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19.  Sequential Transactions with Caching 
 

There are many situations in which we want to make a ‘big’ action atomic, either with respect to 
concurrent execution of other actions (everyone else sees that the big action has either not started 
or run to completion) or with respect to failures (after a crash the big action either has not started 
or has run to completion). 

Some examples: 
Debit/credit: x := x + ∆; y := y – ∆ 
Reserve airline seat 
Rename file 
Allocate file and update free space information 
Schedule meeting: room and six participants 
Prepare report on one million accounts 

Why is atomicity important? There are two main reasons: 

1. Stability: A large persistent state is hard to fix it up if it gets corrupted. Manual fixup is 
impractical, and ad-hoc automatic fixup is too hard to code correctly. Atomicity is a valuable 
automatic fixup mechanism. 

2. Consistency: We want the state to change one big action at a time, so that between changes it 
is always ‘consistent’, that is, it always satisfies the system’s invariant and always reflects 
exactly the effects of all the big actions that have been applied so far. This has several 
advantages: 

• When the server storing the state crashes, it’s easy for the client to recover. 

• When the client crashes, the state remains consistent. 

• Concurrent clients always see a state that satisfies the invariant of the system. It’s much 
easier to code the client correctly if you can count on this invariant. 

The simplest way to use the atomicity of transactions is to start each transaction with no volatile 
state. Then there is no need for an invariant that relates the volatile state to the stable state 
between atomic actions. Since these invariants are the trickiest part of easy concurrency, getting 
rid of them is a major simplification.  

Overview 

In this handout we treat failures without concurrency; handout 20 treats concurrency without 
failures. A grand unification is possible and is left as an exercise, since the two constructions are 
more or less orthogonal. 
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We can classify failures into four levels. We show how to recover from the first three. 

Transaction abort: not really a failure, in the sense that no work is lost except by request. 

Crash: the volatile state is lost, but the only effect is to abort all uncommitted 
transactions. 

Media failure: the stable state is lost, but it is recovered from the permanent log, so that 
the effect is the same as a crash. 

Catastrophe or disaster: the stable state and the permanent log are both lost, leaving the 
system in an undefined state. 

We begin by repeating the SequentialTr spec and the LogRecovery code from handout 7 on 
file systems, with some refinements. Then we give much more efficient code that allows for 
caching data; this is usually necessary for decent performance. Unfortunately, it complicates 
matters considerably. We give a rather abstract version of the caching code, and then sketch the 
concrete specialization that is in common use. Finally we discuss some pragmatic issues. 

The spec 

An A is an encoded action, that is, a transition from one state to another that also returns a result 
value. Note that an A is a function, that is, a deterministic transition. 

MODULE NaiveSequentialTr [ 
V,   % Value of an action 
S WITH { s0: ()->S } % State, s0 initially 
] EXPORT Do, Commit, Crash = 

TYPE A = S->(V, S) % Action  

VAR ss := S.s0() % stable state 
vs := S.s0() % volatile state 

APROC Do(a) -> V = << VAR v | (v, vs) := a(vs); RET v >>  
APROC Commit() = << ss := vs >> 
PROC Crash () = << vs := ss >> % ‘aborts’ the transaction 

END NaiveSequentialTr 

Here is a simple example, with variables X and Y as the stable state, and x and y the volatile state.
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Action X Y x y 
 5 5 5 5 
Do(x := x – 1);     
 5 5 4 5 
Do(y := y + 1)     
 5 5 4 6 
Commit     
 4 6 4 6 
Crash before commit     
 5 5 5 5 

If we want to take account of the possibility that the server (specified by this module) may fail 
separately from the client, then the client needs a way to detect this. Otherwise a server failure 
and restart after the decrement of x in the example could result in X = 5, Y = 6, because the client 
will continue with the decrement of y and the commit. Alternatively, if the client fails at that 
point, restarts, and repeats its actions, the result would be X = 3, Y = 6. To avoid these problems, 
we introduce a new Begin action to mark the start of a transaction as Commit marks the end. We 
use another state variable ph (for phase) that keeps track of whether there is an uncommitted 
transaction in progress. A transaction in progress is aborted whenever there is a crash, or if 
another Begin action is invoked before it commits. We also introduce an Abort action so the 
client can choose to abandon a transaction explicitly. 

This interface is slightly redundant, since Abort = Begin; Commit, but it’s the standard way to 
do things. Note that Crash = Abort also; this is not redundant, since the client can’t call Crash. 

MODULE SequentialTr [ 
V,   % Value of an action 
S WITH { s0: ()->S } % State; s0 initially 
] EXPORT Begin, Do, Commit, Abort, Crash = 

TYPE A = S->(V, S) % Action  

VAR ss := S.s0() % Stable State 
vs := S.s0() % Volatile State 
ph : ENUM[idle, run] := idle % PHase (volatile) 

EXCEPTION crashed 

APROC Begin() = << Abort(); ph := run >> % aborts any current trans. 

APROC Do(a) -> V RAISES {crashed} = <<  
IF ph = run => VAR v | (v, vs) := a(vs); RET v [*] RAISE crashed FI >>  

APROC Commit() RAISES {crashed} =  
<< IF ph = run => ss := vs; ph := idle [*] RAISE crashed FI >> 

PROC Abort () = << vs := ss; ph := idle >> % same as Crash 
PROC Crash () = << vs := ss; ph := idle >> % ‘aborts’ the transaction 

END SequentialTr 
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Here is the previous example extended with the ph variable. 

Action X Y x y ph 

 5 5 5 5 idle 

Begin();      

 5 5 5 5 run 

Do(x := x - 1);      

 5 5 4 5 run 

Do(y := y + 1)      

 5 5 4 6 run 

Commit      

 4 6 4 6 idle 

Crash before commit      

 5 5 5 5 idle 

Uncached code 

Next we give the simple uncached code based on logging; it is basically the same as the 
LogRecovery module of handout 7 on file systems, with the addition of ph. Note that ss is not 
the same as the ss of SequentialTr; the abstraction function gives the relation between them. 

