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6.730 Physics for Solid State Applications

Lecture 22: 

• Review of Effective Mass Theorem

•Impurity States in Semiconductors

• Fermi Surfaces in Metals

•Fermi Level, Chemical Potential

• Intrinsic Semiconductors

•Extrinsic Semicondutors

Outline

March 31, 2004

Without explicitly knowing the Bloch functions, we can solve 
for the envelope functions…

Summary Summary WavepacketWavepacket propertiesproperties

or

Semiclassical Equations of Motion:
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Donor Impurity States Donor Impurity States 
Example of Effective Mass ApproximationExample of Effective Mass Approximation

+1 e -

Replace silicon (IV) with group V atom…

Donor Impurity States Donor Impurity States 
Example of Effective Mass ApproximationExample of Effective Mass Approximation

This is a central potential problem, like the hydrogen atom…
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EC

EV

ED

Egap~ 1 eV

n-type Si

Donor Impurity States Donor Impurity States 
Example of Effective Mass ApproximationExample of Effective Mass Approximation

Hydrogenic wavefunction with an equivalent Bohr radius..

Donor ionization energy…

There are an infinite number of donor energies, ED is the lowest energy with 
l=1, and from Statistical Mechanics we will see it is the most important one…

E

Donor Impurity States Donor Impurity States 
Example of Effective Mass ApproximationExample of Effective Mass Approximation

When there are Nd donor impurities…
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-1 h+

Replace silicon (IV) with group III atom…

Acceptor Impurity States Acceptor Impurity States 
Example of Effective Mass ApproximationExample of Effective Mass Approximation

Acceptor Impurity States Acceptor Impurity States 
Example of Effective Mass ApproximationExample of Effective Mass Approximation

Another central potential problem…
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Acceptor Impurity States Acceptor Impurity States 
Example of Effective Mass ApproximationExample of Effective Mass Approximation

Hydrogenic wavefunction with an equivalent Bohr radius..

Acceptor ionization energy…

There are an infinite number of acceptor energies, EA is the lowest energy 
with l=1, and from Statistical Mechanics we will see it is the most important 
one

Finite Temperatures: Where in the world is the Fermi Energy?Finite Temperatures: Where in the world is the Fermi Energy?
EEF F (T) = (T) = µµ(T(T))

µ is found from the integral equation given that n is fixed.
1. A metal: If µ is in the bands
2. A semiconductor: if µ is in the gap and gap > kT
3. Semimetal: if m is in the gap and gap is of the order of kT
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2D Monatomic Square Crystals2D Monatomic Square Crystals
Dispersion RelationsDispersion Relations
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Si: [Ne] 3s2 3p2

4 e- per silicon atom
2 silicon atoms per lattice site

total: 8 electrons at each site

4 valence bands
4 conduction bands

Silicon Silicon BandstructureBandstructure



7

MetaslMetasl: Free Electron Fermi Surfaces (2D): Free Electron Fermi Surfaces (2D)
T=0T=0

For free electrons energy surfaces are simple spheres (circles)…
Valence (# of electrons) determines radius of energy surface… 1st zone

2nd zone

3rd zone

When k near to BZ boundary:When k near to BZ boundary:
E contours become distortedE contours become distorted

coppercopper

www.phys.ufl.edu.fermisurfacewww.phys.ufl.edu.fermisurface

periodic potential pulls on periodic potential pulls on 
the spherical FS forming the spherical FS forming 
'necks''necks'

2D2D

Fermi Surfaces (3D)Fermi Surfaces (3D)
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NNee = 1 = 1 monovalentmonovalent metals, e.g. Na, Cu, with values ~ f.e. theorymetals, e.g. Na, Cu, with values ~ f.e. theory

other cases, e.g. Be (other cases, e.g. Be (NNee=2), Al (=2), Al (NNee=3), there are serious differences=3), there are serious differences

www.phys.ufl.edu.fermisurfacewww.phys.ufl.edu.fermisurface

Fermi Surfaces (3D)Fermi Surfaces (3D)

CuCuLiLi

AlAl

BeBe
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http://www.research.ibm.com/DAMOCLES/html_files/phys.html

Semiconductors: Silicon Semiconductors: Silicon BandstructureBandstructure

ECEV

EF

E (eV)

f(E- µ)

The fermi “tails” are in the 
conductions and valence bands

Density of State Effective Mass (3D)Density of State Effective Mass (3D)
Ellipsoidal Energy SurfacesEllipsoidal Energy Surfaces

Silicon energy surfaces can often be approximate as near the top or bottom as

http://csmr.ca.sandia.gov/workshops/nacdm2
002/viewgraphs/Conor_Rafferty_NACDM20
02.pdf

A. For each of the 6 conduction  “pockets”

i = light hole 
and heavy hole

for each of the valence bands

where the density of states effective mass is

B. For each of the valence bands
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To find the Fermi Level of the SemiconductorTo find the Fermi Level of the Semiconductor

The number of particles thermally excited to the conduction band nC
must equal the number of electron vacancies in the valence band pV
so that charge neutrality is preserved.

Solving for nC = pV give the fermi level (chemical potential) µ(T)

Counting and Fermi IntegralsCounting and Fermi Integrals
33--D Conduction Electron DensityD Conduction Electron Density
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Counting and Fermi IntegralsCounting and Fermi Integrals
33--D  vacancy DensityD  vacancy Density

BoltzmannBoltzmann ApproximationApproximation

Boltzmann Approximation:

Intrinsic carrier concentration with n = p

Intrinsic Fermi level
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Electronic Specific Heat of the SemiconductorElectronic Specific Heat of the Semiconductor

The particles thermally excited to the conduction band nC
must gain an energy of about E- Ec.

Electronic Specific heat decreases exponentially fast with T at low T;  
in contrast, a metal decrease linearly with T.

Doped Semiconductors
The fermi level is again found from Charge Neutality

Density of “ionized” acceptorsDensity of “ionized” donors

Use the fact that even for doped materials, in the Boltzman limit, 
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Extrinsic Semiconductors
For high temperatures where all the donors and acceptors are ionixed,

Therefore, in the Boltzman (extrinsic) limit,

For n- doped materials,

We aslo find that 

n-doped semiconductor

http://www.physics.fsu.edu/courses/Spring04/phz3400/notes/semicon1.pdf
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Approximations for Fermi IntegralsApproximations for Fermi Integrals
33--D  Carrier DensitiesD  Carrier Densities

Sommerfeld Approximation:

Unger Approximation:

where

Approximations for Fermi IntegralsApproximations for Fermi Integrals
33--D  Carrier DensitiesD  Carrier Densities
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Approximations for Inverse Fermi IntegralsApproximations for Inverse Fermi Integrals

Inverse First-order Sommerfeld Approximation:

Inverse Second-order Unger Approximation:

for 0.04 error

for 0.04 error


