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The following writeup is simply my attempt at understanding the above men-
tioned paper. It is not my research; however, it might contain some simplifica-
tions or comments. This writeup is written as a part of the Graduate Seminar
course offered by Prof. Devavrat Shah.

1 Overview.

This writeup discusses the idea of matrix cuts developed by Lovász and Schri-
jver to generate a sequence of relaxations of the constraint set polytope in an
Integer Program. The idea will then applied to the stable set problem. This
document is organized as follows:

1. Motivation, setup and basic notation.

2. Definition of the matrix cut.

3. Geometric intuition.

4. Main theorems related to the properties of the cuts.

5. Stable set problem.
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2 Setup of the problem.

Consider an Integer Program (IP): optimization of a linear objective over
integer constraints. Specifically, we assume that the variables are restricted to
take 0, 1 values. We know that solving this IP is equivalent to optimizing the
linear objective over the convex hull C of the feasible solutions. In the “nicest”
of cases, C has a polynomial number of facets and the IP can be solved in
polynomial time. In more general cases, C has an exponentially many facets.
A class of such problems can still be solved in polynomial time if the polytope
C is “nice.” There are different notions of “niceness”; the one that is most
popular is the existence of a polynomial time separation algorithm.

There are many combinatorial problems that have such nice polytopes. So far,
several ad hoc methods have been used, exploiting the combinatorial structure
of the problem. However, there are two general approaches: Gomory-Chvátal
cuts and Projection representation. In this writeup we will concentrate on the
projection representation.

The method of projection representation is based on the observation that
the projection of a polytope may have more facets than the polytope itself.
More specifically, even if a polytope P has exponentially many facets, we may
be able to find a lifting P ′ in a higher dimension such that P ′ has only a
polynomial number of facets and P is its projection. Once such a P ′ has been
constructed, it is clear that the linear objective can be optimized in polynomial
time because optimizing over P is the same as optimizing over P ′ with the
cost corresponding to the new variables set to zero.

Until now, this approach has been applied to several combinatorial optimiza-
tion problems. But the methods used are not general and try to exploit the
special structure of the problem. This paper provides a general method to
determine such a lifting.

The approach developed in this paper combines the ideas of cuts and projec-
tions, resulting in a sequence of relaxations of the constraint set. The outline
of the general procedure for the combinatorial optimization problems is as fol-
lows: Let P denote a polytope with integer vertices. We start with a polytope
P1 that contains P , contains no other integer points apart from the vertices of
P , and is nice. Optimizing over P1 provides an approximation. This polytope
P1 is then cut, resulting in a polytope P2 such that P2 is contained in P1

and contains P . Continuing this procedure results in a sequence of cuts. This
procedure should typically halt in a finite number of steps. In this writeup we
discuss a method of cuts called matrix cuts.
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Before we describe the details of matrix cuts, we will first make some defini-
tions.

2.1 Notation and Definitions.

We define formally what we mean by a cut. For that let P be a polytope
with 0, 1 vertices. A relaxation of P is denoted by PR and is defined as a
polytope that contains P and is such that the only 0, 1 points it contains are
the vertices of P . A cut is an operator/function from the space of relaxations
of P to itself. It is denoted by Φ and Φ(PR) is a relaxation that is contained
inside PR. In this paper, we will define a cut called the matrix cut.

The dimension of the polytopes being considered will be denoted by n.
It will be convenient to homogenize and view the n dimensional convex
sets as cones in the n + 1 dimensional space. With any n dimensional
convex set C we can associate an n + 1 dimensional cone K, defined as
K = {(λ, λx) : λ ∈ R+, x ∈ C }, where R+ is the set of non-negative real num-
bers. This correspondence is one-one because the convex set C is given by the
intersection of K and the hyperplane x0 = 1; here we have indexed the compo-
nents of x ∈ Rn+1 from 0 to n. For brevity, we will denote this correspondence
by H, i.e., we write H(C ) = K and H−1(K) = C .

For any n+ 1 dimensional cone K we denote by K◦ the cone spanned by the
0, 1 vectors in K. We denote by Q the cone spanned by all the 0, 1 vectors
with x0 = 1. In other words, Q is the n + 1 dimensional cone corresponding
to the n dimensional unit cube. Given any cone K we denote its dual by K∗

and define it as:

K∗ =
{
u ∈ Rn+1 : 〈u, x〉 ≥ 0, ∀ x ∈ K

}
The dual of a cone can be thought of in two ways: (a) intersection of half spaces
(b) union of normals. Thinking of 〈x, y〉 ≥ 0 with x fixed and y variable, K∗

can be thought of as the intersection of halfspaces with normals lying in K.
This is the first interpretation. The other way is thinking of 〈x, y〉 ≥ 0 with
y fixed and x variable. Now, K∗ will be the union of normals such that the
non-negative halfspace contains K. Using any of these interpretations, it is
easy to note that Q∗ is the conic hull of ei, i = 0, 1, 2, . . . , n and fi = ei − e0,
i = 1, 2, . . . , n; here ei denotes the ith unit vector.