This code may seem impractical, since it makes no provision for caching the volatile state vs. 
We will study how to do this caching in general later in the handout. Here we point out that a 
scheme very similar to this one is used in Lightweight Recoverable Virtual Memory1, with copy-
on-write used to keep track of the differences between vs and ss. 

MODULE LogRecovery [ % implements SequentialTr 
V,   % Value of an action 
S0 WITH { s0: ()->S0 } % State 
] EXPORT Begin, Do, Commit, Abort, Crash = 

TYPE A = S->(V, S) % Action  
U = S -> S % atomic Update 
L = SEQ U % Log 
S  = S0 WITH { "+":=DoLog } % State with useful ops 
Ph = ENUM[idle, run] % PHase 

VAR ss := S.s0() % stable state 
vs := S.s0() % volatile state 
sl := L{} % stable log 
vl := L{} % volatile log 
ph := idle % phase (volatile) 
rec := false % recovering 

EXCEPTION crashed 

                                                 
1 M. Satyanarayanan et al., Lightweight recoverable virtual memory. ACM Transactions on Computer Systems 12, 1 
(Feb. 1994), pp 33-57. 
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% ABSTRACTION to SequentialTr 
SequentialTr.ss = ss + sl 
SequentialTr.vs = (~ rec => vs [*] rec => ss + sl) 
SequentialTr.ph = ph 

% INVARIANT 
~ rec ==> vs = ss + sl + vl 
(EXISTS l | l <= vl /\ ss + sl = ss + l) 
% Applying sl to ss is equivalent to applying a prefix l of vl. That is, the  
% state after a crash will be the volatile state minus some updates at the end. 

APROC Begin() = << vs := ss; sl := {}; vl := {}; ph := run >> 

APROC Do(a) -> V RAISES {crashed} = <<  
IF  ph = run => VAR v, l | (v, vs + l) = a(vs) =>  

vs := vs + l; vl := vl + l; RET v 
[*] RAISE crashed  
FI >> 

PROC Commit()RAISES {crashed} =  
IF ph = run => << sl := vl; ph := idle >> ; Redo() >> [*] RAISE crashed FI 

PROC Abort() = << vs := ss; sl := {}; vl := {}; ph := idle >> 

PROC Crash() =  
<< vs := ss; vl :={}; ph := idle; rec := true >>; % what the crash does 
vl := sl; Redo(); vs := ss; rec := false % the recovery action 

PROC Redo() =   % replay vl, then clear sl 
% sl = vl before this is called 

DO vl # {} => << ss := ss + {vl.head} >>; << vl := vl.tail >> OD 
<< sl := {} >> 

FUNC DoLog(s, l) -> S =  % s + l = DoLog(s, l) 
IF  l = {} => RET s  % apply U’s in l to s 
[*] RET DoLog((l.head)(s), l.tail)) 
FI 

END LogRecovery  

Here is what this code does for the previous example, assuming for simplicity that A = U. You 
may wish to apply the abstraction function to the state at each point and check that each action 
simulates an action of the spec. 
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Action X Y x y sl vl ph 

 5 5 5 5 {} {} idle 

Begin(); 
Do(x := x - 1); 
Do(y := y + 1) 

       

 5 5 4 6 {} {x:=4; y:=6} run 

Commit        

 5 5 4 6 {x:=4; y:=6} {x:=4; y:=6} idle 

Redo: apply x:=4        

 4 5 4 6 {x:=4; y:=6} {y:=6} idle 

Redo: apply y:=6        

 4 6 4 6 {x:=4; y:=6} {} idle 

Redo: erase sl        

 4 6 4 6 {} {} idle 

Crash before commit        

 5 5 5 5 {} {} idle 

Log idempotence 

For this redo crash recovery to work, we need idempotence of logs: s + l + l = s + l, since 
a crash can happen during recovery. From this we get (remember that "<=" on sequences is 
“prefix”) 

l1 <= l2 ==> s + l1 + l2 = s + l2, 

and more generally 
(ALL l1, l2 | IsHiccups(l1, l2) ==> s + l1 + l2 = s + l2) 

where 

FUNC IsHiccups(k: Log, l) -> Bool =  
% k is a sequence of attempts to complete l 

RET    k = {} 
    \/ (EXISTS k', l'|    k = k' + l' /\ l' # {} /\ l' <= l 
                       /\ IsHiccups(k', l) ) 

because we can keep absorbing the last hiccup l' into the final complete l. See handout 7 for 
more detail. 

We can get log idempotence if the U's commute and are idempotent, or if they are all writes like 
the assignments to x and y in the example, or writes of disk blocks. Often, however, we want to 
make more general updates atomic, for instance, inserting an item into a page of a B-tree. We 
can make general U's log idempotent by attaching a UID to each one and recording it in S: 

TYPE S = [ss, tags: SET UID] 
U = [uu: SS->SS, tag: UID] WITH { meaning:=Meaning } 

FUNC Meaning(u, s)->S = 
IF  u.tag IN s.tags => RET s 
[*] RET S{ ss := (u.uu)(s.ss), tags := s.tags + {u.tag} } 
FI 
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If all the u's in l have different tags, we get log idempotence. The way to think about this is that 
the modified updates have the meaning: if the tag isn’t already in the state, do the original 
update, otherwise don’t do it. 

