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117.1 Introduction 
The fundamental ideal behind all of a superconductor’s unique properties is that superconductivity is a quantum 
mechanical phenomenon on a macroscopic scale created when the motions of individual electrons are correlated. 
According to the theory developed by John Bardeen, Leon Cooper, and Robert Schrieffer (BCS theory), this 
correlation takes place when two electrons couple to form a Cooper pair. For our purposes, we may therefore 
consider the electrical charge carriers in a superconductor to be Cooper pairs (or more colloquially, superelectrons) 
with a mass m* and charge q* twice those of normal electrons. The average distance between the two electrons in a 
Cooper pair is known as the coherence length, ξ. Both the coherence length and the binding energy of two electrons 
in a Cooper pair, 2∆, depend upon the particular superconducting material. Typically, the coherence length is many 
times larger than the interatomic spacing of a solid, and so we should not think of Cooper pairs as tightly bound 
electron molecules. Instead, there are many other electrons between those of a specific Cooper pair allowing for the 
paired electrons to change partners on a time scale of h/(2∆), where h is Planck’s constant. 

If we prevent the Cooper pairs from forming by ensuring that all the electrons are at an energy greater than the 
binding energy, we can destroy the superconducting phenomenon. This can be accomplished, for example, with 
thermal energy. In fact, according to the BCS theory, the critical temperature, Tc, associated with this energy is 
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where kB is Boltzmann’s constant. For low critical temperature (conventional) superconductors, 2∆ is typically on 
the order of 1 meV, and we see that these materials must be kept below temperatures of about 10 K to exhibit their 
unique behavior. Superconductors with high critical temperature, in contrast, will superconduct up to temperatures 
of about 100 K, which is attractive from a practical view because the materials can be cooled cheaply using liquid 
nitrogen. A second way of increasing the energy of the electrons is electrically driving them. In other words, if the 
critical current density, Jc, of a superconductor is exceeded, the electrons have sufficient kinetic energy to prevent 
the formation of Cooper pairs. The necessary kinetic energy can also be generated through the induced currents 
created by an external magnetic field. As a result, if a superconductor is placed in a magnetic field larger than its 
critical field, Hc, it will return to its normal metallic state. To summarize, superconductors must be maintained under 
the appropriate temperature, electrical current density, and magnetic field conditions to exhibit its special properties. 
An example of this phase space is shown in Fig. 117.1. 

                                                 
1 This chapter is modified from Delin, K. A. and Orlando, T. P. 1993. Superconductivity. In The Electrical Engineering 
Handbook, ed. R. C. Dorf, pp. 1114–1123. CRC Press, Boca Raton, FL. 
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117.2 General Electromagnetic Properties 
The hallmark electromagnetic properties of a superconductor are its ability to carry a static current without any 
resistance and its ability to exclude a static magnetic flux from its interior. It is this second property, known as the 
Meissner effect that distinguishes a superconductor from merely being a perfect conductor (which conserves the 
magnetic flux in its interior). Although superconductivity is a manifestly quantum mechanical phenomenon, a useful 
classical model can be constructed around these two properties. In this section we will outline the rationale for this 
classical model, which is useful in engineering applications such as waveguides and high-field magnets. 

The zeros DC resistance criterion implies that the superelectrons move unimpeded. The electromagnetic energy 
density, w, stored in a superconductor is therefore 
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where the first two terms are the familiar electric and magnetic energy densities, respectively. (Our electromagnetic 
notation is standard: ε is the permittivity, µo is the permeability, E is the electric field, and the magnetic flux density, 
B, is related to the magnetic field, H, via the constitutive law B = µo H.) The last term represents the kinetic energy 
associated with the undamped superelectrons’ motion (n* and vs are the superelectrons’ density and velocity, 
respectively). Because the supercurrent density, Js, is related to the superelectron velocity by  Js = n*q* vs, the kinetic 
energy term can be rewritten 
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where Λ is defined as 
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Assuming that all the charge carriers are superelectrons, there is no power dissipation inside the superconductor, 
and so Poynting’s theorem over a volume V may be written 
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where the left side of the expression is the power flowing into the region. By taking the time derivative of the energy 
density and appealing to Faraday’s and Ampère’s laws to find the time derivatives of the field quantities, we find 
that the only way for Poynting’s theorem to be satisfied is if 
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This relation, known as the first London equation (after the London brothers, Heinz and Fritz), is thus necessary if 
the superelectrons have no resistance to their motion. 

