

1-D Elastic Continuum			
	Young's Modulus	Tungsten (W)	406
		Chromium (Cr)	289
		Berylium (Be)	200 - 289
$I = H_{mm} \equiv H_{V} H_{mm}$		Nickel (Ni)	214
-11 -		Iron (Fe)	196
		Low Alloy Steels	200 - 207
Young's Modulus For Various Materials (GPa) from Christina Ortiz		Stainless Steels	190 - 200
		Cast Irons	170 - 190
		Copper (Cu)	124
CEDAMICS CLASSES AND SEMICONDUCTODS		Titanium (Ti)	116
Dismond (C)	1000	Brasses and Bronzes	103 - 124
Tungston Carbida (WC)	150, 650	Aluminum (Al)	69
Silicon Carbido (SiC)	450		
Aluminum Oxida (ALO)	430	PINE WOOD (along grain): 10	
Automatic Oxide (Ai_2O_3) Borylium Oxide (BaO)	390		
Magnesium Oxide (MgO)	250	POLYMERS :	
Zirconium Oxide (ZrO)	160 - 241	Polyimides	3 - 5
Mullite (A1 Si O	145	Polyesters	1 - 5
Silicon (Si)	107	Nylon	2 - 4
Silica glass (SiO)	94	Polystryene	3 - 3.4
Soda-lime glass (Na_1O_2, SiO_2)	69	Polyethylene	0.2 -0.7
$500a$ -mile glass $(10a_20 - 510_2)$	07	Rubbers / Biological	
		Tissues	0.01-0.1

Dynamics of 1-D Continuum
1-D Wave Equation Solutions

$$\frac{\partial^2 u_x}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u_x}{\partial t^2}$$
Clamped Bar: Standing Waves
 $u_x(x,t) = A_{\pm} \sin(kx) \exp(i\omega t) \qquad \omega = ck$
 $u_{x,m,\pm}(x,t) = A_{m,\pm} \sin\left(\frac{m\pi x}{L}\right) \exp\left(\pm i\frac{m\pi c}{L}t\right)$
 $k = \frac{m\pi}{L} \qquad \text{for} \qquad m = 1, 2, ...$

$$\frac{\partial^2 u_x}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u_x}{\partial t^2}$$

Periodic Boundary Conditions: Traveling Waves

$$u_x(x,t) = A_{\pm} \exp(ikx) \exp(i\omega t)$$
 $\omega = ck$

$$u_{x,n,\pm}(x,t) = B_{n,\pm} \exp\left(\pm i \frac{2n\pi x}{L} (x \pm ct)\right)$$

$$k = \frac{2n\pi}{L}$$
 for $n = \pm 1, \pm 2, \dots$

3-D Elastic Continuum
Poisson's Ratio

$$E_{xx} = \frac{\partial u_x}{\partial x} \qquad E_{yy} = \frac{\partial u_y}{\partial y} \qquad E_{zz} = \frac{\partial u_z}{\partial z}$$

$$e = E_{xx} + E_{yy} + E_{zz} = \nabla \cdot \mathbf{u}(\mathbf{r})$$
vis Poisson's Ratio – ratio of lateral strain to axial strain

$$E_{yy} = E_{zz} = -\nu E_{xx}$$

$$e = E_{xx}(1 - 2\nu)$$
Poisson's ratio can not exceed 0.5, typically 0.3

3-D Elastic Continuum
Stress and Strain Tensors
$$E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \xrightarrow{E_{xx}} E_{xx} = \frac{\partial u_x}{\partial x}$$

$$E_{xy} = \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right)$$

$$e = \sum_{k=1}^{3} E_{kk}$$
For most general isotropic medium,

$$\mathbf{T} = \lambda \mathbf{eI} + 2\mu \mathbf{E}$$
Initially we had three elastic constants: E_{γ} , G , e
Now reduced to only two: λ , μ

3-D Elastic Continuum Stress and Strain Tensors

$$T_{ij} = \lambda e \, \delta_{ij} + 2\mu E_{ij}$$

If we look at just the diagonal elements

$$\sum_{k=1}^{3} T_{kk} = 3\lambda e + 2\mu e$$
$$e = \frac{1}{3\lambda + 2\mu} \sum_{k=1}^{3} T_{kk}$$

Inversion of stress/strain relation:

$$E_{ij} = \frac{1}{2\mu} \left[T_{ij} - \frac{\lambda}{3\lambda + 2\mu} \left(\sum_{k} T_{kk} \right) \delta_{ij} \right]$$