Practical code for this makes each U operate on a single variable (that is, map one value to 
another without looking at any other part of S; in the usual application, a variable is one disk 
block). It assigns a version number VN to each U and keeps the VN of the most recently applied U 
with each block. Then you can tell whether a U has already been applied just by comparing its VN 
with the VN of the block. For example, if the version number of the update is 11: 

 Original Idempotent 

The disk block x: Int x:  Int 

vn: Int 

The update x := x + 1 IF vn = 10 => x := x + 1; 

                 vn := 11 

[*] SKIP FI 

Note: vn = 10 implies that exactly updates 1, 2, ..., 10 have been applied. 

Writing the log atomically 

This code is still not practical, because it requires writing the entire log atomically in Commit, 
and the log might be bigger than the one disk block that the disk hardware writes atomically. 
There are various ways to get around this, but the standard one is to add a stable sph variable that 
can be idle or commit. We view LogRecovery as a spec for our new code, in which the sl of 
the spec is empty unless sph = commit. The module below includes only the parts that are 
different from LogRecovery. It changes sl only one update at a time. 

MODULE IncrementalLog  % implements LogRecovery 

... 

VAR ... 
sph : ENUM[idle, commit]      := idle % stable phase 
vph : ENUM[idle, run, commit] := idle % volatile phase 

% ABSTRACTION to LogRecovery 
LogRecovery.sl = (sph = commit => sl  [*] {}) 
LogRecovery.ph = (sph # commit => vph [*] idle) 
the identity elsewhere 

APROC Begin() = << vs := ss; sl := {}; vl := {}; vph := run >> 

APROC Do(a) -> V RAISES {crashed} = <<  
IF  vph = run …  % the rest as before 
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PROC Commit() =  
IF vph = run => 

% copy vl to sl a bit at a time 
VAR l := vl | DO l # {} => << sl := sl {l.head}; l := l.tail >> OD;  
<< sph := commit; vph := commit >>;  
Redo() 

[*] RAISE crashed 
FI  

PROC Crash() =  
<< vs := ss; vl := {}; vph := idle >>; % what the crash does 
vph := sph; vl := (vph = idle => {} [*] sl);  % the recovery  
Redo(); vs := ss % action 

PROC Redo() =   % replay vl, then clear sl 
DO vl # {} => << ss := ss + {vl.head} >>; << vl := vl.tail >> OD 
DO sl # {} => << sl := sl.tail >> OD; 
<< sph := idle; vph := idle >> 

END IncrementalLog  

And here is the example again. 

Action X Y x y sl vl sph vph 

Begin; Do; Do         

 5 5 4 6 {} {x:=4; y:=6} idle run 

Commit         

 5 5 4 6 {x:=4; y:=6} {x:=4; y:=6} commit commit 

Redo: x:=4;  y:=6         

 4 6 4 6 {x:=4; y:=6} {} commit commit 

Redo: cleanup         

 4 6 4 6 {} {} idle idle 

We have described sph as a separate stable variable, but in practice each transaction is labeled 
with a unique transaction identifier, and sph = commit for a given transaction is represented by 
the presence of a commit record in the log that includes the transaction’s identifier. Conversely, 
sph = idle is represented by the absence of a commit record or by the presence of a later 
“transaction end” record in the log. The advantages of this representation are that writing sph can 
be batched with all the other log writes, and that no storage management is needed for the sph 
variables of different transactions. 

Note that you still have to be careful about the order of disk writes: all the log data must really be 
on the disk before sph is set to commit. This complication, called “write-ahead log” or ‘WAL’ in 
the database literature, is below the level of abstraction of this discussion. 
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Caching 

We would like to have code for SequentialTr that can run fast. To this end it should: 

1. Allow the volatile state vs to be cached so that the frequently used parts of it are fast to 
access, but not require a complete copy of the parts that are the same in the stable state. 

2. Decouple Commit from actually applying the updates that have been written to the stable log, 
because this slows down Commit, and it also does a lot of random disk writes that do not 
make good use of the disk. By waiting to write out changes until the main memory space is 
needed, we have a chance of accumulating many changes to a single disk block and paying 
only one disk write to record them all. 

3. Decouple crash recovery from actually applying updates. This is important once we have 
decoupled Commit from applying updates, since a lot of updates can now pile up and 
recovery can take a long time. Also, we get it more or less for free. 

4. Allow uncommitted updates to be written to the stable log, and even applied to the stable 
state. This saves a lot of bookkeeping to keep track of which parts of the cache go with 
uncommitted transactions, and it allows a transaction to make more updates that will fit in the 
cache. 

Our new caching code has a stable state; as in LogRecovery, the committed state is the stable 
state plus the updates in the stable log. Unlike LogRecovery, the stable state may not include all 
the committed updates. Commit need only write the updates to the stable log, since this gets them 
into the abstract stable state SequentialTR.ss; a Background thread updates the concrete stable 
state LogAndCache.ss. We keep the volatile state up to date so that Do can return its result 
quickly. The price paid in performance for this scheme is that we have to reconstruct the volatile 
state from the stable state and the log after a crash, rather than reading it directly from the 
committed stable state, which no longer exists. So there’s an incentive to limit the amount by 
which the background process runs behind. 

Normally the volatile state consists of entries in the cache. Although the abstract code below 
does not make this explicit, the cache usually contains the most recent values of variables, that is, 
the values they have when all the updates have been done. Thus the stable state is updated simply 
by writing out variables from the cache. If the write operations write complete disk blocks, as is 
most often the case, it’s convenient for the cached variables to be disk blocks also. If the 
variables are smaller, you have to read a disk block before writing it; this is called an ‘installation 
read’. The advantage of smaller variables, of course, is that they take up less space in the cache. 

 The cache together with the stable state represents the volatile state. The cache is usually called 
a ‘buffer pool’ in the database literature, where these techniques originated. 