Equation (117.6) also reveals that the superelectrons’ inertia creates a lag between their motion and that of the 
electric field. As a result, a superconductor can support a time-varying voltage drop across itself. The impedance 
associated with the supercurrent, therefore, is an inductor, and it will be useful to think of Λ as an inductance created 
by the correlated motion of the superelectrons. 

If the first London equation is substituted into Faraday’s law, ∇ × E = − (∂ B/∂ t), and integrated with respect to 
time, the second London equation results: 

 BJ −=Λ×∇ )( S  (117.7) 
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where the constant of integration has been defined to be zero. This choice is made so that the second London 
equation is consistent with the Meissner effect, as we now demonstrate. Taking the curl of the quasi-static form of 
Ampère’s law, ∇ ×  H =  Js, results in the expression ∇2 B = − µo∇  × Js, where a vector identity, ∇ × ∇ × C = ∇ 
(∇ ⋅ C ) − ∇2C; the constitutive relation, B = µo H; and Gauss’s law, ∇ ⋅ B =  0, have  been used. By now appealing 
to the second London equation, we obtain the vector Helmholtz equation 
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where the penetration depth is defined as 
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From Eq. (117.8) we find that a flux density applied parallel to the surface of a semi-infinite superconductor will 
decay away exponentially from the surface on a spatial length scale of order λ. In other words, a bulk 
superconductor will exclude an applied flux as predicted by the Meissner effect. 

The London equations reveal that there is a characteristic length λ  over which electromagnetic fields can change 
inside a superconductor. This penetration depth is different from the more familiar skin depth of electromagnetic 
theory, the latter being a frequency-dependent quantity. Indeed, the penetration depth at zero temperature is a 
distinct material property of a particular superconductor. 

Notice that λ  is sensitive to the number of correlated electrons (the superelectrons) in the material. As previously 
discussed, this number is a function of temperature, and so only at T = 0 do all the electrons that usually conduct 
ohmically participate in the Cooper pairing. For intermediate temperatures, 0 < T < Tc, there are actually two sets of 
interpenetrating electron fluids: the uncorrelated electrons providing ohmic conduction and the correlated ones 
creating supercurrents. This two-fluid model is a useful way to build temperature effects into the London relations. 

Under the two-fluid model, the electrical current density, J, is carried by both the uncorrelated  (normal) 
electrons and the superelectrons: J = Jn + Js ,  where Jn is the normal current density. The two channels are modeled 
in a circuit, as shown in Fig. 117.2, by a parallel combination of a resistor (representing the ohmic channel) and an 
inductor (representing the superconducting channel). To a good approximation, the respective temperature 
dependences of the conductor and inductor are 
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where σo  is the DC conductance of the normal channel. (Strictly speaking, the normal channel should also contain 
an inductance representing the inertia of the normal electrons, but typically such an inductor contributes negligibly 
to the overall electrical response.) Since the temperature-dependent penetration depth is defined as λ(T) = 

oT µ/)(Λ , the effective conductance of a superconductor in the sinusoidal steady state is 
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where the explicit temperature dependence notation has been suppressed. 
Most of the important physics associated with the classical model is embedded in Eq. (117.12). As is clear from 

the lumped element model, the relative importance of the normal and superconducting channels is a function not 
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only of temperature but also of frequency. The familiar L/R  time constant, here equal to oσ~Λ , delineates the 
frequency regimes where most of the total current is carried by Jn (if ω 1 ~ >>Λ oσ  ) or Js (if ωΛ 1 ~ <<oσ ). This same 

result can also be obtained by comparing the skin depth associated with the normal channel, )~
ooσωµ/(2δ = , to 

the penetration depth to see which channel provides more field screening. In addition, it is straightforward to use Eq. 
(117.12) to rederive Poynting’s theorem for systems that involve superconducting materials: 
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Using this expression, it is possible to apply the usual electromagnetic analysis to find the inductance (Lo), 
capacitance (Co), and resistance (Ro) per unit length along a parallel plate transmission line. The results of such 
analysis for typical cases are summarized in Table 117.1. 

