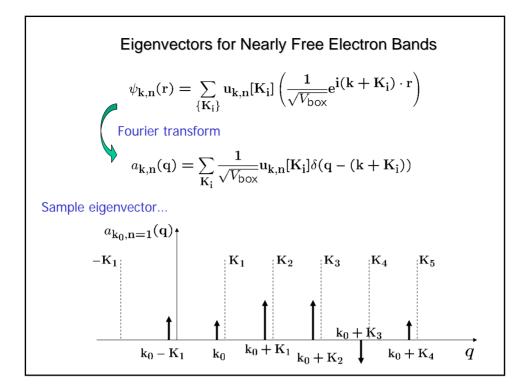
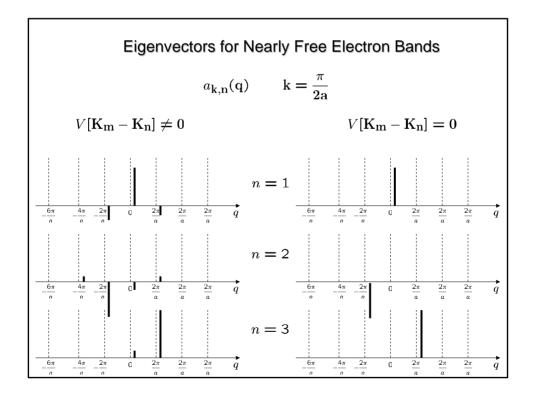

Finite Basis Set Expansion with Plane Waves
Hamiltonian Matrix
$$E\begin{pmatrix} u_{k}[K_{0}]\\ u_{k}[K_{1}]\\ u_{k}[K_{2}]\\ u_{k}[K_{3}] \end{pmatrix} = \begin{pmatrix} H_{00} & H_{01} & H_{02} & H_{03}\\ H_{10} & H_{11} & H_{12} & H_{13}\\ H_{20} & H_{21} & H_{22} & H_{23}\\ H_{30} & H_{31} & H_{32} & H_{33} \end{pmatrix} \begin{pmatrix} u_{k}[K_{0}]\\ u_{k}[K_{2}]\\ u_{k}[K_{3}] \end{pmatrix}$$

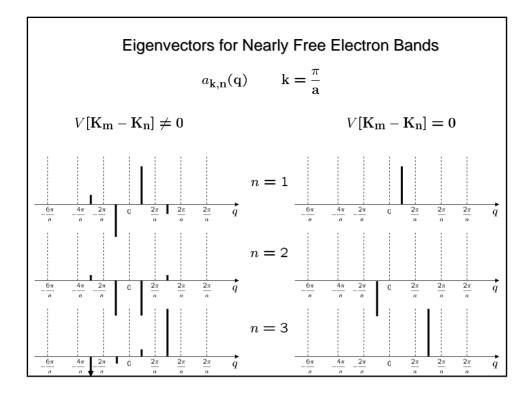
$$H_{m,n} = \left\langle \frac{e^{i(\mathbf{k} + \mathbf{K}_{m}) \cdot \mathbf{r}}}{\sqrt{V_{\text{box}}}} \right| \frac{\hat{\mathbf{p}}^{2}}{2m} + V(\mathbf{r}) \left| \frac{e^{i(\mathbf{k} + \mathbf{K}_{n}) \cdot \mathbf{r}}}{\sqrt{V_{\text{box}}}} \right\rangle$$

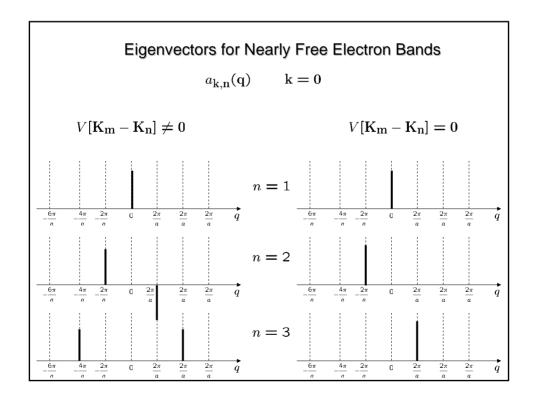
$$H_{m,n} = \frac{\hbar^{2}}{2m} (\mathbf{k} + \mathbf{K}_{n})^{2} \delta_{\mathbf{K}_{m},\mathbf{K}_{n}} + \mathbf{V}[\mathbf{K}_{m} - \mathbf{K}_{n}]$$
Fourier Series coefficients for the lattice potential...