We want to ‘install’ parts of the cache to the stable state independently of what is committed (for 
a processor cache, install is usually called ‘flush’, and for a file system cache it is usually called 
‘sync’). Otherwise we might run out of cache space if there are transactions that don’t commit 
for a long time. Even if all transactions are short, a popular part of the cache might always be 
touched by a transaction that hasn’t yet committed, so we couldn’t install it and therefore 
couldn’t truncate the log. Thus the stable state may run ahead of the committed state as well as 
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behind. This means that the stable log must include “undo” operations that can be used to reverse 
the uncommitted updates in case the transaction aborts instead of committing. In order to keep 
undoing simple when the abort is caused by a crash, we arrange things so that before applying an 
undo, we use the stable log to completely do the action that is being undone. Hence an undo is 
always applied to an “action consistent” state, and we don’t have to worry about the interaction 
between an undo and the smaller atomic updates that together comprise the action. To implement 
this rule we need to add an action’s updates and its undo to the log atomically. 

To be sure that we can abort a transaction after installing some parts of the cache to the stable 
state, we have to follow the “write ahead log” or WAL rule, which says that before a cache entry 
can be installed, all the actions that affected that entry (and therefore all their undo’s) must be in 
the stable log. 

Although we don't want to be forced to keep the stable state up with the log, we do want to 
discard old log entries after they have been applied to the stable state, whether or not the 
transaction has committed, so the log space can be reused. Of course, log entries for undo’s can't 
be discarded until Commit. 

Finally, we want to be able to keep discarded log entries forever in a “permanent log” so that we 
can recover the stable state in case it is corrupted by a media failure. The permanent log is 
usually kept on magnetic tape. 

Here is a summary of our requirements: 

Cache that can be installed independently of locking or commits. 

Crash recovery (or ‘redo’) log that can be truncated. 

Separate undo log to simplify truncating the crash recovery log. 

Complete permanent log for media recovery. 

The LogAndCache code below is a full description of a practical transaction system, except that it 
doesn’t deal with concurrency (see handout 20) or with distributing the transaction among 
multiple SequentialTr modules (see handout 27). The strategy is to: 

• Factor the state into independent components, for example, disk blocks. 

• Factor the actions into log updates called U’s and cache updates called W’s. Each cache update 
not only is atomic but works on only one state component. Cache updates for different 
components commute. Log updates do not need either of these properties. 

• Define an undo action for each action (not update). The action followed by its undo leaves 
the state unchanged. 

• Keep separate log and undo log, both stable and volatile. 

Log : sequence of updates 

UndoLog : sequence of undo actions (not updates) 
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The essential step is installing a cache update into the stable state. This is an internal action, so it 
must not change the abstract stable or volatile state. As we shall see, there are many ways to 
satisfy this requirement. 

Usually W (a cached update) is just s(ba) := d (that is, set the contents of a block of the stable 
state to a new value), as described in BufferPool below. This is classical caching, and it may be 
helpful to bear it in mind as concrete code for these ideas, which is worked out in detail in 
BufferPool. Note that this kind of caching has another important property: we can get the 
current value of s(ba) from the cache. This property isn’t essential for correctness, but it 
certainly makes it easier for Do to be fast. 

MODULE LogAndCache [ % implements SequentialTr 
V,   % Value of an action 
S0 WITH {s0:=()->S0} % abstract State; s0 initially 
] = EXPORT Begin, Do, Commit, Abort, Crash = 

TYPE A = S->(V, S) % Action  
S = S0 WITH {"+":=DoLog,  % State with ops 
                        "++":= DoCache, 
           "-" := UndoLog} 
Tag = ENUM[commit] 
U = S -> S % Update 
Un = (A + ENUM[cancel]) % Undo 
W = S -> S % update in cache 
L = SEQ (SEQ U + Tag) % Log 
UL = SEQ Un % Undo Log 
C = SET W WITH {"++":=CombineCache} % Cache 
Ph = ENUM[idle, run] % Phase 

VAR ss := S.s0() % Stable State 
 
sl := L{} % Stable Log 
sul := UL{} % Stable Undo Log 
 
c : C := {} % Cache (dirty part) 
vl := L{} % Volatile Log 
vul := UL{} % Volatile Undo Log 
 
vph := idle % Volatile PHase 
 
pl := L{} % Permanent Log 
 
undoing := false 

Note that there are two logs, called L and UL (for undo log). A L records groups of updates; the 
difference between an update U and an action A is that an action can be an arbitrary state change, 
while an update must interact properly with a cache update W. To achieve this, a single action 
must in general be broken down into several updates. All the updates from one action form one 
group in the log. The reason for grouping the updates of an action is that, as we have seen, we 
have to add all the updates of an action, together with its undo, to the stable log atomically. 
There are various ways to represent a group, for example as a sequence of updates delimited by a 
special mark token, but we omit these details. 
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A cache update W must be applied atomically to the stable state. For example, if the stable state is 
just raw disk pages, the only atomic operation is to write a single disk page, so an update must be 
small enough that it changes only one page. 

UL records undo actions Un that reverse the effect of actions. These are actions, not updates; a Un 
is converted into a suitable sequence of U’s when it is applied. When we apply an undo, we treat 
it like any other action, except that it doesn’t need an undo itself; this is because we only apply 
undo’s to abort a transaction, and we never change our minds about aborting a transaction. We 
do need to ensure either that each undo is applied only once, or that undo actions have log 
idempotence. Since we don’t require log idempotence for ordinary actions (only for updates), it’s 
unpleasant to require it for undo’s. Instead, we arrange to remove each undo action from the 
undo log atomically with applying it. We code this idea with a special Un called cancel that 
means: don’t apply the next earlier Un in the log that hasn’t already been canceled, and we write 
a cancel to vul/sul atomically as we write the updates of the undo action to vl/sl. For 
example, after un1, un2, and un3 have been processed, ul might be 

  un0 un1 un2 cancel un3 cancel cancel  
= un0 un1 un2 cancel cancel  
= un0 un1 cancel  
= un0  

Of course many other encodings are possible, but this one is simple and fits in well with the rest 
of the code. 

