1. Course Information

Staff

Faculty

Butler Lampson	NE43-535	547-9580	blampson@microsoft.com
Martin Rinard	NE43-620A	x8-6922	rinard@lcs.mit.edu
Teaching Assistant			
Kyle Jamieson	NE43-525	x3-3058	jamieson@mit.edu
Course Secretary			
Rachel Allen	NE43-620	x3-9620	rachela@cag.lcs.mit.edu

Office Hours

Messrs. Lampson and Rinard will arrange individual appointments. Kyle Jamieson will hold scheduled office hours in the 5th floor lounge of NE43 at a time to be announced. In addition to holding regularly scheduled office hours, the TA will also be available by appointment.

Lectures and handouts

Lectures are held on Tuesdays and Thursdays from 1:00 to 2:30PM in room 4-149. Messrs. Lampson and Rinard will split the lectures. The tentative schedule is at the end of this handout.

The source material for this course is an extensive set of handouts. There are about 400 pages of topic handouts that take the place of a textbook; you will need to study them to do well in the course. Since we don't want to simply repeat the written handouts in class, we will hand out the material for each lecture one week in advance. *We expect you to read the day's handouts before the class and come prepared to ask questions, discuss the material, or follow extensions of it or different ways of approaching the topic.*

Seven research papers supplement the topic handouts. In addition there are 5 problem sets, and the project described below. Solutions for each problem set will be available shortly after the due date.

There is a course Web page, at web.mit.edu/6.826/www. Last year's handouts can be found from this page. Current handouts will be placed on the Web as they are produced, as Postscript (.ps), Acrobat (.pdf), browser (.html), and Word (.rtf) files.

Current handouts will generally be available in lecture. If you miss any in lecture, you can obtain them afterwards from the course secretary. She keeps them in a file cabinet outside her office.

Problem sets

There is a problem set approximately once a week for the first half of the course. Problem sets are handed out on Wednesdays and are due in class the following Wednesday. They normally cover the material discussed in class during the week they are handed out. Delayed submission of the solutions will be penalized, and no solutions will be accepted after Thursday 5:00PM.

Students in the class will be asked to help grade the problem sets. Each week a team of students will work with the TA to grade the week's problems. This takes about 3-4 hours. Each student will probably only have to do it once during the term.

We will try to return the graded problem sets, with solutions, within a week after their due date.

Policy on collaboration

We encourage discussion of the issues in the lectures, readings, and problem sets. However, if you collaborate on problem sets, you must tell us who your collaborators are. And in any case, you must write up all solutions on your own.

Project

During the last half of the course there is a project in which students will work in groups of three or so to apply the methods of the course to their own research projects. Each group will pick a real system, preferably one that some member of the group is actually working on but possibly one from a published paper or from someone else's research, and write:

A specification for it.

A high-level implementation that captures the novel or tricky aspects of the actual implementation.

The abstraction function and key invariants for the correctness of the implementation. This is not optional; if you can't write these things down, you don't understand what you are doing.

Depending on the difficulty of the specification and implementation, the group may also write a correctness proof for the implementation.

Projects may range in style from fairly formal, like handout 18 on consensus, in which the 'real system' is a simple one, to fairly informal (at least by the standards of this course), like the section on copying file systems in handout 7. These two handouts, along with the ones on naming, sequential transactions, concurrent transactions, and caching, are examples of the appropriate size and possible styles of a project.

The result of the project should be a write-up, in the style of one of these handouts. During the last two weeks of the course, each group will give a 25-minute presentation of its results. We have allocated four class periods for these presentations, which means that there will be twelve or fewer groups.

1

The projects will have five milestones. The purpose of these milestones is not to assign grades, but to make it possible for the instructors to keep track of how the projects are going and give everyone the best possible chance of a successful project

- 1. We will form the groups around March 1, to give most of the people that will drop the course a chance to do so.
- 2. Each group will write up a 2-3 page project proposal, present it to one of the instructors around spring break, and get feedback about how appropriate the project is and suggestions on how to carry it out. Any project that seems to be seriously off the rails will have a second proposal meeting a week later.
- 3. Each group will submit a 5-10 page interim report in the middle of the project period.
- 4. Each group will give a presentation to the class.
- 5. Each group will submit a final report, which is due on Friday, May 12, the last day allowed by MIT regulations. Of course you are free to submit it early.

Half the groups will be 'early' ones that give their presentations on May 2 or May 4; the other half will be 'late' ones that give their presentations on May 9 or May 11. The due dates of proposals and interim reports will be spread out over two weeks in the same way.

Grades

There are no exams. Grades are based 30% on the problem sets, 50% on the project, and 20% on class participation and quality and promptness of grading.

Course mailing list

A mailing list for course announcements—6.826-students@mit.edu—has been set up to include all students and the TA. If you do not receive any email from this mailing list within the first week, check with the TA. Another mailing list, 6.826-staff@mit.edu, sends email to the entire 6.826 staff.