We will now formally define a matrix cut.
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3 Definition of a matrix cut.

We will define the cut for a cone K ⊆ Q. The cut will be obtained by first
lifting the n+1 dimensional cone to the space of (n+1)× (n+1) dimensional
matrices, and then projecting it back to the n+1 dimensional space. Since we
are lifting the cone to the space of matrices, this procedure is termed matrix
cut. We define the procedure for the intersection of two cones K1 ∩K2, where
K1 ⊆ Q and K2 ⊆ Q. Since we will only be interested in the cut of a cone K,
we can think of K1 as K and K2 as Q. The reasons for defining the cut for
the intersection of two cones and not just for a cone are technical, and will
become apparent later.

We first define the lifting. Given cones K1 and K2, we define the cone
M(K1,K2) ⊆ R(n+1)×(n+1) as the set of all (n+1)×(n+1) matrices Y = (yij)
satisfying:

(i) Y is symmetric.

(ii) yii = y0i for all 1 ≤ i ≤ n.

(iii) 〈u, Y v〉 ≥ 0 for every u ∈ K∗1 and v ∈ K∗2 .

Note that (iii) can also be written as

(iii’)Y K∗2 ⊆ K1.

We will slowly parse each of the conditions to get an intuitive understand-
ing, but before that we will define the projection. We define N(K1,K2) =
{Y e0 : Y ∈M(K1,K2)}. Clearly, N(K1,K2) is an (n + 1) dimensional cone.
We will define N(K1,K2) as the cut of K1 ∩K2.

Now, to intuition. The cut should contain all the 0, 1 vectors of K1 ∩ K2.
Therefore, let’s concentrate on the 0, 1 vectors. Roughly speaking, the lift and
projection should be such that the 0, 1 vectors are mapped to themselves. For
that, let x be a 0, 1 vector in K1 ∩K2 and let Y = xxT . Clearly, Y satisfies
the properties (i), (ii) and (iii) stated above. It is also easy to observe that the
three constraints are also satisfied by the conic hull of matrices of the form
xxT , with x a 0, 1 vector in K1 ∩K2. We would be happy if we can restrict
M(K1,K2) to just the conic hull. But that would have exponential facets in
general. Therefore, we limit ourselves to the three constraints, and this will
turn out to be a good trade-off between the complexity and optimal cut.
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This finishes the definition of the matrix cut. Of course, we still have to prove
that N(K1,K2) obtained is indeed a cut. Moreover, the geometric meaning of
the matrix cut is still not very clear. For that, we will first provide a geometric
interpretation of the matrix cut and then prove some of its useful properties.

4 Geometry of the cuts.

As mentioned earlier, we are interested in the cuts of a cone K. Therefore,
from this section on we will take K1 as K and K2 as Q. For brevity, we will
write M(K,Q) simply as M(K) and N(K,Q) as N(K).

Let Hi denote the hyperplane
{
x ∈ Rn+1 : xi = 0

}
and Gi the hyperplane{

x ∈ Rn+1 : xi = x0

}
, for 1 ≤ i ≤ n. The hyperplanes Hi and Gi are the

facets of Q. We have the following lemma:

Lemma 1. For every convex cone K ⊆ Q and every 1 ≤ i ≤ n,

N(K) ⊆ (K ∩Hi) + (K ∩Gi).

The proof of this lemma is quite straightforward and we will come back to
it soon. Before that, let’s understand the implications of this lemma. Note
that if K does not intersect Gi then N(K) ⊆ Hi. Similarly, if K meets two
opposite facets of Q only at zero, then N(K) = {0}. It follows from lemma 1
that:

N(K) ⊆
⋂
i

((K ∩Gi) + (K ∩Hi))

We now take a quick example to understand this better.

K N(K) N2(K)

Fig. 1. Illustration of the geometric interpretation of matrix cuts
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Figure 1 illustrates the matrix cuts on a convex cone K. Here n = 2. The
figure shows that intersection of K and the hyperplane {x0 = 1}. This depicts
a geometric construction of the matrix cut.

We now prove Lemma 1.

Proof of Lemma 1. Consider any x ∈ N(k). We can write it as Y e0 for
some Y ∈ M(K). Let use denote the ith column of Y by yi, for 0 ≤ i ≤ n.
Thus, x = y0. For any 1 ≤ i ≤ n, we can write y0 = (y0 − yi) + yi. Let u
denote y0 − yi and v denote yi. Since y0i = yii, we have ui = 0 and v0 = vi.
Therefore, u ∈ Hi and v ∈ Gi. This completes the proof of the lemma. �.

5 Properties of the matrix cuts.

We now state the three most important properties of the cuts. The first prop-
erty states that the above definition of matrix cuts is indeed a cut. The second
property states that starting from K, after at most n cuts we get back K◦.
The last property states that if there K has a polynomial time weak separa-
tion oracle ‡ then N(K) has a weak separation oracle too. We will only sketch
the proofs of the properties.

