6.730 Physics for Solid State Applications

Lecture 21: Effective Mass Theorem and Impurity States
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Properties of the Translation Operator

Definition of the translation operator...and its Bloch eigenfunctions

T (r) = ¢(r + R) Tre(r) = e Rop(r)

Tr commutes with the lattice Hamiltonian (V,,,=0) and with other Ty

[TRa H(I‘)] =0 [TRlvTRz] =0

Representation of the translation operator...

T rf(r) =e BVrfr) = f(r —R)




Another Look at Electronic Bandstructure
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As we will see, it is often convenient to represent the bandstructure by
its inverse Fourier series expansion...

En(k) = BEn[R)e*
V4

Translation Operator and Lattice Hamiltonian

From before, the eigenvalue equation for the translation operator is....
Trap(r) = eF Hep(r)

If we multiply this by the Fourier coefficients of the bandstructure...
EnlRg) T, (r) = En[Iy] e Fegp(x)
...and sum over all possible lattice translations...
> EnlR Tra(r) =3 EnlRyl e R op(r)
£ [

En(k)
...we see that the eigenvalue on the left is just the bandstructure (energy)

p En[Rel Trb(r) = En(k) (r)
[
This suggests the operator on the left is just the crystal Hamiltonian !

Fyo = En[R)]Tg, No wonder [Ho, Tg] = 0
[




Alternate Form of the Hamiltonian
Ho = EnlR)Tg, = En[Rj] eV
£ £
and  En(k) =Y Ep[Rglet U
£

Comparing leads us to conclude that the Hamiltonian can be written as

ﬁo — En(_'l/v?“>

Meaning that if we can find an expression for E(k), then just
let

k — —iV

Alternate Form of the Bloch Hamiltonian
~D
_ p .
Ho = o + Vperiodic(r) = En(—iVr)
m
Example1. FEy, (k) = —Acos(ka)
) A,= A cos(—z’a%) = —g ( afs 4 e—“%)

example2.  En(k) = a + bk + ck?

N d d?
- Ho=a—1ta——c¢
d

T dx2

Therefore, use the band structure to find the Bloch Hamiltonian near
a certain value of crystal momentum k.




Wavefunction of Electronic Wavepacket
The eigenfunction for k~k, are approximately...
an,k(?”) = eiklrun,k(r)

~ eik'run’ko(r)

= ei(k_ko}'wn,ko(?")

A wavepacket can therefore be constructed from Bloch states as follows...

Yp(rt) = Y enlk, )by (1)

kneark,
3 en(k, )Ry ()

kneark,

Fn(r,t)

o~
~

F is a slowly varying function...

Wavefunction of Electronic Wavepacket
lp;z(r7 t) ~ Fn(T, t)wn,ko(r> = G"‘L(Ta t)un,ko(r)
F & G are slowly varying functions...

Fo(r,t) = E en(k, )etb=ko) T Gr(r,t) = e R TRk, t) = 3 cn(k, e
k
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Wavefunction of Electronic Wavepacket

Yn(r,t) = Fo(r,t)

envelope function

¢n,ko (T)

N e’
Bloch function

qu;l(r’t) = Gn(T’, t)

un,ko(r)
. S —’
envelopefunction

Bloch amplitude

And  Gp(rt) = e ko (k, t)

Since we construct wavepacket from a small set of k's...

2
N and Ar>a
a

..the envelope function must vary slowly...wavepacket must be large...

Ar > a

Action of Crystal Hamiltonian on Wavepacket

Hg 1/);’k = Hy (Gn(r,t)ql,mko(r))

= En(Ry) Tr, (Gn(r, t)up 4o (1))
4

; En(Rg) Gn(r + Ry, t)up ko (1 + Rp)

= un,ko(r) Z En[Rg]Gn(T + R@? t)
¢

= Uy, oo () ; EnlRe] Tr, Gn(r,t)

Hop

= un,ko(r) HO Gn(r,t)

It appears that the Hamiltonian only acts on the slowly varying amplitude




Effective Mass Theorem
If we can consider an external potential (eg. electric field) on the crystal...
H= gO + Ve:ct

81[};“]6(7’7 t)

(Ao + Vear(r)) wp (1) = i

The influence of the external field on the wavepacket...

1/141(7"7 t) ~ Gn(r, t)un,ko(r)

8Gn(r, t)

i (7) (o + Vo)) G, ) = iy (r) 2728

We can solve Schrodinger’s equation just for the envelope functions...
8Gn(7’, t)

(Ho + Veat(r)) Gn(r,1) = i ="

Effective Mass Theorem
We can solve Schrodinger’s equation just for the envelope functions...

0Gn, (T7 t)

(Ho + Veat(r)) Gn(r,1) = i ="

Recall that HO = En(—ivr)

So that we find what is known as the Effective Mass Theorem:

. 0Gn(r,t

Likewise, we find an alternate form of the Effective Mass Theorem:
_ OF,(r,t

[(En(ko — ivr) + Vext(r)) Fn(rat) — Zh% ]




Normalization of the Envelope Function G,(r,t)

1= [ et Dd®

= [ GG (r,1) o (Pt o (P

Since the envelope is slowly varying...it is nearly constant over the
volume of one primitive cell...

