6.730 PHYSICS FOR SOLID STATE APPLICATIONS

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

PROBLEM SET 5

Issued: 3-26-04 Due: 4-2-04 at the beginning of class.

Readings:

PSSA Chapter 7

Problem 5.1 1D monatomic chain

Consider a one dimensional monatomic lattice with each atom placed on the x-axis a distance a apart. Take two orbital for each atom, the 2s-state and the $2p_z$ -state. (See the drawing for problem 7.1 in PSSA but make the p-orbitals in the z-direction.

Write down the 2×2 matrix equation, whose eigen values gives you the bands (ignore the overlap matrix.)

- (a) Under what conditions will the bands not overlap. Express your answer in terms of E_s , E_p , $(E_s < E_p)$ and the appropriate V_{ijk} 's, and be careful of the signs. Hint: you should have found a diagonal matrix.
- (b) Find an analytical expression for the density of states for each of the bands.
- (c) Write down the tight binding wave function for the bottom band at $k=0, k=\pi/4$ and $k=\pi/a$.

Problem 5.2 PSSA Problem 7.2

All the necessary .m files can be ftp-ed from the directory /afs/athena.mit.edu/user/o/r/orlando/Public.

Problem 5.3 PSSA Problem 7.3

The programs are also in my Public Directory.

Problem 5.4 Free Electron Bands

Consider a 2D square lattice with lattice constant a.

- (a) Plot (or draw, yes even by hand if you want) the first 6 energy bands along the k_y -direction in the reduced zone scheme.
- (b) Also, determine the energy for each band at the symmetry points of Γ and X, and state the degeneracy for each.