6.730 Physics for Solid State Applications

Lecture 26: Inhomogeneous Solids
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Electrochemical potential
OF
The electrochemical potential, a.k.a, the fermi level is Ut = | =
ON/s

The energy can be divided into two parts if the particle has charge

E = Eorbital,nocharge + Eelectrostatic,withcharge

_ 8Eorbital> (aEelectrostatic>
— _( on JsT ON s

If the electric field is E(r) = —V¢
then the change in electrostatic energyis dF¥ = —e ¢ dIN

m—) = p=p —ee(x)
Fermi level or the ﬁeledrochemlcal potential for an

electrochemical potential electrically neutral particle




Inhomogeneous Semiconductors in Equilibrium
Inhomogeneous doping

Consider a solid with a spatially varying impurity concentration...
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In equilibrium, the carrier concentration is balanced by an internal
electrostatic potential...why?

Slowly varying potentials
—ep(x) = ENG(x)

1. Break up the material into regions where ¢(x) is nearly constant

2. Assume Range of ¢(x) >> range of wavepacket >> lattice constant

3. Each region has the same electrochemical potential (equilibrium) so
that u = p;’— e ¢; is the same for each region.

4. Each characteristic energy of the energy bands changes with position

5. The electrochemical potential E- = p is independent of position!




Inhomogeneous Semiconductors in Equilibrium

If electrostatic potential varies slowly compared to wavepacket...
R2V?2

<_ 2m*

 Eop— q¢<r>) F(r) = EF(r)

Dividing solid into slices where ¢, is uniform and depends only on x...

TLQVQ
 2m*

F;(r) = (E; — Eco + q¢;) F;(r)

...the envelope function has solutions of the form...

FZ(T‘) — <Aieik1x + Bie—ikzx) e—i-ikyye—i-ikzz
...therefore the eigenenergies are...

R2k2

2m*

R2k2

E; = Eco— q¢; + Srm*

) \E(r) = Eco — qé(x) +

Inhomogeneous Semiconductors in Equilibrium

Given the modified energy levels, the 3-D DOS becomes....
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4(B,7) = @m*)3/2 (B — Beo + qd(r)]H/2

...in equilibrium the carrier concentration is with p = E....

n(r) = /Ew—w(r) R T

_i Epr — Eco + qo(r)
B \/7—TNCF1/2< kgT )

—(Eco — qp(r) — Ep)
kgT

= Nq.exp < > Boltzmann approx.




Inhomogeneous Semiconductors in Equilibrium

FEr— FEco r
n(r) =%NCF1/2< F + q¢( ))

kpT

Ec(r) = Eco — qo(r)

2 Ep — E(r)
) o= eme (P20

—(Ec(r) - EF))
kgT

~ Nq.exp <

The electrostatic potential is incorporated in  E.(r) or Eyu(r)

2 Eo(r) — E (Ew— Eu(r
p) = NPy (kBTF> I ( (e = £ )))

Inhomogeneous Semiconductors in Equilibrium

Ec(r) = Eco — qp(r)

Density with field

n(r) = iNC Fi)o (—EF — Ec(T)) A2 Neexp <—_(ECE;)T_ EF))

Background Density

without field 2 Erp—F —(E.— F
N = 7NC F1/2 u ~ NC exp M
ﬁ B kT

The potential satisfies Poisson’s Equation
82 e
@éf)(ﬂf) = T [no(r) — no]

With boundary conditions at the interface,

0 0
_51£¢1(5€) + 52%‘?2(%) = Qz’nterface




Example: Metal-Metal contact

Frvac is a reference level: In the absence of image forces, this is the energy needed to
remove an electron from EF so that the material no longer influences it.

Metal 1 Metal 2

e E e Fvac
vac . vac
—ap1

When the metals are brought together so that electrons can tunnel from one to the
other, particles will be exchanged until z is the same.

Metal-Metal contact

Metal 1 Metal 2

Evacyp--- i__
¥1

b= —ep1 — edi, b= —epn — edog

Er




electrochemical potentials and work functions

—F, .
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$1 > P2

The electric field in the gap [, = —£20— #10

d

Recall that p = —ep1 —ed10 = —epo — edog

E.— Y1~ %2 whichis the negative
T — - . .
d x direction

Self-consistent potential: metals and semiconductors

_i EF*EC(T) _ 2 EF_EC
n(r) = ﬁNc Fy o <7RBT ) ne = ﬁNC Fi /o <I<:E;7T
Density with field Background Density without field

2

The potential satisfies Poisson’s Equation % o(z) = -
€T

c [n(r) — no]

. . ] ]
With boundary conditions, —61£¢1(m) + 62%@(%) = Qinter face
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Lizﬁb(m) where the Debye length is Li=

m’Qa
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Debye Lengths

92 1
022 o(x) ~ L—22¢($)

€
2 0
e _BEFn

where the Debye lengthis L, =

0

o = 9(Ep)  for a metal, and L is a fraction of an Angstrom

o n . . )
“m.. "=~ forasemicondutor, and L is a few microns
OEp kgT

Potential profile
82 1
922 ¢(z) ~ L—%(b(x)

The solution for the potential is:
p1(z) = ¢p10+ A1 ¥ forz <0
¢o(z) = dop + Ape /L2 for z >0

with the boundary condition of no surface charge, one finds

— _ Lifa o )l
é1(x) = ¢10-*-L1/61 T L2/62(<P1 @2)e for z <0
L
¢2(x) = d20— 2/¢2 (p1—p2)e “12 forz >0

Li/e1+ Lo/ex

[ o(x) for € equal
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Example: PN-junction

p-doped Si
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n-doped Si
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