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Properties of the Translation Operator

Definition of the translation operator...
Trip(r) = ¥(r +R)

Bloch functions are eigenfunctions of the lattice translation operator...
Try(r) = c(R)y(r)

c(R) = ik R

Lattice translation operator commutes with the lattice Hamiltonian (V

[Tr, H(r)] =0

The translation operator commutes with other translation operators...

[Tr,, Tr,] = 0
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Properties of the Translation Operator

Lets see what the action of the following operator is...
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This is just the translation operator...

e RVrf(r) = fr - R)

T_pf(r) = e RVrf(r)

Another Look at Electronic Bandstructure
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As we will see, it is often convenient to represent the bandstructure by
its inverse Fourier series expansion...

En(k) = BEn[R)e*
V4




Translation Operator and Lattice Hamiltonian

From before, the eigenvalue equation for the translation operator is....
Tr(r) = e*Fiy(r)

If we multiply this by the Fourier coefficients of the bandstructure...
EnlRg) T, (r) = En[Iy] e Fegp(x)
...and sum over all possible lattice translations...
> EnlR Trab(r) =3 En[Rg e e p(r)
£ [

En(k)
...we see that the eigenvalue on the left is just the bandstructure (energy)

p En[Ry] Tr(r) = En(k) ¢(r)
¢
This suggests the operator on the left is just the crystal Hamiltonian !

F’ =) En[Ry] TR@ No wonder [Hg,TR] = O
[

Electron Wavepacket in Periodic Potential

Wavepacket in a dispersive media... vg = Vjw(k)

So long as the wavefunction has the same short range periodicity as the
underlying potential, the electron can experience smooth uniform motion
at a constant velocity.




Wavefunction of Electronic Wavepacket
The eigenfunction for k~k, are approximately...
an,k(?”) = eiklrun,k(r)

~ ek

.run,ko(r)
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A wavepacket can therefore be constructed from Bloch states as follows...

71)1/7,(7’7 t) = Z c’ﬂ(k7 t)wn,k(r)
k
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G is a slowly varying function... Gn(r,t) = cn(k, )tk
k

Wavefunction of Electronic Wavepacket

! — iko-
Yy (r, t) = o7 Gn(r, 1) ¢n,k0(T)
envelope function Bloch function

!
1/1n(7” t) = Gn(T’, t) un,ko(r)
envelopefunction  Bloch amplitude

Since we construct wavepacket from a small set of k's...
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...the envelope function must vary slowly...wavepacket must be large...

Ar > a




Action of Crystal Hamiltonian on Wavepacket
Hg 1/);’k = Hy (Gn(r,t)ql,mko(r))

= En(Ry) Tr, (Gn(r, t)up 4o (1))
4

= ; En(Rg) Gn(r + Ry, t)up ko (1 + Rp)

= un,ko(r) Z En[Rg]Gn(T + R@? t)
¢

= Uy, oo () ; EnlRe] Tr, Gn(r,t)

Hop

= un,ko(r) HO Gn(r,t)

It appears that the Hamiltonian only acts on the slowly varying amplitude...

Effective Mass Theorem
If we can consider an external potential (eg. electric field) on the crystal...
H = Ho + Vet
0 ;L’k(r, t)

(Ao + Vear(r)) wp (1) = i

The influence of the external field on the wavepacket...

1/141(7"7 t) ~ Gn(r, t)un,ko(r)

8Gn(r, t)

i (7) (o + Vo)) G, ) = iy (r) 2728

We can solve Schrodinger’s equation just for the envelope functions...

8Gn(r7 t)

(Ao + Veae(r)) Gn(r, 1) = iR ="




Normalization of the Envelope Function
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Since the envelope is slowly varying...it is nearly constant over the

volume of one primitive cell...
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< Gu(r, t)|Gr(r,t) >= Vpox

What is the Position of Wavepacket ?
Proof that...(E(t)) g = (F(t))

< Yn(r, |7Pn(r, 1) >
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What is the Momentum of Wavepacket
< Gn(r,t)|?vr|Gn(r, £ >
= | Saw. ey, (Z en(k”, t)’“) o
ox Iy (3
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< Gn(T7t)|G’ﬂ(ra t) > = V})oxz |C'>rkl(k/7t)|2 ~ %0$|C;(k0’t)|2
k!

< Gn(r,)|pIG(r,t) >
< Gn(r,O)|Ga(r,t) >

<p>g= but < p >7 Tko

Summary

Without explicitly knowing the Bloch functions, we can solve
for the envelope functions...

(FIO + Ve:}ct(ﬂ) Gp(r,t) = zhw

ot

Bandstructure shows up in here... FI = En[Ry] Tg,
¢

The envelope functions are sufficient to determine the
expectation of position and crystal momentum for the

system...
< Gu(r,O)|r|Gr(r,t) >
<r(t) >ag= =< rt) >
) >q < Gu(r, t)|Gn(r,t) > r®)
< Gn(r,)|pIG(r,t) >
<p>Gg= 0

< Gn(r, )|Gn(r,t) >