117.3 Superconducting Electronics 
The macroscopic quantum nature of superconductivity can be usefully exploited to create a new type of electronic 
device. Because all the superelectrons exhibit correlated motion, the usual wave-particle duality normally associated 
with a single quantum particle can now be applied to the entire ensemble of superelectrons. Thus, there is a 
spatiotemporal phase associated with the ensemble that characterizes the supercurrent flowing in the material. 

Naturally, if the overall electron correlation is broken, this phase is lost and the material is no longer a 
superconductor. There is a broad class of structures, however, known as weak links, where the correlation is merely 
perturbed locally in space rather than outright destroyed. Colloquially, we say that the phase “slips” across the weak 
link to acknowledge the perturbation. 

The unusual properties of this phase slippage were first investigated by Brian Josephson and constitute the central 
principles behind superconducting electronics. Josephson found that the phase slippage could be defined as the 
difference between the macroscopic phases on either side of the weak link. This phase difference, denoted as φ, 
determined the supercurrent, is, through and voltage, v, across the weak link according to the Josephson equations, 

 φsincs Ii =  (117.14) 
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where Ic is the critical (maximum) current of the junction and  Φo is  the quantum unit of flux. (The flux quantum 
has a precise definition in terms of Planck’s constant, h, and the electron charge, e: Φo  h/(2e) ≈ 2.068 × 10≡ −15 
Wb). As in the previous section, the correlated motion of the electrons, here represented by the superelectron phase, 
manifests itself through an inductance. This is straightforwardly demonstrated by taking the time derivative of Eq. 
(117.14) and combining this expression with Eq. (117.15). Although the resulting inductance is nonlinear (it 
depends on cos φ),its relative scale is determined by 
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a useful quantity for making engineering estimates. 
A common weak link, known as the Josephson tunnel junction, is made by separating two superconducting films 

with a very thin (typically 20 Å) insulating layer. Such a structure is conveniently analyzed using the resistively and 
capacitively shunted junction (RCSJ) model shown in Fig. 117.3. Under the RCSJ model an ideal lumped junction 
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[described by Eq. (117.14) and (117.15)] and a resistor Rj represent how the weak link structure influences the 
respective phases of the super and normal electrons, and a capacitor Cj represents the physical capacitance of the 
sandwich structure. If the ideal lumped junction portion of the circuit is treated as an inductor-like element, many 
Josephson tunnel junction properties can be calculated with the familiar circuit time constants associated with the 
model. For example, the quality factor Q of the RCSJ circuit can be expressed as  
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where β  is known as the Stewart-McCumber parameter. Clearly, if 1>>β , the ideal lumped junction element is 
underdamped in that the capacitor readily charges up, dominates the overall response of the circuit, and therefore 
creates a hysteretic i-v curve as shown in Fig. 117.4(a). In the case when the bias current is raised from zero, no 
time-averaged voltage is created until the critical current is exceeded. At this point the junction switches to the 
voltage 2∆/e with a time constant jjCL . Once the junction has latched into the voltage state, however, the bias 
current must be lowered to zero before it can again be steered through the superconducting path. Conversely, 

1<<β  implies that the Lj /Rj time constant dominates the circuit response, so that the capacitor does not charge up 
and the i-v curve is not hysteretic [Fig. 117.4(b)]. 