Lemma 2. K◦ ⊆ N(K) ⊆ K.

Proof. Let x be any non-zero 0, 1 vector in K. Since K ⊆ Q, x0 = 1. As
earlier, it is easy to check that Y = xxT ∈ M(K). Hence, x = Y e0 ∈ N(K).
Thus, K◦ ⊆ N(k).

N(K) ⊆ K follows immediately from Y Q∗ ⊆ K and e0 ∈ Q∗. �.

Lemma 3. Nn(K) = K◦.

Proof. We will only sketch the proof of this lemma. For any 1 ≤ t ≤ n,
let F be a n − t dimensional facet of the n dimensional unit cube. Let F ′

‡ A weak separation oracle is a version of the separation oracle which allows for
numerical errors: its input is a vector x ∈ Rn+1 and a rational number ε > 0, and
it either return an assertion that the Euclidean distance of x from K is at most
ε, or returns a vector w such that ‖w‖`2 ≥ 1, 〈w, x〉 ≤ ε, and the distance of w
from K∗ is at most ε. If the cone K has 0, 1 vertices, then we can strengthen a
weak separation oracle to a strong separation oracle in polynomial time.
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denote the n+ 1 dimensional cone corresponding to the union of all the n− t
dimensional facets that are parallel to F . We will prove by induction that
N t ⊆ cone(K ∩ F ′).

Note that the case t = 1 is equivalent to lemma 1. For t = n, this is just the
statement of the theorem. Induction can be carried out in a manner similar
to the proof of lemma 1 and we shall skip it here. �.

Lemma 4. Suppose that we have a weak separation oracle for K. Then the
weak separation problem for N(K) can be solved in polynomial time.

Proof. Suppose that we have a weak separation oracle for K. We will prove
that we have a weak separation oracle for M(K). In fact, if Y is a matrix in
M(K) then we can trivially check conditions (i) and (ii). The third condition
states that Y Q∗ ⊆ K. Since Q∗ has a polynomial number of extreme rays
and K has a polynomial time weak separation oracle, it follows that the third
condition can be checked in polynomial time.

Since M(K) has a polynomial time weak separation oracle, even its projec-
tion N(K) has a weak separation oracle; this follows from the general results
proved in [2]. �.

6 Applications to the stable set problem.

We will now apply matrix cuts to determine the classes of graphs for which
the stable set problem can be solved in polynomial time.

Let G = (V,E) be a graph with no isolated nodes. Let α(G) denote the
maximum size of any stable set of nodes of G. For each A ⊆ V , let χA ∈ RV

denote its incidence vector. The stable set polytope is defined as:

STAB(G) = conv
{
χA : A is stable

}
.

The polytope STAB(G) satisfies the following inequalities:

xi ≥ 0, for each i ∈ V (1)

and
xi + xj ≤ 1 for each ij ∈ E. (2)
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(1) and (2) are called respectively the non-negativity and edge constraints.
The solution set of the (1) and (2) is denoted by FRAC(G) and is in general
much larger than STAB(G). FRAC(G) and STAB(G) are equal if and only if
G is bipartite.

There are other classes of inequalities that are satisfied by STAB(G). Some
important classes are clique constraints and odd hole constraints. The clique
constraints are defined as: for every clique B, we have:∑

i∈B

xi ≤ 1. (3)

Graphs for which (1) and (2) are sufficient to describe STAB(G) are called
perfect. The odd hole constraints are defined as: if C induces a chordless odd
cycle in G then ∑

i∈C

≤ 1
2

(|C| − 1). (4)

Graphs for which (1), (2) and (4) are sufficient to describe STAB(G) are called
t-perfect.

It has been proved that the stable set problem can be solved in polynomial
time for bipartite, perfect and t-perfect graphs.

Taking P as FRAC(G), with K denoting the corresponding cone, we can
apply the theory developed in the last section to determine N(K). We denote
N(K) by N(G). Since FRAC(G) is polynomial time separable, it follows that
Nr(G) is polynomial time separable for fixed r.

We will now state an important theorem:

Theorem 1. The polytope N(G) is exactly the solution set of the non-
negativity, edge and odd-hole constraints.

We will skip the details of the proof. This theorem gives us an alternative and
more general method to prove the stable set problem for t-prefect graphs can
be solved in polynomial time.

There are several other results that can be proved for the stable set problem
using this methodology.
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7 Conclusion.

In this paper, Lovász and Schrijver have developed the method of matrix cuts
and applied it to the problems of stable sets in graphs and set functions. Their
method is based on the idea that, in general, projection of a polytope has more
facets than the polytope itself. More specifically, a polytope with a polynomial
number of facets can have exponentially many facets in its projection. Using
this idea they introduced matrix cuts. Carrying out the matrix cuts repeatedly
results in a sequence of relaxations. This procedure is guaranteed to end in n
steps.

The methodology they develop is more general and encompasses most of the
ad hoc techniques.
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