Examples of A's: 

f(x) := y % simple overwriting 
f(x) := f(x) + y % not idempotent 
f := f{x -> } % delete 
split B-tree node 

This code has commit records in the log rather than a separate sph variable as in 
IncrementalLog. This makes it easier to have multiple transactions in the stable log. For brevity 
we omit the machinations with sph.  

We have the following requirements on U, Un, and W: 

• We can add atomically to sl both all the U’s of an action and the action’s undo (ForceOne 
does this). 

• Applying a W to ss is atomic (Install does this). 

• Applying a W to ss doesn’t change the abstract ss or vs. This is a key property that replaces 
the log idempotence of LogRecovery. 

• A W looks only at a small part of s when it is applied, normally only one component 
(DoCache does this). 

• Mapping U to W is cheap and requires looking only at a small part (normally only one 
component) of ss, at least most of the time (Apply does this). 

• All W’s in the cache commute. This ensures that we can install cache entries in any order 
(CombineCache assures this). 
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% ABSTRACTION to SequentialTr 
SequentialTr.ss = ss + sl – sul 
SequentialTr.vs = (~undoing => ss + sl + vl [*] ss + (sl+vl)–(sul+vul) 
SequentialTr.ph = (~undoing => vph idle) 
 

% INVARIANTS 
[1] (ALL l1, l2 |     sl = l1 + {commit} + l2 % Stable undos cancel  
                   /\ ~ commit IN l2 % uncommitted tail of sl 
                  ==> ss + l1 = ss + sl - sul ) 
 
[2] ss + sl = ss + sl + vl - vul % Volatile undos cancel vl 
 
[3] ~ undoing ==> ss + sl + vl = ss ++ c % Cache is correct; this is vs 
 
[4] (ALL w1 :IN c, w2 :IN c | % All W's in c commute 
       w1 * w2 = w2 * w1). 
 
[5] S.s0() + pl + sl - sul = ss % Permanent log is complete 
 
[6] (ALL w :IN c |  ss ++ {w} + sl  % Any cache entry can be installed 
                  = ss        + sl 

% External interface 

PROC Begin() = << IF vph = run => Abort() [*] SKIP FI; vph := run >> 

PROC Do(a) -> V RAISES {crashed} = <<  
IF vph = run => VAR v | v := Apply(a, AToUn(a, ss ++ c)); RET v 
[*] RAISE crashed 
FI >> 

PROC Commit() RAISES {crashed} =  
IF vph = run => ForceAll(); << sl := sl + {commit}; sul := {}; vph := idle >> 
[*] RAISE crashed 
FI 

PROC Abort () = undoing := true; Undo(); vph := idle 

PROC Checkpoint() = VAR c' := c, w |  % move sl + vl to pl 
DO c' # {} => w := Install(); c' := c' - {w} OD; % until everything in c' is installed 
Truncate() 

PROC Crash() =  
<< vl := {}; vul := {}; c := {}; undoing := true >>;  
Redo(); Undo(); vph := idle 

%  Internal procedures invoked from Do and Commit 

APROC Apply(a, un) -> V = << % called by Do and Undo 
VAR v, l, vs := ss ++ c | 

(v, l) := AToL(a, vs); % find U’s that do a  
vl := vl + l; vul := vul + {un}; 
VAR c' | ss ++ c ++ c' = ss ++ c + l % Find w’s for action a 

=> c := c ++ c'; 
RET v >> 
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PROC ForceAll() = DO vl # {} => ForceOne() OD; RET % more all of vl to sl 

APROC ForceOne() = << VAR l1, l2 | % move one a from vl to sl 
sl := sl + {vl.head}; sul := sul + {vul.head};  
vl := vl.tail; vul := vul.tail >> 

%  Internal procedures invoked from Crash or Abort 

PROC Redo() = VAR l := + : sl | % Restore c from sl after crash 
DO << l # {} => VAR vs := ss ++ c, w |  % Find w for each u in l 

vs ++ {w} = vs + L{{l.head}} => c := c ++ {w}; l := l.tail >> 
OD 

PROC Undo() = % Apply sul + vul to vs 
VAR ul := sul + vul, i := 0 | 

DO ul # {} => VAR un := ul.last | 
ul := ul.reml; 
IF un=cancel => i := i+1 [*] i>0 => i := i-1 [*] Apply(un, cancel) FI 

OD; undoing := false 
% Every entry in sul + vul has a cancel, and everything is undone in vs. 

% Background actions to install updates from c to ss and to truncate sl 

THREAD Background() =  
DO 
 Install()  
[] ForceOne() % Enough of these implement WAL 
[] Drop() 
[] Truncate() 
[] SKIP 
OD 

APROC Install() -> W = << VAR w :IN c | % Apply some w to ss; requires WAL 
   ss # ss ++ {w} % w isn’t already in ss 
/\ ss ++ {w} + sl = ss + sl => % w is in sl, the WAL condition 

ss := ss ++ {w}; RET w >> 

APROC Drop() = << VAR w :IN c | ss ++ {w} = ss => c := c - {w} >> 

APROC Truncate() = << VAR l1, l2 |  % Move some of sl to pl 
sl = l1 + l2 /\ ss + l2 = ss + sl => pl := pl + l1; sl := l2 >>  

% Media recovery 

The idea is to reconstruct the stable state ss from the permanent log pl by redoing all the 
updates, starting with a fixed initial ss. Details are left as an exercise. 