Just as the correlated motion of the superelectrons creates the frequency-independent Meissner effect in a bulk 
superconductor through Faraday’s law, so too the macroscopic quantum nature of superconductivity allows the 
possibility of a device whose output voltage is a function of a static magnetic field. If two weak links are connected 
in parallel, the lumped version of Faraday’s law gives the voltage across the second weak link as v2 = v1 + (dΦ/dt), 
where Φ is the total flux threading the loop between the links. Substituting Eq. (117.15) and integrating with respect 
to time yields 

 oΦΦ=− /) 2(12 πφφ  (117.18) 

showing that the spatial change in the phase of the macroscopic wavefunction is proportional to the local magnetic 
flux. The structure described is known as a superconducting quantum interference device (SQUID) and can be used 
as a highly sensitive magnetometer by biasing it with current and measuring the resulting voltage as a function of 
magnetic flux.  Such SQUID structures have also been proposed for quantum bits in quantum computing.  From this 
discussion, it is apparent that a duality exists in how fields interact with the macroscopic phase: electric fields are 
coupled to its rate of change in time and magnetic fields are coupled to its rate of change in space. 

117.4 Types of Superconductors 

The macroscopic quantum nature of superconductivity also affects the general electromagnetic properties previously 
discussed. This is most clearly illustrated by the interplay of the characteristic lengths ξ, representing the scale of 
quantum correlations, and λ, representing the scale of electromagnetic screening. Consider the scenario where a 
magnetic field, H, is applied parallel to the surface of a semi-infinite superconductor. The correlations of the 
electrons in the superconductor must lower the overall energy of the system or else the material would not be 
superconducting in the first place. Because the critical magnetic field Hc destroys all the correlations, it is 
convenient to define the energy density gained by the system in the superconducting state as 2

2
1 ) coHµ( . The electrons 

in a Cooper pair are separated on a length scale of  ξ, however, and so the correlations cannot be fully achieved until 
a distance roughly ξ   from the boundary of the superconductor. There is thus an energy per unit area, ξµ 2

2
1 )( coH , 

that is lost because of the presence of the boundary. Now consider the effects of the applied magnetic field on this 
system. It costs the superconductor energy to maintain the Meissner effect, B = 0, in its bulk; in fact, the energy 
density required is 2

2
1 )( Hoµ . However, since the field can penetrate the superconductor a distance roughly λ, the 

system need not expend an some energy per unit area of λµ 2
2
1 )( Ho  to screen over this volume. To summarize, more 
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than a distance ξ from the boundary, the energy of the material is lowered  (because it is superconducting), and more 
than a distance λ  from the boundary the energy of the material is raised (to shield the applied field). 

Now, if λ  <  ξ, the region of superconducting material greater than λ  from the boundary but less than ξ  will be 
higher in energy than that in the bulk of the material. Thus, the surface energy of the boundary is positive and so 
costs the total system some energy. This class of superconductors is known as type I. Most elemental 
superconductors, such as aluminum, tin, and lead, are type I. In addition to having λ  < ξ, type I superconductors are 
generally characterized by low critical temperatures (~ 5 K) and critical fields (~ 0.05 T). Typical type I 
superconductors and their properties are listed in Table 117.2. 

Conversely, if λ  < ξ, the surface energy associated with the boundary is negative and lowers the total system 
energy. It is therefore thermodynamically favorable for a normal–superconducting interface to form inside these 
type II materials. Consequently, this class of superconductors does not exhibit the simple Meissner effect as do type 
I materials. Instead, there are now two critical fields: for applied fields below the lower critical field, Hc1, a type II 
superconductor is in the Meissner state, and for applied fields greater than the upper critical field, Hc2, 
superconductivity is destroyed. The three critical fields are related to each other by Hc 21 cc HH≈  

