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Lecture 28: Scattering of Bloch Functions
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Occupancy Functions and Quasi-Fermi Functions

f(E) vs. f(k)
f(E,r) flk,m)
f(E,rt) flk,r,t)

Equilibrium occupancy function...

folk,r) = L

1 + e(Be(rk)=EBpg,) /kpT

Quasi-equilibrium occupancy function...
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Properties of the Occupancy Function
Moments of f (r,k,t)

Carrier density...
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Current density...

7 ) = D VREE) )

k1)

o~ _q
Energy density...
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All the classical information about the carriers is contained in (1,4,

Rate Equations for Occupancy Function

Previously we developed rate equation for model 3-level system...

NQ% = +k1o N1No [f1 (1 — f2) — A12 fo (1 — f1)]

—ko3 No N3 [f2(1 — f3) + A3 f3(1 — f2)]

Now, generalize for the whole occupancy function...

df (r, k, t)

=3 (PO = () S k) — F(R)(L = F(K) S(k, 1))
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Rate Equations for Occupancy Function

w => (f(k:’)(l — F(R) S(K' k) — fF(k)(1 — f(K") S(k, k/))
kl

IS(K', k) rate of scattering from K’ to k

S(k,k"y  rate of scattering from k to kK’

Perturbations that cause scattering....
e Impurities or defects
e Electron-phonon scattering
e Electron-photon scattering

Use Fermi's Golden Rule to calculate scattering between Bloch functions...

Fermi’s Golden Rule from 2-state system

If a two state system with eigen energies E, and E,, is driven by a
sinusoidal potential such that the Hamiltonian is

([ E Voeiwt
H = < Voe_th E2

Then if the system is initially in the 1-state, the probability of it
going to the 2-state is, with o, = E; - E,

_ (2Vo/R)? o > 5
PR) = o S vy {Viw=w)? + 2vo/m? 12

If the potential is small, then

sin2 ((w — wo)t/2))2

— 2,2
P(2) = (2Vo/R)"t < & —oni/2




If the potential is small, then

sin? ((wo — w1y — w)t/2)>2

— 2,2
P(2) = (2Vo/R)"t < E—y

If there were many states to decay to, given by a density of states, g(o),
(not per unit volume), then the probability to decay to these states is

in? ((wj —wi —w g
P:/(QVO/TL)QtQ (sm (( j— w1 )t/2>> o) do

(wj —w1 —w)t/2

lim = with width 2x/t

Therefore the rate, S =P/tis

S(1) = [ (@Vo/R)?6(w; — w1 —w) glwy) dw;
=Y 5(1.5)

Fermi's Golden Rule

S(k,k") = Scattering rate from kto k’

k (t=0) K (t — o0)

e For weak collisions to continuum of nearby states...

Sk, k) = 2 AL AA = E(K) — E(k) — hw
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T|i_>moo S(k, k") = 21 hé(A\) = TQwé(E(k’)—E(k)—hw)

e Energy conservation holds for infrequent collisions ¢ — oo ...




General Scattering Potential

We will only consider scattering potentials of the form...

Ug(r, t) = U*(r)e ™ 4+ US(r)et™t
= U%(r,t) + U(r,t)

We can consider each potential term separately...

i = [, a0 U20,0) o (r) @3

iy = [ a0 U1 i) @
..Fermi...

S(k, k') = 2% |H 25 (E(K) — E(k) — hw) + [HE, [26(B(K) — E(k) + Fw)|

General Scattering Potential
Ug(r, t) = U*(r)e ™ 4+ US(r)et™t

S(k, k') = 2% Hpip 26 (E(K) — E(k) = Tw) + |Hiy [26(B(K) — E(k) + Tw)|

U%(r) ™" final state energy is greater than initial === absorption

Ue(r) et final state energy is less than initial =)  emission




Matrix Elements for Bloch States
i = [ o) Us(r,8) () dr

L
i = [, $u(2) Us(z, 1) () d2
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Approximation for slowly varying scattering potential...

~ ; e~ i(K'=k)zm Us(zm) /A Uppt (2)unp(2) dz

1
I(k,k';n,n') Overlap integral ~ +
for n=n’, and k=k’

Scattering from a Slowly Varying Potential
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Matrix element is just the Fourier component U, ., of the scattering

potential at ¢ = k — k'
For more quantitative work will need to evaluate overlap integral.




Scattering Rate Calculations
Example: 1-D Scattering from Defect

Us(2) = Aob(2) (1- D)

1 % ,
Hk?,k = Us,k—k'/ = Z‘/72L Aoé(z) e—Z(k/—k)z dZ
2

T L
hw—0 Sk k)= 2m A3 B (E(k’) - E(k:))
h L2
» Sharply peaked potential scatters isotropically
indep. of q=Fk —k
« Static potential scatters elastically
E(k") = E(k)
Scattering Rate Calculations
Example: 1-D Scattering from Traveling Wave
Us(z,1) = Ag eTHBz—wD)
1 /3
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‘S(k, Ky = = |Agl? 6 (BE(K) — E(k) — Fw) 6 ot g

« Periodic potentials conserve total (crystal) momentum..

K=k+8




Scattering Times

Scattering time out of state 4 ...

T@) =Y Sk k) (1 - F(R))

k/

...at low densities...
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...relaxation time is a function of state k

We usually measure some ensemble averaged relaxation time...< 7 >

...which means we have to know f(r,k,t)

Scattering Times

Relaxation time for z-directed momentum...
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Relaxation time for energy...
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Scattering Rate Calculations
Overview

Step 1: Determine Scattering Potential
Ug(r, t) = U*(r)e ™ 4+ US(r)et™t

Step 2: Calculate Matrix Elements
1= [ a0 U2 i) &

Step 3: Calculate State-State Transition Rates

S(k, k') = 2% HPO(E(K) — B(k) — hw) + |Hiy [26(B(K) — E(k) + Fw)

Step 4: Calculate State Lifetime
1
—— =Y S(k, k) (1 - f(K
) % (k. k) (1 = F())
Step 5: Calculate Ensemble Lifetime
<T2>




