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Microstates and Counting
Ensemble of 3 ‘2-level' Systems

Total Energy # of Microstates

‘ ‘ E=0 g-1
. E=1 g=3

E=2 g=3
E=3 g=1

As we shall see, g is related to the entropy of the system...




Microstates and Counting

. . . . Ensemble of 4 ‘2-level’ Systems

Total Enerqgy # of Microstates

E=0 g=1
E=1 g=4
E=2 g=6
E=3 g=4
E=4 g=1
E=2
41 24
g = =6

Microstates and Counting

The larger the systems, the stronger the dependence on £
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For most mesoscopic and macroscopic systems, g is a monotonically

increasing function of £




System + Reservoir Microstates

Gibb’s Postulate = all microstates are equally likely

reservoir

system
9(Er) =3 g5(Es) gr(Er — Es) y
Eg

Example
g(Er = 2) = g5(2) gr(0)+95(1) gr(1)+g5(0) gr(2)

Consider a system of 3 ‘2-levels’ + a reservoir of 10 ‘2-levels’

g(Ep=2)=3.1+4+3.104+1.45=78

Probability of finding: £,=0 45/78 «+—Most likely mircostate of S&R
E.=1 30/78
E.=2 3/78

Most electrons are in the ground state so reservoir entropy is maximized !

System + Reservoir Microstates

reservoir
system
g(Er) = Z 95(Es) gr(ET — Es)
Es

For sufficiently large reservoirs....

g(Er) =Y g5(Es) gr(Er—Es) ~ gs(Es) gr(Er—Es) |max
ES

...we only care about the most likely microstate for S+R

Now we have a tool to look at equilibrium...




System + Reservoir in Equilibrium

reservoir

system

g(E7) = gs(Es) gr(Er — Es) |max

Equilibrium is when we are sitting in this max entropy (g) state...

dg dg
dg:gSﬁdER‘i‘gRa—EidES:O

Epr=FEg+ ER

‘dET = dE'S + dE'R =0 = dES = —dER

dingg  0Olngg
0Ep  OFg

is the same for two systems in equilibrium

System + Reservoir in Equilibrium

reservoir

9(ET1) = 95(Es) gr(ET — Es) |max system

dingg  0Olngg
8Ep ~ OEg

We observe that two systems in equilibrium have the same
temperature, so we hypothesize that...

1 Olngp dlngg
—=kp =kp
T OER dEg

This microscopic definition of temperature is a central result of stat. mech.




Boltzmann Distributions

1 _dingg Jdlngg
T OEp  OEg

Sis the thermodynamic entropy of a system

Boltzmann observed that...

Sp=Sr+ 5S¢ and IT —9gRGS

...s0 he hypothesized that
S=kglng 1_105: _ 105
T kBBER kiBaEg

) g= S/kB

Boltzmann Distributions

P(E]) QS(Ej) gR(ET — Ej) gR(ET — E]) reservoir controls

P(E.)  qgo(E Er— E.) Er— E system distribution (to
(BEy)  9s(Ep) gr(Br — Ey)  gr(BEr — Ey) logarithmic accuracy)

use g=e/kB

— exp <S(ET - E;) — S(Ep - Ek)) — exp (—(E;; Ey) g_g ET>




System + Reservoir in Equilibrium

Now we allow system and reservoir to
exchange particles as well as energy... reservoir

system

Er = Eg+ Ep

Ny = Ng + Np

P(N;, Ej)  gr(Nt — Nj, Ep — Ej)
P(Ng, Ey)  gr(Np — Ny, Ep — Ey)

— exp <SR(NT - N;,Er — E;) — Sg(Np — Ny, Ep — Ek))
kp

System + Reservoir in Equilibrium

PNj, Bj) _ <5R(NT—NJ'7ET—EJ')—SR(NT—Nk,ET—Ek)>
P(Ny, E) kg reservoir
= exp (%)
kp

system

Entropy of reservoir can be expanded for each case...

as as
Sp(Np—Ny, Er—FE) = Sp(Np, Ep)—N, <—> -F (—)
R(Np—Ny, Ep—Ey) = Sg(Nr, E) Fon v, o) g,

Difference in entropy of the two configurations is...