% Miscellaneous functions 

FUNC AToL(a, s) -> (V, L) = VAR v, l | % all U’s in one group 
l.size = 1 /\ (v, s + l) = a(s) => RET (v, l) 

FUNC AToUn(a, s) -> Un = VAR un, v, s' | 
(v, s') = a(s) /\ (nil, s) = un(s') => RET un 
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The remaining functions are only used in guards and invariants.  

FUNC DoLog(s, l) -> S =  % s + l = DoLog(s, l) 
IF l = {} => RET s  % apply U's in l to s 
[*] VAR us := l.head | 

RET DoLog((    us IS Tag \/ us = {} => s  
           [*] (us.head)(s), {us.tail} + l.tail)) 

FI 

FUNC DoCache(s, c) -> S = % s ++ c = DoCache(s, c) 
DO VAR w :IN c | s := w(s), c := c - {w} OD; RET s 

FUNC UndoLog(s, ul) -> S = % s - l = UndoLog(s, l) 
IF ul = {} => RET s 
[] ul.last # cancel => RET UndoLog((u.last)(s), ul.reml) 
[] VAR ul1, un, ul2 | un # cancel /\ ul = ul1 + {un, cancel} + ul2 => 

RET UndoLog(s, ul1 + ul2) 
FI 

A cache is a set of commuting update functions. When we combine two caches c1 and c2, we 
want the total effect of c1 and c2, and all the updates still have to commute and be atomic 
updates. The DoCache below just states this requirement, without saying how to achieve it. 
Usually it’s done by requiring updates that don’t commute to compose into a single update that is 
still atomic. In the usual case updates are writes of single variables, which do have this property, 
since u1 * u2 = u2 if both are writes of the same variable.  

FUNC CombineCache(c1, c2) -> C = % c1++c2 = CombineCache(c1,c2) 
VAR c |   (* : c.seq) = (* : c1.seq) * (* : c2.seq)  
       /\ (ALL w1 :IN c, w2 :IN c | w1 # w2 ==> w1 * w2 = w2 * w1) => RET c 

END LogAndCache 

We can summarize the ideas in LogAndCache: 

• Writing stable state before committing a transaction requires undo. We need to write before 
committing because cache space for changed state is limited, while the size of a transaction 
may not be limited, and also to avoid livelock that keeps us from installing some cache 
entries. 

• Every uncommitted log entry has a logged undo. The entry and the undo are made stable by a 
single atomic action (using some low-level coding trick that we leave as an exercise for the 
reader). We must log an action and its undo before installing a cache entry affected by it; this 
is write ahead logging. 

• Recovery is complete redo followed by undo of uncommitted transactions. Because of the 
complete redo, undo’s are always from a clean state, and hence can be actions. 

• An undo is executed like a regular action, that is, logged. The undo of the undo is a special 
cancel action. 

• Writing a W to stable state doesn’t change the abstract stable state. This means that redo 
recovery works. It’s a strong constraint on the relation between logged U’s and cached W’s. 
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Multi-level recovery 

Although in our examples an update is usually a write of one disk block, the LogAndCache code 
works on top of any kind of atomic update, for example a B-tree or even another transactional 
system. The latter case codes each W as a transaction in terms of updates at a still lower level. Of 
course this idea can be applied recursively to yield a n level system. This is called ‘multi-level 
recovery’.2 It’s possible to make a multi-level system more efficient by merging the logs from 
several levels into a single sequential structure. 

Why would you want to complicate things in this way instead of just using a single-level 
transaction, which would have the same atomicity? There are at least two reasons: 

• The lower level may already exist in a form that you can’t change, without the necessary 
externally accessible locking or commit operations. A simple example is a file system, which 
typically provides atomic file renaming, on which you can build something more general. Or 
you might have several existing database systems, on top of which you want to build 
transactions that change more than one database. We show in handout 27 how to do this 
using two-phase commit. But if the existing systems don’t implement two-phase commit, you 
can still build a multi-level system on them. 

• Often you can get more concurrency by allowing lower level transactions to commit and 
release their locks. For example, a B-tree typically holds locks on whole disk blocks to 
maintain the integrity of the index data structures, but at the higher level only individual 
entries need to be locked. 

Buffer pools 

The standard code for the ideas in LogAndCache makes a U and a W read and write a single block 
of data. The W just gives the current value of the block, and the U maps one such block into 
another.  Both W’s (that is, cache blocks) and U’s carry sequence numbers so that we can get the 
log idempotence property without restricting the kind of mapping that a U does, using the method 
described earlier; these are called ‘log sequence numbers’ or LSN’s in the database literature. 

The LSN’s are also used to code the WAL guard in Install and the guard in Truncate. It’s OK 
to install a W if the LSN of the last entry in sl is at least as big as the n of the W. It’s OK to drop a 
U from the front of sl if every uninstalled W in the cache has a bigger LSN.  

The simplest case is a block equal to a single disk block, for which we have an atomic write. 
Often a block is chosen to be several disk blocks, to reduce the size of indexes and improve the 
efficiency of disk transfers. In this case care must be taken that the write is still atomic; many 
commercial systems get this wrong.  

The following module is incomplete. 

                                                 
2 D. Lomet. MLR: A recovery method for multi-level systems. Proc. SIGMOD Conf., May, 1992, pp 185-194. 
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MODULE BufferPool [ % implements LogAndCache 
V,   % Value of an action 
S0 WITH {s0:=()->S0} % abstract State 
Data    
] EXPORT ... = 

TYPE A = S->(V, S) % Action  
SN = Int % Sequence Number 
BA = Int % Block Address 
LB = [sn, data] % Logical Block 
 
S = BA -> LB % State 
U = [sn, ba, f: LB->LB] % Update 
Un = A 
W = [ba, lb] % update in cache 
 
L = SEQ U 
UL = SEQ Un 
C = SET W 

FUNC vs(ba) -> LB = VAR w IN c | w.ba = ba => RET w.lb [*] RET ss(ba) 
% This is the standard abstraction function for a cache 

The essential property is that updates to different blocks commute: w.ba # u.ba ==> w 
commutes with u, because u only looks at u.ba. Stated precisely: 

(ALL s |   (ALL ba | ba # u.ba ==> u(s)(ba) = s(ba) 
        /\ (ALL s' | s(u.ba) = s'(u.ba) ==> u(s)(u.ba) = u(s')(u.ba)) ) 

So the guard in Install testing whether w is already installed is just 
(EXISTS u | u IN vl /\ u.ba = w.a) 

because in Do we get w as W{ba:=u.ba, lb:=u(vs)(u.ba)}. 