Dynamics of 3-D Continuum
3-D Wave Equation
Net force in the x-direction:

$$F_x = \sum_{\text{surfaces}} (T_{xx} dA_x + T_{xy} dA_y + T_{xz} dA_z)$$

$$\sum_{\text{surface}} T_{xx} dA_x = \frac{T_{xx}(x + dx) - T_{xx}(x)}{dx} dx dy dz$$

$$\sum_{\text{surface}} T_{xx} dA_x = \frac{\partial T_{xx}}{\partial x} dx dy dz$$

$$F_x = \int \int \int \left[\frac{\partial T_{xx}}{\partial x} + \frac{\partial T_{xy}}{\partial y} + \frac{\partial T_{xz}}{\partial z} \right] dx dy dz$$

Dynamics of 3-D Continuum
Fourier Transform of 3-D Wave Equation
$$\rho \frac{\partial^2 u}{\partial t^2}(\mathbf{r}, t) = (\mu + \lambda) \nabla [(\nabla \cdot \mathbf{u}(\mathbf{r}, t)] + \mu \nabla^2 \mathbf{u}(\mathbf{r}, t)$$
Anticipating plane wave solutions, we Fourier Transform the equation....
$$\mathbf{u}(\mathbf{r}, t) = \int \frac{d\omega}{2\pi} \int \frac{d^3 q}{(2\pi)^3} \mathbf{U}(\mathbf{q}, \omega) e^{\mathbf{i}(\mathbf{q} \cdot \mathbf{r} - \omega t)}$$
$$\rho \omega^2 \mathbf{U}(\mathbf{q}, \omega) = (\lambda + \mu) \mathbf{q} [\mathbf{q} \cdot \mathbf{U}(\mathbf{q}, \omega)] + \mu \mathbf{q}^2 \mathbf{U}(\mathbf{q}, \omega)$$
Three coupled equations for U_{xr} U_{yr} and U_{zr} ...

Dynamics of 3-D Continuum Dynamical Matrix

$$\rho\omega^{2}\mathbf{U}_{\mathbf{i}}(\mathbf{q},\omega) = (\lambda + \mu)\mathbf{q}_{\mathbf{i}}\left[\mathbf{q}\cdot\mathbf{U}(\mathbf{q},\omega)\right] + \mu\mathbf{q}^{2}\mathbf{U}_{\mathbf{i}}(\mathbf{q},\omega)$$

Express the system of equations as a matrix....

$$\rho\omega^{2} \begin{bmatrix} \mathbf{U}_{1} \\ \mathbf{U}_{2} \\ \mathbf{U}_{3} \end{bmatrix} = \begin{bmatrix} \mu q^{2} + (\lambda + \mu)q_{1}^{2} & (\lambda + \mu)q_{1}q_{2} & (\lambda + \mu)q_{1}q_{3} \\ (\lambda + \mu)q_{2}q_{1} & \mu q^{2} + (\lambda + \mu)q_{2}^{2} & (\lambda + \mu)q_{2}q_{3} \\ (\lambda + \mu)q_{3}q_{1} & (\lambda + \mu)q_{3}q_{2} & \mu q^{2} + (\lambda + \mu)q_{3}^{2} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{1} \\ \mathbf{U}_{2} \\ \mathbf{U}_{3} \end{bmatrix}$$

Turns the problem into an eigenvalue problem for the polarizations of the modes (eigenvectors) and wavevectors **q** (eigenvalues)....

$$\rho\omega^2 \mathbf{U} = \mathbf{D} \mathbf{U}$$

Dynamics of 3-D Continuum Summary

1. Dynamical Equation can be solved by inspection

$$\rho\omega^{2}\mathbf{U}(\mathbf{q},\omega) = (\lambda + \mu)\mathbf{q}\left[\mathbf{q}\cdot\mathbf{U}(\mathbf{q},\omega)\right] + \mu\mathbf{q}^{2}\mathbf{U}(\mathbf{q},\omega)$$

2. There are 2 transverse and 1 longitudinal polarizations for each q

3. The dispersion relations are linear $\omega = c_i |\mathbf{q}|$

$$c_T = \sqrt{\frac{\mu}{\rho}}$$
 $c_L = \sqrt{\frac{\lambda + 2\mu}{\rho}}$

4. The longitudinal sound velocity is always greater than the transverse sound velocity

$$\frac{c_L}{c_T} = \left(\frac{\lambda + 2\mu}{\mu}\right)^{1/2} = \left(1 + \frac{1}{1 - 2\nu}\right)^{1/2}$$