6.728 Applied Quantum and Statistical Physics

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

PROBLEM SET 10

<u>Issued:</u> 11-22-02 <u>Due:</u> 12-04-02, in-class

Problem 10.1 Problem 23.3 in the notes.

Problem 10.2 Problem 25.2 in the notes.

Problem 10.3 Problem 26.1 in the notes.

at zero temperature of $E_{F_0} = k_B T_0$.

Problem 10.4 Problem 26.2 in the notes. Use the temperature dependent approximation for $N_c(T)$ given in problem 26.1

Problem 10.5

A particle in a box with a density of electrons n has a Fermi level

1. Show that the chemical potential, μ , is a solution to

$$0 = 1 - \frac{3}{2} \left(\frac{T}{T_0} \right)^{3/2} \int_0^\infty \frac{x^{1/2}}{1 + e^{x - \mu/k_B T}} \, dx$$

- 2. Plot μ vs. T for a metal where $T_0=50,000\,\mathrm{K}$ in the range of $0\leq T\leq 10^5\,\mathrm{K}$.
- 3. Plot the fermi-dirac distribution function, $f(E \mu)$, for

$$T = \{500 \text{ K}, 5000 \text{ K}, 10^4 \text{ K}, 5 \times 10^4 \text{ K}, 10^5 \text{ K}\}$$

that is, plot $f(E-\mu)$ vs. E/k_B so that energy is expressed as a temperature.

- 4. Plot $-\frac{\partial f}{\partial E}$ for the same temperature range.
- 5. Plot the variance of $-\frac{\partial f}{\partial E}$ vs. temperature.
- 6. Plot $\langle E \rangle$ vs. temperature for $0 \le T \le 10^5 \,\mathrm{K}$.
- 7. What is $\langle E \rangle$ at zero temperature and at high temperatures. Explain.