S S
ASr=—(N;—N) (22} —(B,-B) (X2
=~ =Ny) <8N>NT (Ej=Er) <8E>ET
4 T

..where x is the electrochemical potential




System + Reservoir in Equilibrium

ds = <8—5> dN + <aS>N dE

ON oFr
IfdS =0, thatis S is held constant, then l
oS o8
= (2=} dN E
0= (5x), ™+ (55 @
1 S
So that T (8_]3)
(25 =—(2%) /(29) —_ (25)
ON/)s ON/E'  \OE/N T  \ON/nNp
= (5%)
) @ = N/ s

Chemical potential is change in energy of system if one particle is added
without changing entropy

Electrochemical potential
OF
The electrochemical potential, a.k.a, the fermi level is Ut = | =
ON/s

The energy can be divided into two parts if the particle has charge

E = Eorbital,nocharge + Eelectrostatic,withcharge

_ 8Eorbital> (aEelectrostatic>
— _( on JsT ON s

If the electric field is E(r) = —V¢
then the change in electrostatic energyis dF¥ = —e ¢ dIN

—) = p=p —ee(x)
Fermi level or the ﬁeledrochemlcal potential for an

electrochemical potential electrically neutral particle




System + Reservoir in Equilibrium

dS = <8_S> dN + <8—S> dF
ON/E N

1
ds = —EaN + 2 dE
T T

= dE=TdS+ pdN

System + Reservoir in Equilibrium
Example: Fermi-Dirac Statistics
P(N;, E;)

m = exp ((N Nk) —(B; - Ek)>

kgT
Consider that the system is a single energy level which can either be...

occupied: |[Eg = E Ng=1
unoccupied: FEg=20 Ng=0

P(1,E) 7 1 uw—F
=exp|—— - F—— ) =exp
P(0,0) kBT kBT k’BT

Normalized probability...(for fermions)

P(0,0) + P(1,E) 1+4exp /Z;—:’FE) 1+ exp (%:#)




System + Reservoir in Equilibrium
Example: Bose-Einstein Statistics

P(N;, E;) 7
m = exp ((N - Nk)kB —(B; - Ek)kT)

Consider that the system is a single energy level which can either be...
occupied with n particles: Eg = NE + ¢ Ng=N
unoccupied: Eg=0 Ng=20

N
P —
M = exp N/,L — NF 1 = [ exp s E
P(0,0) k5T k5T kgT

Average number of particles...(for bosons)

<N>:n§:o:on(exp (lﬁ)) /Z (exp<k37}?>>m

. 1

 exp (@TH) 1

Two Systems in Equilibrium

1
1+exp <kBT2)

1
1+ exp (742)

f1(E) = fo(E) =

system 1 system 2

Particles flow from 1 to 2... [R1o ~ p1f1p2(1 — f2)

Particles flow from 2 to 1... Ro1 ~ pafop1(1 — f1)

In equilibrium... Ri2 = Ro1

1= _ po — E
p1f1p2(1 — f2) = pofop1(1 — f1) P ( kpTy ) =P ( kT

f f2 = H = p2

1-f1 1—5 T =1




Summary
System which can exchange particles and energy with a reservoir

—_ 1
S =kplng ds = PN+ ~dE
T T
7= (58 7= (on)
T OE) Ep T  \ON/nNp
General Probability Ratio
PNG, Ej) _ NP mEy L
P(Ny, Eyp) exp | (N - Nk)kBT ~ (- Ek)kBT
For Fermions f(E) =< N>= -
= = —
1+ exp (§5F)
1
For Bosons < N >=
o (FF) 1
Summary
System which can exchange only energy with a reservoir,
— 1 1
S=kplng  g5= 4k =(as>
T T OF) Er

General Probability Ratio P(E;) 1
Fen = (- Pog7)

1
1+ exp (,@%)
1

exp (@%) -1

Looks as if u=0, but in reality p never entered the problem!

This is also true if the system can exchange particles, but there is no
constraint on the total number of particles; for example, with photons
and phonons.

For Fermions f(E) =< N >=

For Bosons < N >=

10



Counting and Fermi Integrals
3-D Conduction Electron Density

00 1 [2m*\3/?
n= o smimar o e =5 (3] V-

Tl2
1 /2m*\3¥/? [0 VE
n= -2 / VT 4B
272 E.

) e iree(B)
3/2

_ L (ﬁ) [T g, B

27 .1 + ey v kgT

2 m*kBT 3/2 v = L Ec
=—=2 5 —dy kgT

VT 27h 1+eyv

2 = Ee FE. ) .
n = N I Note: the chemical potential

Specific Heat of Solid

Z/ < hw/kBT ﬁw"‘ 1/2> go(w) dw

Z/OO hwge(w)dw

TLw/kBT 1

— 1 2 5
= 4kpT? ;/ (7w)?go(w) cosech? (fiw/2kpT) dw

Note: no chemical potential
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