$$V[\mathbf{K}_{m} - \mathbf{K}_{n}] = \frac{1}{V_{\text{WSC}}} \int_{V_{\text{WSC}}} e^{-i(\mathbf{K}_{m} - \mathbf{K}_{n}) \cdot \mathbf{r}} V(\mathbf{r}) d^{3}\mathbf{r}$$


$$\begin{aligned} & \text{Finite Basis Set Expansion with Plane Waves} \\ & \text{Hamiltonian Matrix} \end{aligned} \\ & H_{m,n} = \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{K_n})^2 \delta_{\mathbf{K_m,K_n}} + \mathbf{V}[\mathbf{K_m} - \mathbf{K_n}] \\ & \mathbb{E}_n(\mathbf{k}) \begin{pmatrix} u_{\mathbf{k},n}[\mathbf{K}_1] \\ u_{\mathbf{k},n}[\mathbf{K}_1] \\ u_{\mathbf{k},n}[\mathbf{K}_2] \\ u_{\mathbf{k},n}[\mathbf{K}_3] \end{pmatrix} = \begin{pmatrix} \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{K}_0)^2 + \mathbf{V}[0] & \mathbf{V}[\mathbf{K}_0 - \mathbf{K}_1] & \mathbf{V}[\mathbf{K}_0 - \mathbf{K}_2] & \mathbf{V}[\mathbf{K}_0 - \mathbf{K}_3] \\ \frac{\mathbf{V}[\mathbf{K}_1 - \mathbf{K}_0]}{\mathbf{V}[\mathbf{K}_1 - \mathbf{K}_0]} & \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{K}_1)^2 + \mathbf{V}[0] & \mathbf{V}[\mathbf{K}_0 - \mathbf{K}_2] & \mathbf{V}[\mathbf{K}_0 - \mathbf{K}_3] \\ \frac{\mathbf{V}[\mathbf{K}_1 - \mathbf{K}_0]}{\mathbf{V}[\mathbf{K}_2 - \mathbf{K}_0]} & \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{K}_1)^2 + \mathbf{V}[0] & \mathbf{V}[\mathbf{K}_1 - \mathbf{K}_2] & \mathbf{V}[\mathbf{K}_1 - \mathbf{K}_3] \\ \frac{\mathbf{V}[\mathbf{K}_1 - \mathbf{K}_0]}{\mathbf{V}[\mathbf{K}_3 - \mathbf{K}_0]} & \mathbf{V}[\mathbf{K}_2 - \mathbf{K}_1] & \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{K}_2)^2 + \mathbf{V}[0] & \mathbf{V}[\mathbf{K}_2 - \mathbf{K}_3] \\ \frac{\mathbf{V}[\mathbf{K}_1 - \mathbf{K}_0]}{\mathbf{V}[\mathbf{K}_3 - \mathbf{K}_0]} & \mathbf{V}[\mathbf{K}_3 - \mathbf{K}_1] & \mathbf{V}[\mathbf{K}_3 - \mathbf{K}_2] & \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{K}_3)^2 + \mathbf{V}[0] \end{pmatrix} \begin{pmatrix} u_{\mathbf{k},n}[\mathbf{K}_0] \\ u_{\mathbf{k},n}[\mathbf{K}_2] \\ u_{\mathbf{k},n}[\mathbf{K}_3] \end{pmatrix} \end{aligned}$$




Infinite Basis Set Expansion with Plane Waves Hamiltonian Matrix


$$H_{m,n} = \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{K_n})^2 \delta_{\mathbf{K_m},\mathbf{K_n}} + \mathbf{V} [\mathbf{K_m} - \mathbf{K_n}]$$

[:	-	ł	:	:	1		: .
$\lambda(\mathbf{k}+\mathbf{K}_{-3})^2+\mathbf{V}_0$	V_{-1}	V_2	V_3	V_4	V_5	V_6	V_7
V_1	$\lambda(\mathbf{k}+\mathbf{K}_{-2})^2+\mathbf{V}_0$	V_{-1}	V_{-2}	V_3	V_{-4}	V_{-5}	V_{-6}
V2	V_1	$\lambda (k+K_{-1})^2 + V_0$	V_1	V_2	V_3	V_4	V_5
V3	V_2	V_1	$\lambda (k+K_0)^2 + V_0$	V_1	V_2	V_3	V_4
V4	V3	V_2	V_1	$\lambda (k+K_1)^2+V_0$	V_{-1}	V_2	V_3
V_5	V_4	V_3	V_2	V_1	$\lambda(k+K_2)^2+V_0$	V_{-1}	V_2
V ₆	V_5	V_4	V_3	V_2	V_1	$\scriptstyle\lambda(k+K_3)^2+V_0$	V_1
V7	V_6	V_5	V_4	V_3	V_2	V_1	$\lambda (k+K_4)^2+V_0$
		:	:	:	:	:	:
		$\lambda = \hbar^2/2m$		$V[\mathbf{K}_m - \mathbf{K}_n] = \mathbf{V}_{m-n}$			

