Lecture 1: General Introduction to Quantum Computing and Superconducting Devices

Terry P. Orlando

6.975 EECS MIT

February 4, 2003

Orlando Group Website: http://rleweb.mit.edu/superconductivity

Some viewgraphs from Janice Lee, Ken Segall, Donald Crankshaw, Daniel Nakada, and Yang Yu.

Outline

1. Introduction to Quantum Computation

- a. The Unparalleled Power of a Quantum Computer
- b. Two State Systems: Qubits
- c. Types of Qubits

2. Background on Superconductors

- a. What is a Superconductor
- b. Uses for Superconductors
- 3. Quantum Circuits

4. Building a Quantum Computer with Superconductors

- a. Types of Superconducting Qubits
- b. Experiments on Superconducting Qubits
 - 1. Charge qubits
 - 2. Phase/Flux qubits
 - 3. Hybrid qubits
- c. Advantages of superconductors as qubits
- 5. Outline of Class

The "Magic" of Quantum Mechanics

States 0 and 1 are stored and processed AT THE SAME TIME

Qubits: Quantum Bits

- Qubits are two level systems
 - a) Spin states can be true two level systems, or
 - b) Any two quantum energy levels can also be used
- \bullet We will call the lower energy state $|0\rangle$ and the higher energy state $|1\rangle$
- In general, the wave function can be in a superposition of these two states

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Computing with Quantum States

- Consider two qubits, each in superposition states $|\psi\rangle_a = |0\rangle_a + |1\rangle_a$ $|\psi\rangle_b = |0\rangle_b + |1\rangle_b$
- We can rewrite these states as a single sate of the 2 spin system

$$\begin{split} \psi \rangle &= |\psi\rangle_{a} \otimes |\psi\rangle_{b} = (|0\rangle_{a} + |1\rangle_{a}) \otimes (|0\rangle_{b} + |1\rangle_{b}) \\ &= |0\rangle_{a}|0\rangle_{b} + |0\rangle_{a}|1\rangle_{b} + |1\rangle_{a}|0\rangle_{b} + |1\rangle_{a}|1\rangle_{b} \\ &= |00\rangle + |01\rangle + |10\rangle + |11\rangle \end{split}$$

- All four "numbers" (0, 1, 2, & 3 in binary notation) exist simultaneously
- Algorithm designed so that states interfere to give one "number" with high probability

Massachusetts Institute of Technology -

Two Level Systems

Eigenenergies
$$E = \sqrt{F^2 + V^2}$$

At $F=0$, let $|\psi(t=0)\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$
 $|\psi(t)\rangle = \frac{1}{2} \begin{pmatrix} 1\\ 1 \end{pmatrix} e^{i\frac{V}{\hbar}t} + \frac{1}{2} \begin{pmatrix} 1\\ -1 \end{pmatrix} e^{-i\frac{V}{\hbar}t}$
 $= \begin{pmatrix} 1\\ 0 \end{pmatrix} \cos \frac{V}{\hbar}t + i \begin{pmatrix} 0\\ 1 \end{pmatrix} \sin \frac{V}{\hbar}t$
System oscillates between $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0\\ 1 \end{pmatrix}$ with period $T = \frac{h}{2V}$

Rabi Oscillations

Drive the system with $V(t)=V_0 e^{i\omega t}$ at the resonant frequency $\omega = E_+ - E_-$

If
$$|\psi(t=0)\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
, then $|\psi(t)\rangle = \cos\frac{V_0 t}{\hbar} \begin{pmatrix} 1\\ 0 \end{pmatrix} + i\sin\frac{V_o t}{\hbar} e^{i\omega t} \begin{pmatrix} 0\\ 1 \end{pmatrix}$

Oscillations between states can be controlled by V_0 and the time of AC drive, with period

$$T = \frac{h}{2V_0}$$

Massachusetts Institute of Technology -

The Promise of a Quantum Computer

A Quantum Computer ...

- Offers exponential improvement in *speed* and *memory* over existing computers
- Capable of *reversible computation*
- e.g. Can factorize a 250-digit number in seconds while an ordinary computer will take 800 000 years!