Course	Schedule
Course	Deneuure

Date	No	By	НО	Торіс	PS out	PS due
Tues., Feb. 1	1	L	1 2 3 4 5	Overview. The Spec language. State machine semantics. Examples of specifications and implementations. Course information Background Introduction to Spec Spec reference manual Examples of specs and implementations	1	
Thurs., Feb. 3	2	L	6	Specification and implementation for sequential programs. Correctness notions and proofs. Proof methods: abstraction functions and invariants. Abstraction functions		
Tues., Feb. 8	3	L	7	File systems 1: Disks, simple sequential file system, caching, logs for crash recovery. Disks and file systems	2	1
Thurs., Feb. 10	4	L		File systems 2: Copying file system.		
Tues., Feb. 15	5	R	8	Proof methods : History and prophecy variables; abstraction relations. History variables	3	2
Thurs., Feb. 17	6	R	9	Semantics and proofs: Formal sequential semantics of Spec. Atomic semantics of Spec		
Tues., Feb. 22				No class, Monday schedule from Presidents' Day		
Thurs., Feb. 24	7	L	10 11	Performance: How to get it, how to analyze it.PerformancePaper: Michael Schroeder and Michael Burrows,Performance of Firefly RPC, ACM Transactions onComputer Systems 8, 1, February 1990, pp 1-17.	4	3
Tues., Feb. 29	8	L	12 13	Naming: Specs, variations, and examples of hierarchical naming.NamingPaper: David Gifford et al, Semantic file systems, <i>Proc.13th ACM Symposium on Operating System</i> <i>Principles</i> , October 1991, pp 16-25.	Fo gro	orm oups

3

Date	No	By	HO	Торіс	PS out	PS due	Date	No	By	HO	Торіс	PS PS out due
Thurs Mar 2	9	R		Concurrency 1 . Practical concurrency easy and hard	5	4		_		23	Networks: Links and switches	
mais., war. 2	,	IX	14	Easy concurrency using locks and condition variables. Problems with it: scheduling, deadlock. Practical concurrency	5	·	Tues., Apr. 11	18	L		Networks 2 : Links cont'd: Ethernet. Token Rings. Switches. Implementing switches. Routing. Learning topologies and establishing routes.	
			15 16	Concurrent disks Paper: Andrew Birrell, An Introduction to Programming with Threads, Digital Systems Research Center Report 35, January 1989			Thurs., Apr. 13	19	L		Networks 3 : Network objects and remote procedure call (RPC).	Early interim reports
Tues., Mar. 7	10	R	17	Concurrency 2: Concurrency in Spec: threads and non-atomic semantics. Big atomic actions. Safety and liveness. Examples of concurrency.						24 25	Network objects Paper: Andrew Birrell et al., Network objects, <i>Proc.14th ACM Symposium on Operating Systems</i> <i>Principles</i> , Asheville, NC, December 1993.	-
			1/	Formal concurrency			Tues., Apr. 18				Patriot's Day, no class.	
Thurs., Mar. 9	11	R		Concurrency 3: More examples. Proving correctness of concurrent programs.		5	Thurs., Apr. 20	20	J		Networks 4 : Reliable messages. 3-way handshake and clock implementations. TCP as a form of reliable	Late interim
Tues., Mar. 14	12	R		Concurrency 4: Examples of correctness proofs						26	messages. Papar: Putler Lampson, Paliable messages and	reports
Thurs., Mar. 16	13	L	10	Distributed consensus in the presence of faults. Paxos algorithm for asynchronous consensus.	Ear propo	rly osals				20	connection establishment. In <i>Distributed Systems</i> , ed. S. Mullender, Addison-Wesley, 1993, pp 251-281.	
			18	Consensus			Tues., Apr. 25	21	L		Replication and availability: Implementing	
Mar. 18-26				Spring Vacation			-				replicated state machines using consensus.	
Tues., Mar. 28	14	R	19	Sequential transactions with caching.						28	Replication Replication	
Thurs Mar 30	15	R		Concurrent transactions · Specs for serializability	La	ite				29	Paper: Jim Gray and Andreas Reuter, Fault tolerance, in Transaction Processing: Concepts and Techniques	
Indi 5., What. 50	15	K		Ways to implement the specs.	propo	osals					Morgan Kaufmann, 1993, pp 93-156.	
			20	Concurrent transactions			Thurs., Apr. 27	22	R		Caching: Maintaining coherent memory. Broadcast	
Tues., Apr. 4	16	R		Distributed transactions : Commit as a consensus problem. Two-phase commit. Optimizations.	La inter repo	Late iterim eports					(snoopy) and directory protocols. Examples: multiprocessors, distributed shared memory, distributed file systems.	
			27	Distributed transactions						30	Concurrent caching	
Thurs., Apr. 6	17	R		Introduction to distributed systems : Characteristics			Tues., May 2	23			Early project presentations	
				of distributed systems. Physical, data link, and network layers. Design principles.			Thurs., May 4	24			Early project presentations	
				Networks 1: Links. Point-to-point and broadcast			Tues., May 9	25			Late project presentations	
			21	Distributed systems			Thurs., May 11	26			Late project presentations	
	22		22	Paper: Michael Schroeder et al, Autonet: A high- speed, self-configuring local area network. <i>IEEE</i>			Fri., May 12	May 12			Final reports due	
				<i>Journal on Selected Areas in Communications</i> 9 , 8, October 1991, pp 1318-1335.			May 15-19				Finals week	

5