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The “Magic” of Quantum Mechanics 
States 0 and 1 are stored and processed AT THE SAME TIME

Parallel 
Computation

Exponential 
Speedup  to 
get Answers
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Qubits: Quantum Bits

• Qubits are two level systems
a) Spin states can be true two level systems, or
b) Any two quantum energy levels can also be used

• We will call the lower energy state |0i and the higher energy 
state |1i

• In general, the wave function can be in a superposition of 
these two states

|ψi=α|0i + β|1i
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Computing with Quantum States
• Consider two qubits, each in superposition states

|ψia=|0ia + |1ia |ψib=|0ib + |1ib

• We can rewrite these states as a single sate of the 2 spin 
system 

|ψi= |ψia⊗ |ψib = (|0ia + |1ia)⊗(|0ib + |1ib)
= |0ia|0ib+|0ia|1ib+|1ia|0ib+|1ia|1ib
= |00i+|01i+|10i+|11i

• All four “numbers” (0, 1, 2, & 3 in binary notation) exist 
simultaneously

• Algorithm designed so that states interfere to give one 
“number” with high probability
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Two Level Systems
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Rabi Oscillations
Drive the system with  V(t)=V0 eiωt at the resonant 
frequency 

If                             then 

Oscillations between states can be controlled by V0 and the 
time of AC drive, with period 
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The Promise of a Quantum Computer

A Quantum Computer …

• Offers exponential improvement in speed and memory
over existing computers

• Capable of reversible computation

• e.g. Can factorize a 250-digit number in seconds while an 
ordinary computer will take 800 000 years!
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Evolution of Computing Technology

Vacuum Tubes
• Slow 
• Power consuming
• Huge in size 

Transistors 
• Improved size 
and efficiency
• Heat dissipation

Integrated Circuits
• Fitting everything 
on a chip

VLSI, ULSI
• Yet smaller sizes

Quantum 
Computer

50s-60s 70s - ?60s-70s1940s-50s
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1. Quantum Computing Roadmap Overview
2. Nuclear Magnetic Resonance Approaches 
3. Ion Trap Approaches 
4. Neutral Atom Approaches 
5. Optical Approaches 
6. Solid State Approaches 
7. Superconducting Approaches 
8. “Unique” Qubit Approaches 
9. The Theory Component of the Quantum Information 

Processing and Quantum Computing Roadmap

http://qist.lanl.gov
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What is a Superconductor?

“A Superconductor has ZERO electrical resistance
BELOW a certain critical temperature.  Once set in 
motion, a persistent electric current will flow in the
superconducting loop FOREVER without              
any power loss.”

Magnetic Levitation

A Superconductor EXCLUDES any 
magnetic fields that come near it. 
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How “Cool” are Superconductors?
Below 77 Kelvin (-200 ºC):

• Some Copper Oxide Ceramics superconduct

Below 4 Kelvin (-270 ºC):

• Some Pure Metals e.g. Lead, Mercury, Niobium superconduct
Keeping at 4KKeeping at 77 K

Keeping at 0 ºC



Massachusetts Institute of Technology

Uses for Superconductors
• Magnetic Levitation allows trains to 

“float” on strong superconducting 
magnets (MAGLEV in Japan, 1997)

• To generate Huge Magnetic field e.g. for 
Magnetic Resonance Imaging (MRI)

• A SQUID (Superconducting Quantum Interference 
Device) is the most sensitive magnetometer. (sensitive to 
100 billion times weaker than the Earth’s magnetic field)

• Quantum Computing

Picture source: http://www.superconductors.org
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Circuits for Qubits

• Need to find dissipationless circuits which have two 
“good” energy levels

• Need to be able to “manipulate” qubits and couple them 
together
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Quantization of Circuits
• Find the energy of the circuit

• Change the energy into the Hamiltonian of the circuit by 
identifying the canonical variables

• Quantize the Hamiltonian

• Usually we can make it look like a familiar quantum 
system
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The Superconducting “Quantum Bit”
• An External Magnet can 

induce a current in a 
superconducting loop 

N

S
• The induced current can 

be in the opposite 
direction if we carefully 
choose a different 
magnetic field this time 

N

S

• To store and process information 
as a computer bit, we assign:

as state | 0 〉 as state | 1 〉
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Josephson Junction
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Quantization of a Josephson Junction
Charging Energy Josephson Energy
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Types of Superconducting Qubits

• Charge-state Qubits  (voltage-controlled)
– Cooper pair boxes

• Flux/Phase-state qubits (flux-current control)
– Persistent Current Qubits
– RF SQUID Qubits
– Phase Qubits (single junction)