END BufferPool 

Transactions meet the real world 

Various problems arise in using the transaction abstraction we have been discussing to code 
actual transactions such as ATM withdrawals or airline reservations. We mention the most 
important ones briefly. 

The most serious problems arise when a transaction includes changes to state that is not 
completely under the computer’s control. An ATM machine, for example, dispenses cash; once 
this has been done, there’s no straightforward way for a program to take back the cash, or even to 
be certain that the cash was actually dispensed. So neither undo nor log idempotence may be 
possible. Changing the state of a disk block has neither of these problems. 

So the first question is: Did it get done?  The jargon for this is “testability”. Carefully engineered 
systems do as much as possible to provide the computer with feedback about what happened in 
the real world, whether it’s dispensing money, printing a check, or unlocking a door. This means 
having sensors that are independent of actuators and have a high probability of being able to 
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detect whether or not an intended physical state transition occurred. It also means designing the 
computer-device interface so that after a crash the computer can test whether the device received 
and performed a particular action; hence the name “testability”. 

The second question is: Is undo possible?  The jargon for this is “compensation”. Carefully 
engineered systems include methods for undoing at least the important effects of changes in the 
state of the world. This might involve executing some kind of compensating transaction, for 
instance, to reduce the size of the next order if too much is sent in the current one, or to issue a 
stop payment order for a check that was printed erroneously. Or it might require manual 
intervention, for instance, calling up the bank customer and asking what really happened in 
yesterday’s ATM transaction. Usually compensation is not perfect. 

Because compensation is complicated and imperfect, the first line of defense against the 
problems of undo is to minimize the probability that a transaction involving real-world state 
changes will have to abort. To do this, break it into two transactions. The first runs entirely inside 
the computer, and it makes all the internal state changes as well as posting instructions for the 
external state changes that are required. The second is as simple as possible; it just executes the 
posted external changes. Often the second transaction is thought of as a message system that is 
responsible for reliably delivering an action message to a physical device, and also for using the 
testability features to ensure that the action is taken exactly once. 

The other major difficulty in transactions that interact with the world arises only with concurrent 
transactions. It has to do with input: if the transaction requires a round trip from the computer to 
a user and back it might take a long time, because users are slow and easily distracted. For 
example, a reservation transaction might accept a travel request, display flight availability, and 
ask the user to choose a flight. If the transaction is supposed to be atomic, seats on the displayed 
flights must remain available until the user makes her choice, and hence can’t be sold to other 
customers. To avoid these problems, systems usually insist that a single transaction begin with 
user input, end with user output, and involve no other interactions with the user. So the 
reservation example would be broken into two transactions, one inquiring about flight 
availability and the other attempting to reserve a seat. Handout 20 on concurrent transactions 
discusses this issue in more detail.  
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20.  Concurrent Transactions 

We often (usually?) want more from a transaction mechanism than atomicity in the presence of 
failures: we also want atomicity in the presence of concurrency. As we saw in handout 14 on 
practical concurrency, the reasons for wanting to run transactions concurrently are slow 
input/output devices (usually disks) and the presence of multiple processors on which different 
transactions can run at the same time. The latter is especially important because it is a way of 
taking advantage of multiple processors that doesn’t require any special programming. In a 
distributed system it is also important because separate nodes need autonomy.  

Informally, if there are two transactions in progress concurrently (that is, the Begin of one 
happens after the Begin and before the Commit of the other), we want all the observable effects 
to be as though all the actions of one transaction happen either before or after all the actions of 
the other. This is called serializing the two transactions; it is the same as making each transaction 
into an atomic action. This is good for the usual reason: it allows the clients to reason about each 
transaction separately as a sequential program. The clients only have to worry about concurrency 
in between transactions, and they can use the usual method for doing this: find invariants that 
each transaction establishes when it commits and can therefore assume when it begins. 

Here is the standard example. We are maintaining bank balances, with deposit, withdraw, and 
balance transactions. The first two involve reading the current balance, adding or subtracting 
something, making a test, and perhaps writing the new balance back. If the read and write are 
atomic actions, then the sequence read1, read2, write1, write2 will result in losing the effect 
of transaction 1. The third reads lots of balances and expects their total to be a constant. If its 
reads are interleaved with the writes of the other transactions, it may get the wrong total. 

The other property we want is that if one transaction precedes another (that is, its Commit 
happens before the Begin of the other) then it is serialized first. This is sometimes called 
external consistency; it’s not just a picky detail that only a theoretician would worry about, 
because it’s needed to ensure that when you put two transaction systems together you still get a 
serializable system.  

A piece of jargon you will sometimes see is that transactions have the ACID properties: Atomic, 
Consistent, Isolated, and Durable. Here are the definitions given in Gray and Reuter: 

Atomicity. A transaction’s changes to the state are atomic: either all happen or none happen. 
These changes include database changes, messages, and actions on transducers. 

Consistency. A transaction is a correct transformation of the state. The actions taken as a 
group do not violate any of the integrity constraints associated with the state. This requires 
that the transaction be a correct program. 

Isolation. Even though transactions execute concurrently, it appears to each transaction T 
that others executed either before T or after T, but not both. 
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Durability. Once a transaction completes successfully (commits), its changes to the state 
survive failures. 