1% S GL(Rm, £) G (R, ) /A Ul o (Pt oo (T3
m

1
Vbox ‘m

1
1~ / G (r, )G (r, £)d3
G o GRG0

< Gu(r, t)|Gr(r,t) >= Vpox

What is the Position of Wavepacket ?
Proof that...(E(t)) g = (F(t))

< Yy, (1, )7, (r, 1) >
< i (r, )| p(r, t) >

< r(t) >=

— / G (1, ) G (r, £)ufy o (1) T g oo (1) d3r
VBox

~ 30 Gh(Rm, )G (B 1) [ 5, (r) [ Romd o (1)
m
~ Z G:(Rma t)Gn(Rm: t) R /A U:L,ko (T)un,ko (T)d37’
m
1 1
™ N NA 4

< Gp(r, O)|r|Gn(r, t) >
< Gn(r, t)|Gn(r,t) >

= ({F(t))g




What is the Momentum of Wavepacket

< Gu(r, PG (r,t) >

S PG G DG D) > Gn(g,t)
_ < Gnlg,t)|Rq|G(q,t) >
T <G, DICnla, D) > q
~ Tikg / o
<p>g= fiko
but < p ># hkg

Summary Wavepacket properties

Without explicitly knowing the Bloch functions, we can solve
for the envelope functions...

) (7 _ O0Gp(r,t)
(En(—ZVfr) + Veg;t(r)) Gn(r,t) = ZTLT
or (En(k?o — 'LVT‘) + Ve:ct(’f’)) Fn(r,t) — Zh%ﬂT@

The envelope functions are sufficient to determine the
expectation of position and crystal momentum for the
system...

_ < Ga(nB)Ir|Gn(r,t) > _
<r(t) >g= G DG (r D) > =< r(t) >

< Ga(r, DIPIG (7, 1) >

< p>a= ~
P e= G DG ) >

0




Summary Wavepacket properties

Without explicitly knowing the Bloch functions, we can solve
for the envelope functions...
/L -

(En(=iVi) + Vet (r)) Gn(r,t) = 5

i, OFn(r,t
of (En(ko — iVr) 4 Vet (r)) Fa(r,t) = m#

< Gu(r, )|r|Gn(r,t) >

< Gp(r, t)\ﬁ|G(T, t) >

<r(t) >a= =<r(t) > <p>g=

< Gn("” t)|Gn(7°7 t) >

From Lecture 19 recall that the Semiclassical Equations of Motion are
dk

d 1
o <r(t) >=<vnk) >= EvkEn(k) Feoxt = ha

We could have also proved the last statement as a Erhenfest with G(r,t) !

d d 0
dt <p>a di 0 =< Oz ext >G=< Fext >@

< Gnlr, £)|Gnlr,t) >

hko

Summary Wavepacket properties

Without explicitly knowing the Bloch functions, we can solve
for the envelope functions...
/L —

(En(=iVi) + Vet (r)) Gn(r,t) = 5

i, OFn(r,t
of (En(ko — iVr) 4 Vet (r)) Fa(r,t) = m#

< Gu(r, )|r|Gn(r,t) >

< Gp(r, t)\ﬁ|G(T, t) >

<r(t) >g= =<r(t) > <p o=

< Gn("” t)|Gn(7°7 t) >

Semiclassical Equations of Motion:

d 1

dk
Feoxt = h—
ext dt

< Gnlr, £)|Gnlr,t) >

hko




Semiclassical Equations of Motion

1 dk
= EvkEn(k) Fext = ha

< vnlk) >= <P>

http://www.physics.cornell.edu/sss/ziman/ziman.html

Semiclassical Equations of Motion

1 dk
= ﬁvkEn(k) Fext = ha

< vn(k) >= =P~

Lets try to put these equations together....

dv _ 1009Ey(k) _ 19%°En(k)dk

) == — = — _ AN/
= =75 ok B ok2  dt
[ 182EN(K)
— w2 iz | et

Looks like Newton’s Law if we define the mass as follows...

O2Ex(k)\ ™!
m* (k) = h? (T dynamical effective mass

m==)> mass changes with k...so it changes with time according to k

10



Dynamical Effective Mass (3D)

Extension to 3-D requires some care,

F and a don’t necessarily point in the same direction

=

=1
a=M Fext where

——1 _ 1 82EN
" B2 0k;0k;

11 1
(223 d Vx Mz mfcy Myz F;p
ay = Vy = Myxr M Myz Fy
az dt Vz i ﬁ i F,
Mzx Mzy Mzz
Dynamical Effective Mass (3D)
Ellipsoidal Energy Surfaces
Fortunately, energy surfaces can often be approximate as...
k £9)2 k., — k92 k., — k92
Bk = Bt ((x DGl D )
Mt myg my
1
= 0 O
- o m
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- | http://csmr.ca.sandia.gov/workshops/nacdm2
X W Cu r A X UK £ T 002/viewgraphs/Conor_Rafferty NACDM20
e WAVEVECTOR k 02.pdf
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Summary Wavepacket properties

A. Without explicitly knowing the Bloch functions, solve for the envelope

function. e ;
(En(_ivfr) + Vewt(r)) Gn(ra t) =1ih na(t?n’)
_ OFn(r,t)

or (En(k?o — iVT) + Ve:ct(r)) Fn(r,t) =1h

< Gu(r, )|r|Gn(r,t) >
< Gn("” t)|Gn(7°7 t) >

ot
< Gp(r, t)\ﬁ|G(T, t) > -

<r(t) >o= < Gn(r 0)[Gu(r,t) >

=<r(t) > <p>g=

B. Alternatively, use the Semiclassical Equations of Motion for a
slowly varying external force are

d 1
- < r(t) >=< va(k) >= ﬁVkEn(k)

d dk
h— = Fext
dt
—_ S 2
Combing these equations give a = M 1Fext where M ; L OBy

T 52 0k,0k;

hko
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