• Hybrid Charge-Phase Qubits
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Charge-State Superconducting Qubit

TOP: “Electrical schematic”

BOTTOM: “Evidence of Rabi Oscillations”

Y. Nakamura, Yu A. Pashkin, and J.S. Tsai, Nature 398, 786 (1999).



Charge qubit a Cooper-pair box 3.0~/ CJ EE

φ

SQUID SQUID 
looploop

ProbeProbeBoxBox
GateGate

Tunnel Tunnel 
junctionjunction

SingleSingle
CooperCooper--pair pair 
tunnelingtunneling ReservoirReservoir

Ωk 10~1R

ΩM 30~2R

Coherence up to ~ 5 ns, presently limited 
by background charge noise (dephasing) and 
by readout process (relaxation)

Y.Nakamura et al., Nature 398, 786 (1999).



Quantum Coherence in the Cooper-
Pair Box Measured with an RF-SET

Schoelkopf Group, Yale University

2 e

• Superconducting charge qubit:
the Cooper-pair box (CPB)

• Fast, single-charge readout:
the RF single-electron transistor     

• Quantum coherence of Cooper-pair box qubit
observed by CW microwave spectroscopy

RF-SETCPB

no µ-waves

40 GHz

<q>

Vg

• Transition frequency ~ 40 GHz: Qφ = ω10Tφ ~ 250 &  Q1= ω10T1 > 105

• Ensemble decoherence time from linewidth: Tφ = 1 ns
• Lifetime from time-resolved decay of photon peaks: T1= 1.6 µs

Funding: ARO/ARDA/NSA

Next
steps:

• Operate @ charge-noise insensitive point to reduce decoherence
• Perform time-gated, single-shot measurements
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Our Persistent Current Qubit

• Depending on the direction 
of the current, state |0〉
and state |1〉 will add a 
different magnetic field to the 
external magnet 

• This difference is very small 
but can be distinguished by 
the extremely sensitive 
SQUID sensor
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Quantum Computation with Superconducting Quantum Devices
T.P. Orlando, S. Lloyd, L. Levitov, J.E. Mooij - MIT

M. Tinkham – Harvard; M. Bocko, M. Feldman – U. of Rochester
in collaboration with K. Berggren, MIT Lincoln Laboratory

qubit
&

readout

5 µm

Ic CJ

Ib

Cs
Z0qubit

ϕ2
~ϕ1

~ • Persistent current qubit fabricated in Nb with 
submicron junctions

• Two states seen in measurement (thermal 
activations and energy levels)

1pF 1pF

0.45µm

1.1µm

0.55µm
1.1µm

I- V-

I+ V+

Fabrication
modeling, and 
measurements
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Macroscopic quantum superposition in a Josephson junction loop

Delft University of Technology & DIMES  The Netherlands         MIT Cambridge
Caspar van der Wal, A. Ter Haar, Kees Harmans, Hans Mooij       T. Orlando, L. Levitov, S. Lloyd
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• Relaxation time 5 µsec, 
•Dephasing time 0.1 µsec

TU Delft
Technische Universiteit Delft MIT



Observation of Coherent Superposition of Macroscopic States
Jonathan Friedman, Vijay Patel, Wei Chen, Sergey Tolpygo and James Lukens

|0>

|1>

|1>

|0>

|0> + |1>

|0> - |1>

Energy Levels
for SQUID

Gap at crossing:
coherent 

superposition

Φx →E

The SQUID 
(Superconducting QUantum Interference Device)

•SQUIDs like integer flux quanta, Φ0

RF
0 1

SQUID Potential
µ = 1010µB

×

>
Φ ≈ 00

×

<
Φ ≈ Φ0 1

J. Friedman, et al., Nature, 406, 43 (July, 2000). 
C. Van der Wal, et al., Science, 290, 773 (Oct. 2000)

E = h(f1-f2)
E

Φx ≈ ½ Φ0



Quantum Computing with Superconducting Devices
F.C. Wellstood, C.J. Lobb, J.R. Anderson, and A.J. Dragt, Univ. of Md.

lobb@squid.umd.edu / http://www.physics.umd.edu/sqc/

Objective Approach Status

• Measure energy levels and 
decoherence rates in single Josephson 
junctions and SQUIDs
• Manipulate states of the systems
• Perform 1-qubit operations
• Design and test 2-qubit systems of 
junctions and SQUIDs

• Build Josephson junctions that are well 
isolated from measurement leads to achieve 
low dissipation and long coherence times at 
milliKelvin temperatures.
• Measure macroscopic quantum tunneling, 
energy levels and decoherence rate.
• Use microwaves to pump from |0> to |1>  
• Model SQUID qubits to guide experimental 
program.

