters, the nonlinear controllers
perform arbitrarily better than the best affine controllers. Consider a controller of the form:

γ1(y1) = −y1 + B⌊y1

B
+ 1

2⌋
γ2(y2) = B⌊y1

B
+ 1

2⌋.

The first stage looks at y1 and chooses the input such that the state x1 is quantized into a
bin of size B (the input is simply the quantization error). The decoding rule is simply to look
at the bin that y2 = x1 + v falls in (thus, if the noise were small, it would always choose the
correct bin). As the bin size increases, the probability of decoding error decreases exponentially
according to the tail of the distribution for v (which is a standard normal distribution).

Consider the series of parametric problems given by:

n = 1
n2

σn = n2

Bn = n.

For each problem in this sequence, the first stage input is bounded by the maximum quantization

error Bn/2, and hence the cost is bounded by k2
n
B2

n

4 = 1
4n2 . Hence as n tends to infinity, the first

stage cost approaches zero. For the second stage, notices that the bin size increases as n, while
the variance of noise v is fixed at 1. The estimation error is zero unless the noise has magnitude
larger than B

2 = n
2 . Since v is Gaussian, this tail event happens with a probability approaching

zero. Thus, in the limit of large n,
lim

n→∞

Jn = 0.

For this same sequence, it is easy to see that the cost for the optimal affine controller approaches
1, and hence the quantizing controller performs arbitrarily better.
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