Evolution of Computing Technology

- 1. Quantum Computing Roadmap Overview
- 2. Nuclear Magnetic Resonance Approaches
- 3. Ion Trap Approaches
- 4. Neutral Atom Approaches
- 5. Optical Approaches
- 6. Solid State Approaches
- 7. Superconducting Approaches
- 8. "Unique" Qubit Approaches
- 9. The Theory Component of the Quantum Information Processing and Quantum Computing Roadmap

http://qist.lanl.gov

Massachusetts Institute of Technology -

Outline

1. Introduction to Quantum Computation

- a. The Unparalleled Power of a Quantum Computer
- b. Two State Systems: Qubits
- c. Types of Qubits

2. Background on Superconductors

- a. What is a Superconductor
- b. Uses for Superconductors
- 3. Quantum Circuits

4. Building a Quantum Computer with Superconductors

- a. Types of Superconducting Qubits
- b. Experiments on Superconducting Qubits
 - 1. Charge qubits
 - 2. Phase/Flux qubits
 - 3. Hybrid qubits
- c. Advantages of superconductors as qubits
- 5. Outline of Class

What is a Superconductor?

"A *Superconductor* has *ZERO* electrical resistance *BELOW* a certain critical temperature. Once set in motion, a persistent electric current will flow in the superconducting loop *FOREVER* without any power loss."

Magnetic Levitation

A *Superconductor EXCLUDES* any magnetic fields that come near it.

How "Cool" are Superconductors?

Below **77 Kelvin** (-200 °C):

• Some Copper Oxide Ceramics superconduct

Below **4 Kelvin** (-270 °C):

• Some Pure Metals e.g. Lead, Mercury, Niobium superconduct

Keeping at 0 °C

Keeping at 4K

Uses for Superconductors

• Magnetic Levitation allows trains to "float" on strong superconducting magnets (MAGLEV in Japan, 1997)

- To generate Huge Magnetic field e.g. for Magnetic Resonance Imaging (MRI)
- A SQUID (Superconducting Quantum Interference Device) is the most sensitive magnetometer. (sensitive to 100 billion times weaker than the Earth's magnetic field)
 - Quantum Computing

Outline

1. Introduction to Quantum Computation

- a. The Unparalleled Power of a Quantum Computer
- b. Two State Systems: Qubits
- c. Types of Qubits

2. Background on Superconductors

- a. What is a Superconductor
- b. Uses for Superconductors

3. Quantum Circuits

4. Building a Quantum Computer with Superconductors

- a. Types of Superconducting Qubits
- b. Experiments on Superconducting Qubits
 - 1. Charge qubits
 - 2. Phase/Flux qubits
 - 3. Hybrid qubits
- c. Types of Superconducting Qubits
- 5. Outline of Class

Circuits for Qubits

- Need to find dissipationless circuits which have two "good" energy levels
- Need to be able to "manipulate" qubits and couple them together

Quantization of Circuits

- Find the energy of the circuit
- Change the energy into the Hamiltonian of the circuit by identifying the canonical variables
- Quantize the Hamiltonian
- Usually we can make it look like a familiar quantum system

Harmonic Oscillator

$$H = \frac{1}{2}mv^{2} + \frac{1}{2}m\omega^{2}x^{2}$$
$$v = \frac{dx}{dt}$$
$$H = \frac{1}{2}m\left(\frac{dx}{dt}\right)^{2} + \frac{1}{2}m\omega^{2}x^{2}$$
$$p = m\frac{dx}{dt}$$

Quantum Mechanically

$$\Delta x \Delta p \ge \hbar / 2$$
$$E = \hbar \omega (n + \frac{1}{2})$$

Outline

1. Introduction to Quantum Computation

- a. The Unparalleled Power of a Quantum Computer
- b. Two State Systems: Qubits
- c. Types of Qubits

2. Background on Superconductors

- a. What is a Superconductor
- b. Uses for Superconductors
- 3. Quantum Circuits

4. Building a Quantum Computer with Superconductors

- a. Types of Superconducting Qubits
- b. Experiments on Superconducting Qubits
 - 1. Charge qubits
 - 2. Phase/Flux qubits
 - 3. Hybrid qubits
- c. Advantages of superconductors as qubits
- 5. Outline of Class

The Superconducting "Quantum Bit"

- An External Magnet can induce a current in a superconducting loop
- The induced current can be in the opposite direction if we carefully choose a *different* magnetic field this time
- To store and process information as a computer bit, we assign:

as state $|1\rangle$

Massachusetts Institute of Technology

Josephson Junction

Superconductor
Nb
$$\Psi_{1} = \sqrt{n_{1}}e^{i\theta_{1}}$$

$$\Psi_{2} = \sqrt{n_{2}}e^{i\theta_{2}}$$
Insulator
 $\sim 10\text{\AA},\text{AlO}_{2}$

- Josephson relations:
- Behaves as a nonlinear inductor:

$$I = I_c \sin \varphi$$

$$V = \frac{\Phi_0}{2\pi} \frac{d\varphi}{dt}$$

$$\varphi = \theta_2 - \theta_1$$

$$-\frac{2\pi}{\Phi_0} \int_2^1 \vec{A}(r,t) \cdot d\vec{l}$$

$$V = L_J \frac{dI}{dt},$$
where
$$L_J = \frac{\Phi_0}{2\pi} I_c \cos \varphi$$

$$\Phi_0 = \text{flux quantum}$$

$$483.6 \text{ GHz / mV}$$
Massachusetts Institute of Technology

Quantization of a Josephson Junction

Circuit behaves just like a physical pendulum.

