6.728 Applied Quantum and Statistical Physics

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

PROBLEM SET 11

<u>Issued:</u> 12-06-02 <u>Due:</u> 12-11-02, in-class

Problem 11.1 Some Hydrogen Facts

- (a) Are there continuum states for the hydrogen atom?
- (b) How loarge is the 1s orbital for a hydrogenic atom with Z=8?
- (c) An electon is in a 3d orbital (n=3 and $\ell=2$). What values can m take on?
- (b) If an electron is removed from the 1s state from silicon, then the electron in the 2p state can radiatively decay to the vacant 1s state. A hydrogenic model can be used for the lower lying states. What is the wavelength of the radiation if the 2p electron makes a transition to the 1s state.

Problem 11.2 A Different Central Potential (this is a former final problem)

A particle is in the ground state of a spherical box. The relevant time-independent Schrödinger equation is

$$E\psi(\mathbf{r}) = \left[-\frac{\hbar^2 \nabla^2}{2M} + V(|\mathbf{r}|) \right] \psi(\mathbf{r})$$

The potential V(r) is given by

$$V(r) = \left\{ \begin{array}{ll} 0 & 0 \leq r \leq a \\ \infty & r > a \end{array} \right.$$

The eigenstates of the system can be written as

$$\Psi(r,\theta,\phi) = \frac{P(r)}{r} Y_{\ell,m}(\theta,\phi)$$

where

$$|\mathbf{L}|^2 Y_{\ell,m}(\theta,\phi) = \hbar^2 \ell(\ell+1) Y_{\ell,m}(\theta,\phi)$$

and

$$\left\{-\frac{\hbar^2}{2M}\frac{d^2}{dr^2} + V(r) + \frac{\hbar^2\ell(\ell+1)}{2Mr}\right\}P(r) = EP(r)$$

- (a) Determine the energies and wavefunctions for the ground state and the first excited state for s-states $(\ell = 0)$, that is, for the 1s and 2s states.
- (b) In the H-atom problem, all the 2p states have the same energy. Would you expect the p states of this well all to have the same energy? Explain.

Problem 11.3 Problem 28.1 parts (a) through (c) on page 642 of the notes.

Problem 11.4 Problem 29.1 on page 666 of the notes.