In the range Hc1  < H < Hc2, a type II superconductor is said to be in the vortex state because now the applied field 
can enter the bulk superconductor. Because flux exists in the material, however, the superconductivity is destroyed 
locally, creating normal regions. Recall that for type II materials the boundary between the normal and 
superconducting regions lowers the overall energy of the system. Therefore, the flux in the superconductor creates 
as many normal-superconducting interfaces as possible without violating quantum criteria. The net result is that flux 
enters a type II superconductor in quantized bundles of magnitude Φo known as vortices or fluxons (the former name 
derives from the fact that current flows around each quantized bundle in the same manner as a fluid vortex circulates 
around a drain). The central portion of a vortex, known as the core, is a normal region with an approximate radius of 
ξ. If a defect-free superconductor is placed in a magnetic field, the individual vortices, whose cores essentially 
follow the local average field lines, form an ordered triangular array, or flux lattice. As the applied field is raised 
beyond Hc1 (where the first vortex enters the superconductor), the distance between adjacent vortex cores decreases 
to maintain the appropriate flux density in the material. Finally, the upper critical field is reached when the normal 
cores overlap and the material is no longer superconducting. Indeed, a precise calculation of Hc2 using the 
phenomenological theory developed by Vitaly Ginzburg and Lev Landau yields 
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which verifies out simple picture. The values of typical type II material parameters are listed in Tables 117.3 and 117.4. 
Type II superconductors are of great technical importance because typical Hc2 values are at least an order of 

magnitude greater than the typical Hc values of type I materials. It is therefore possible to use type II materials to 
make high-field magnet wire. Unfortunately, when current is applied to the wire, there is a Lorentz-like force on the 
vortices, causing them to move. Because the moving vortices carry flux, their motion creates a static voltage drop 
along the superconducting wire by Faraday’s law. As a result, the wire no longer has a zero DC resistance, even 
though the material is still superconducting. To fix this problem, type II superconductors are usually fabricated with 
intentional defects, such as impurities or grain boundaries, in their crystalline structure to pin the vortices and 
prevent vortex motion. The pinning as created because the defect locally weakens the superconductivity in the 
material, and it is thus energetically favorable for the normal core of the vortex to overlap the nonsuperconducting 
region in the material. Critical current densities usually quoted for practical type II materials, therefore, really 
represent the depinning critical current density where the Lorentz-like force can overcome the pinning force. (The 
depinning critical current density should not be confused with the depairing critical current density, which represents 
the current when the Cooper pairs have enough kinetic energy to overcome their correlation. The depinning critical 
current density is typically an order of magnitude less than the depairing critical current density, the latter of which 
represents the theoretical maximum for Jc.) 

By careful manufacturing, it is possible to make superconducting wire with tremendous amounts of current-
carrying capacity. For example, standard copper wire used in homes will carry about 107 A/m2, whereas a practical 
type II superconductor like niobium-titanium can carry current densities of 1010 A/m2 or higher even in fields of 
several teslas. This property, more than a zero DC resistance, is what makes superconducting wire so desirable. 
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Defining Terms 

Superconductivity:    A state of matter whereby the correlation of conduction electrons allows a static current to 
pass without resistance and a static magnetic flux to be excluded from the bulk of the material. 
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Further Information 
Every two years an Applied Superconductivity Conference is held devoted to practical technological issues. The 
proceedings of these conferences have been published every other year from 1977 to 1991 in the IEEE Transactions 
on Magnetics. 

In 1991 the IEEE Transactions on Applied Superconductivity began publication. This quarterly journal focuses 
on both the science and the technology of superconductors and their applications, including materials issues, analog 
and digital circuits, and power systems. The proceedings of the Applied Superconductivity Conference now appear 
in this journal. 

Figure Captions 

Figure 117.1 The phase space for the superconducting alloy niobium-titanium. The material is superconducting 
inside the volume of phase space indicated. [Source: Orlando, T. P. and Delin, K. A. 1991. Foundations of Applied 
Superconductivity. p. 10. Addison-Wesley, Reading, MA. With permission. (As adapted from Wilson, 1983.)] 
 
Figure 117.2 A lumped element model of a superconductor. 
 
Figure 117.3 A real Josephson tunnel junction can be modeled using ideal lumped circuit elements. 
 
Figure 117.4 The i-v curves for a Josephson junction: (a) β 1, (b) β>> << 1. 
 
 
 
 
 
 
 
 
 
 
 

 7



Table 117.1 Lumped Circuit Element Parameters Per Unit Length for Typical 
Transverse Electromagnetic Parallel Plate Waveguides* 
Transmission Line Geometry L0 C0 R0 
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*The subscript n refers to parameters associated with a normal (ohmic) plate. Using these expressions, line 
input impedance, attenuation, and wave velocity can be calculated. 