For Al-Al₂O₃-Al junction with an area of $100 \times 100 \text{ nm}^2$ C = 1fF and I_c=300 nA, which gives E_C=10µeV and E_J=600µeV

To see quantization, Temperature < 300 mK Massachusetts Institute of Technology

Types of Superconducting Qubits

- Charge-state Qubits (voltage-controlled)
 Cooper pair boxes
- Flux/Phase-state qubits (flux-current control)
 - Persistent Current Qubits
 - RF SQUID Qubits
 - Phase Qubits (single junction)
- Hybrid Charge-Phase Qubits

Charge-State Superconducting Qubit

Y. Nakamura, Yu A. Pashkin, and J.S. Tsai, *Nature* **398**, 786 (1999).

Charge qubit

a Cooper-pair box $E_J / E_C \sim 0.3$

Coherence up to \sim 5 ns, presently limited by background charge noise (dephasing) and by readout process (relaxation)

Y.Nakamura et al., Nature 398, 786 (1999).

<d><

Quantum Coherence in the Cooper-Pair Box Measured with an RF-SET Schoelkopf Group, Yale University **RF-SET CPB** R , CJ Cm

00000

no μ-waves

40 GHz

2 e

- Superconducting charge qubit: the Cooper-pair box (CPB)
- Fast, single-charge readout: the RF single-electron transistor

• Quantum coherence of Cooper-pair box qubit observed by CW microwave spectroscopy

- Transition frequency ~ 40 GHz: $Q_{\phi} = \omega_{10}T_{\phi} \sim 250 \& Q_{1} = \omega_{10}T_{1} > 10^{5}$
- Ensemble decoherence time from linewidth: $T_{\phi} = 1$ ns
- Lifetime from time-resolved decay of photon peaks: $T_1 = 1.6 \ \mu s$

N<u>ext</u> • Operate @ charge-noise insensitive point to reduce decoherence

<u>steps:</u> • Perform time-gated, single-shot measurements

Funding: ARO/ARDA/NSA

Zext

Our Persistent Current Qubit

• Depending on the direction of the current, state $|0\rangle$ and state $|1\rangle$ will *add* a different magnetic field to the external magnet

• This difference is very small but can be distinguished by the extremely sensitive SQUID sensor

Quantum Computation with Superconducting Quantum Devices

T.P. Orlando, S. Lloyd, L. Levitov, J.E. Mooij - MIT M. Tinkham – Harvard; M. Bocko, M. Feldman – U. of Rochester in collaboration with K. Berggren, MIT Lincoln Laboratory

- - Persistent current qubit fabricated in Nb with submicron junctions
 - Two states seen in measurement (thermal activations and energy levels)
 Massachusetts Institute of Technology

Macroscopic quantum superposition in a Josephson junction loop

Technische Universiteit Delft

Observation of Coherent Superposition of Macroscopic States

Jonathan Friedman, Vijay Patel, Wei Chen, Sergey Tolpygo and James Lukens

Quantum Computing with Superconducting Devices

F.C. Wellstood, C.J. Lobb, J.R. Anderson, and A.J. Dragt, Univ. of Md. lobb@squid.umd.edu / http://www.physics.umd.edu/sqc/

Objective

- Measure energy levels and decoherence rates in single Josephson junctions and SQUIDs
- Manipulate states of the systems
- Perform 1-qubit operations
- Design and test 2-qubit systems of junctions and SQUIDs

Objective Approach

- Build Josephson junctions that are well isolated from measurement leads to achieve low dissipation and long coherence times at milliKelvin temperatures.
- Measure macroscopic quantum tunneling, energy levels and decoherence rate.
- Use microwaves to pump from |0> to |1>
- Model SQUID qubits to guide experimental program.