• Built resistively isolated Al/AlOx/Al 
junctions and measured switching 
distributions with and without microwave 
excitation
•Assembled SQUID detection scheme for 
measuring junctions and rf SQUIDs
• Measured switching distributions for 
SQUID at mK temperatures, ∆Φ =10-3Φo 

Objective



Recent Results from DURINT Quantum Computing Project
Siyuan Han, Yang Yu et al., University of Kansas

Observation of Rabi oscillations in a Josephson Tunnel Junction
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Quantum Computing with  
Current-Biased Josephson Junctions 

John Martinis, S.W. Nam, J. Aumentado, C. Urbina; NIST Boulder

• Large area junctions - reliably 
fabricated using optical lithography

• Large capacitance allows 
coupling to many other qubits

Key Advantages:

VJJ = 1 mV

Measure |1> with ω12 :
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Quantum Computing with  
Current-Biased Josephson Junctions 

John Martinis, S.W. Nam, J. Aumentado, C. Urbina; NIST Boulder
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France 

M. Devoret (now at Yale)
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Coherence time measured
by Ramsey fringes : 500ns
Qubit transition frequency:
16.5 GHz; coherence quality
factor: 25 000
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Advantages of Superconductors
for Quantum Computing

• Employs lithographic technology
• Scalable to large circuits
• Combined with on-chip, ultra-fast control electronics 

– Microwave Oscillators 
– Single Flux Quantum classical electronics



Circuits Fabricated at Lincoln Laboratory

monolithic

Flip chip process has no hard-wire 
connections, magnetic field is the only 
coupling between circuits 

qubit
&

readout

5 µm

Friedman et al.

5 µm5 µm

qubit

10 µm

readout

10 µm

qubit readout
flip-chip

0.6 µm junctions
qubit

• Persistent-current qubit

• RF SQUID qubit

MIT Lincoln LaboratoryK. Berggren



Quantum Computation with Superconducting Quantum Devices
T.P. Orlando, Ken Segall, D. Crankshaw, D.Nakada, S. Lloyd, L. Levitov,- MIT

M. Tinkham , Nina Markovic, Segio Vanenzula– Harvard;
K. Berggren, Lincoln Laboratory

SQUID on-chip oscillator and qubit

On-chip oscillator couples to qubit: No spectroscopy yet due to high temperature

Without oscillator on With oscillator on

300mK

1/27/03



Feasibility of Superconductive Control 
Electronics Fabrication
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others

Industry-Wide Demonstrations of Josephson 
Junction Circuits (at 4.2 K)

Number of Junctions

MIT Lincoln LaboratoryCompiled by K. Berggren



On-chip Control for an RF-SQUID
M.J. Feldman, M.F. Bocko, Univ. of Rochester

feldman@ece.rochester.edu        www.ece.rochester.edu/~sde/
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Quantum Computation with Superconducting Quantum Devices
T.P. Orlando, Yang Yu, D.Nakada,   B. Singh, J. Lee, D. Berns, 

Ken Segall, D. Crankshaw, B Cord- MIT
1/27/03

Dilution Refrigerator
Insert

Sample Holder

Installed and to begin dc data taking in February and ac data taking in April
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Outline of Class 6.975
1. General Introduction and Overview of Quantized Circuits and Quantum Computing

2. Simple Quantized Circuits

a. Resistanceless circuits

b. Superconducting Josephson circuit elements

c. Energy storage in resistanceless circuits

d. Quantization of LC Oscillator Circuit

e. Quantization of Josephson junctions

3. Superconducting Quantum Circuits and Qubits

a. Charge and phase descriptions

b. Solutions to Schrödinger’s Equation for circuits

c. Single Josephson junction

d. Cooper pair box

e. Quantum RF SQUID

f. Persistent Current Qubits

g. Hybrid circuits
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Outline of Class 6.975
4. Quantum Computing

a. Two state system model

b. Qubits and coupled qubits

c. Manipulations of qubits

d. Fast control circuitry: SFQ electronics

5. Dissipation in Quantum Circuits

a. How to model a resistor

b. Decoherence: relaxation and dephasing

c. Spin-Boson model
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Outline of Class 6.975
6. Quantization of General Circuits

a. General network theory for classical circuits

i. Branch, nodal, and mesh formulations

ii. Inclusion of sources

iii. Lagrangian and Hamiltonian formulations

b. Network theory for quantum circuits

i. General canonical variables: charge, phase, and mesh currents

ii. Quantization without sources

iii. Transformations among canonical variables

c. Quantization with voltage and current sources

7. Assessment and Future Research in Quantum Circuits
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