Source: Orlando, T. P. and Delin, K. A. Foundations of Applied Superconductivity, p. 171. Addison-
Wesley, Reading, MA. With permission. 
 
Table 117.2 Material Parameters for Type I Superconductors* 
Material Tc(K) λ o (nm) ξ o (nm) ∆ o  (meV) µ o Hco (mT) 
Al 1.18 50 1600 0.18 10.5 
In 3.41 65 360 0.54 23.0 
Sn 3.72 50 230 0.59 30.5 
Pb 7.20 40 90 1.35 80.0 
Nb 9.25 85 40 1.50 198.0 

*The penetration depth λ o is given at zero temperature, as are the coherence length ξ o, the 
thermodynamic critical field Hco, and the energy gap ∆o.  

Source: Donnelly, R. J. 1981. Cryogenics. In Physics Vade Mecum, ed. H. L. Anderson. 
American Institute of Physics, New York. With permission. 
 
 
Table 117.3 Material Parameters for Conventional Type II Superconductors* 
Material Tc(K) λ GL (0)(nm) ξ GL (0)(nm) ∆ o (meV) µ o Hc2,o (T) 
Pb-ln 7.0 150 30 1.2 0.2 
Pb-Bi 8.3 200 20 1.7 0.5 
Nb-Ti 9.5 300 4 1.5 13 
Nb-N 16 200 5 2.4 15 
PbMo6S8 15 200 2 2.4 60 
V3Ga 15 90 2−3 2.3 23 
V3Si 16 60 3 2.3 20 
Nb3Sn 18 65 3 3.4 23 
Nb3Ge 23 90 3 3.7 38 

*The values are only representative because the parameters for alloys and compounds depend on 
how the material is fabricated. The penetration depth λGL (0) is given as the coefficient of the 
Ginzburg-Landau temperature dependence as λGL (T) = λGL(0)(1 – T/Tc)-1/2; likewise for the coherence 
length where ξGL(T) = ξGL (0)(1 – T/Tc)−1/2. The upper critical field Hc2,o is given at zero temperature as 
well as the energy gap  ∆o. 

Source: Donnelly, R. J. 1981. Cryogenics. IN Physics Vade Mecum, ed. H. L. Anderson. 
American Institute of Physics, New York. With permission. 
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Table 117.4 Type II (Non-Conventional and High-Temperature Superconductors) 

Material Tc(K)  
BA1-xKxBi O3 30 
Rb3C60       33 
MgB2 39 
YBa2Cu3O7  95 
Bi2Sr2CaCu2O8       85 
Bi2Sr2Ca2Cu3O10   110 
TlBa2Ca2Cu3O10   125 
HgBa2Ca2 Cu3O8 131 
 
 
See the NIST WebHTS Database at http://www.ceramics.nist.gov/srd/hts/htsquery.htm for more information. 
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[Text for attached micrograph of superconducting quantum computer logic gate:] 
 
Superconducting circuits have been proposed as one way of constructing logic gates for a quantum computer.  The 
superconducting quantum bit (qubit) shown consists of a loop of superconductor interrupted by three submicron 
Josephson junctions. The two bits of information are stored persistent currents that flow clockwise or 
counterclockwise within the loop. Unlike classical information bits, the qubit can be in a quantum superposition of 
these two macroscopic quantum states, much like the fabled Schrödinger’s cat.  In the device pictured, the read-out 
of the qubit current is done with a sensitive superconducting SQUID magnetometer. One of the advantages of 
superconducting qubits is that high-speed superconducting digital electronics and microwave oscillators can be 
coupled to the qubit using standard fabrication technology.  The device pictured was designed and studied by Prof. 
Terry Orlando’s group at the Massachusetts Institute of Technology (MIT) and was fabricated in niobium at MIT 
Lincoln Laboratory in collaboration with Dr. Karl Berggren. 
 