Status

- Built resistively isolated Al/AlOx/Al junctions and measured switching distributions with and without microwave excitation
- •Assembled SQUID detection scheme for measuring junctions and rf SQUIDs
- Measured switching distributions for SQUID at mK temperatures, $\Delta \Phi = 10^{-3} \Phi o$

Recent Results from DURINT Quantum Computing Project

Siyuan Han, Yang Yu et al., University of Kansas

Observation of Rabi oscillations in a Josephson Tunnel Junction

Quantum Computing with Current-Biased Josephson Junctions

John Martinis, S.W. Nam, J. Aumentado, C. Urbina; NIST Boulder

NGST National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce

Quantum Computing with Current-Biased Josephson Junctions

John Martinis, S.W. Nam, J. Aumentado, C. Urbina; NIST Boulder

CHARGE-FLUX QUBIT

Quantronics Group CEA-Saclay France

M. Devoret (now at Yale) D. Esteve, C. Urbina D. Vion, H. Pothier P. Joyez, A. Cottet

Coherence time measured by Ramsey fringes : 500ns Qubit transition frequency: 16.5 GHz; coherence quality factor: 25 000

RAMSEY FRINGES

Outline

1. Introduction to Quantum Computation

- a. The Unparalleled Power of a Quantum Computer
- b. Two State Systems: Qubits
- c. Types of Qubits

2. Background on Superconductors

- a. What is a Superconductor
- b. Uses for Superconductors
- 3. Quantum Circuits

4. Building a Quantum Computer with Superconductors

- a. Types of Superconducting Qubits
- b. Experiments on Superconducting Qubits
 - 1. Charge qubits
 - 2. Phase/Flux qubits
 - 3. Hybrid qubits
- c. Advantages of superconductors as qubits
- 5. Outline of Class

Advantages of Superconductors for Quantum Computing

- Employs lithographic technology
- Scalable to large circuits
- Combined with on-chip, ultra-fast control electronics
 - Microwave Oscillators
 - Single Flux Quantum classical electronics

Circuits Fabricated at Lincoln Laboratory

Persistent-current qubit

• RF SQUID qubit

Friedman et al.

Flip chip process has no hard-wire connections, magnetic field is the only coupling between circuits

On-chip oscillator couples to qubit: No spectroscopy yet due to high temperature

Magnet Current [mA]

Magnet Current [mA]

Feasibility of Superconductive Control Electronics Fabrication

Compiled by K. Berggren

MIT Lincoln Laboratory

On-chip Control for an RF-SQUID *M.J. Feldman, M.F. Bocko, Univ. of Rochester* feldman@ece.rochester.edu www.ece.rochester.edu/~sde/

Quantum Computation with Superconducting Quantum Devices

T.P. Orlando, Yang Yu, D.Nakada, B. Singh, J. Lee, D. Berns,

Ken Segall, D. Crankshaw, B Cord- MIT

Dilution Refrigerator

Insert

Installed and to begin dc data taking in February and ac data taking in April

1/27/03

Outline

1. Introduction to Quantum Computation

- a. The Unparalleled Power of a Quantum Computer
- b. Two State Systems: Qubits
- c. Types of Qubits

2. Background on Superconductors

- a. What is a Superconductor
- b. Uses for Superconductors
- 3. Quantum Circuits

4. Building a Quantum Computer with Superconductors

- a. Types of Superconducting Qubits
- b. Experiments on Superconducting Qubits
 - 1. Charge qubits
 - 2. Phase/Flux qubits
 - 3. Hybrid qubits
- c. Advantages of superconductors as qubits
- 5. Outline of Class

Outline of Class 6.975

- 1. General Introduction and Overview of Quantized Circuits and Quantum Computing
- 2. Simple Quantized Circuits
 - a. Resistanceless circuits
 - b. Superconducting Josephson circuit elements
 - c. Energy storage in resistanceless circuits
 - d. Quantization of LC Oscillator Circuit
 - e. Quantization of Josephson junctions

3. Superconducting Quantum Circuits and Qubits

- a. Charge and phase descriptions
- b. Solutions to Schrödinger's Equation for circuits
- c. Single Josephson junction
- d. Cooper pair box
- e. Quantum RF SQUID
- f. Persistent Current Qubits
- g. Hybrid circuits

Outline of Class 6.975

4. Quantum Computing

- a. Two state system model
- b. Qubits and coupled qubits
- c. Manipulations of qubits
- d. Fast control circuitry: SFQ electronics

5. Dissipation in Quantum Circuits

- a. How to model a resistor
- b. Decoherence: relaxation and dephasing
- c. Spin-Boson model

Outline of Class 6.975

6. Quantization of General Circuits

- a. General network theory for classical circuits
 - i. Branch, nodal, and mesh formulations
 - ii. Inclusion of sources
 - iii. Lagrangian and Hamiltonian formulations
- b. Network theory for quantum circuits
 - i. General canonical variables: charge, phase, and mesh currents
 - ii. Quantization without sources
 - iii. Transformations among canonical variables
- c. Quantization with voltage and current sources
- 7. Assessment and Future Research in Quantum Circuits