The first three appear to be different ways of saying that all transactions are serializable. 

Many systems implement something weaker than serializability for committed transactions in 
order to allow more concurrency. The standard terminology for weaker degrees of isolation is 
degree 0  through degree 3, which is serializability. Gray and Reuter discuss the specs, code, 
advantages, and drawbacks of weaker isolation in detail (section 7.6, pages 397-419). 

We give a spec for concurrent transactions. Coding this spec is called ‘concurrency control’, and 
we briefly discuss a number of coding techniques. 

Spec 

The spec is written in terms of the histories of the transactions: a history is a sequence of (action, 
result) pairs, called events below. The order of the events for a single transaction is fixed: it is the 
order in which the transaction did the actions. A spec must say that for all the committed 
transactions there is a total ordering with three properties: 

Serializable: Doing the actions in the total order would yield the same result from each 
action, and the same final state, as the results and final state actually obtained. 

Externally consistent: The total order is consistent with the partial order established by 
the Begin’s and Commit’s. 

Non-blocking: it’s always possible to abort a transaction. This is necessary because when 
there’s a crash all the active transactions must abort. 

This is all that most transaction specs say. It allows anything to happen for uncommitted 
transactions. Operationally, this means that an uncommitted transaction will have to abort if it 
has seen a result that isn’t consistent with any ordering of it and the committed transactions. It 
also means that the programmer has to expect completely arbitrary results to come back from the 
actions. In theory this is OK, since a transaction that gets bad results will not commit, and hence 
nothing that it does can affect the rest of the world. But in practice this is not very satisfactory, 
since programs that get crazy results may loop, crash, or otherwise behave badly in ways that are 
beyond the scope of the transaction system to control. So our spec imposes some constraints on 
how actions can behave even before they commit. 

The spec works by keeping track of: 

• The ordering requirements imposed by external consistency, in a relation xc. 

• The histories of the transactions, in a map y.  

It imposes an invariant on xc and y that is defined by the function Invariant. This function says 
that the committed transactions have to be serializable in a way consistent with xc, and that 
something must be true for the active transactions. As written, Invariant offers a choice of 
several “somethings”; the intuitive meaning of each one is described in a comment after its 
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definition. The Do and Commit routines block if they can’t find a way to satisfy the invariant. The 
invariant maintained by the system is Invariant(committed, active, xc, y). 

It’s unfortunate that this spec deals explicitly with the histories of the transactions. Normally our 
specs don’t do this, but instead give a state machine that only generates allowable histories. If 
there’s a way to do this for the most general serializability spec I don’t know what it is. 

The function Invariant defining the main invariant appears after the other routines of the spec. 

MODULE ConcurrentTransactions [ 
V,   % Value 
S,   % State of database 
T   % Transaction ID 
] EXPORT Begin, Do, Commit, Abort, Crash = 

TYPE Result = [v, s] 
A = S -> Result % Action 
E = [a, v] % Event 
H = SEQ E % History 
 
TS = SET T % Transaction Set 
XC = (T, T)->Bool % eXternal Consistency 
TO = SEQ T % Total Order on T's 
Y = T -> H % state of transactions 

VAR s0 : S % current base state 
y := Y{} % current transaction state 
xc := XC{* -> false} % current required XC 
 
active : TS{} % active transactions 
committed : TS{} % committed transactions 
installed : TS{} % installed transactions 
aborted : TS{} % aborted transactions 

The sets installed and aborted are only for the benefit of careless clients; they ensure that T's 
will not be reused and that Commit and Abort can be repeated without raising an exception. 
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Operations on histories and orderings 

To define Serializable we need some machinery. A history h records a sequence of events, 
that is, actions and the values they return. Apply applies a history to a state to compute a new 
state; note that it fails if the actions in the history don’t give back the results in the history. Valid 
checks whether applying the histories of the transactions in a given total order can succeed, that 
is, yield the values that the histories record. Consistent checks that a total order is consistent 
with a partial order, using the closure method (see section 9 of the Spec reference manual) to 
get the transitive closure of the external consistency relation and the <<= method for non-
contiguous sub-sequence. Then Serializable(ts, xc, y) is true if there is some total order 
to on the transactions in the set ts that is consistent with xc and that makes the histories in y 
valid.  

FUNC Apply(h, s) -> S = 
% return the end of the sequence of states  starting at s and generated by  
% h's actions, provided the actions yield h's values. Otherwise undefined. 
RET {e :IN h, s’ := s BY (e.a(s’).v = e.v => e.a(s’).s)}.last 

FUNC Valid(y0, to) -> BOOL = RET Apply!( + : (to * y0), s0) 
% the histories in y0 in the order defined by to are valid starting at s0 

FUNC Consistent(to, xc0) -> BOOL = 
RET xc0.closure.set <= (\ t1, t2 | TO{t1, t2} <<= to).set 

FUNC Serializable(ts, xc0, y0) -> BOOL = % is there a good TO of ts 
RET ( EXISTS to | to.set = ts /\ Consistent(to, xc0) /\ Valid(y0, to) ) 

Interface procedures 

A transaction is identified by a transaction identifier t, which is assigned by Begin and passed 
as an argument to all the other interface procedures. Do finds a result for the action a that satisfies 
the invariant; if this isn’t possible the Do can’t occur, that is, the transaction issuing it must abort 
or block. For instance, if concurrency control is coded with locks, the issuing transaction will 
wait for a lock. Similarly, Commit checks that the transaction is serializable with all the already 
committed transactions. Abort never blocks, although it may have to abort several transactions 
in order to preserve the invariant; this is called “cascading aborts” and is usually considered to be 
bad, for obvious reasons. 

Note that Do and Commit block rather than failing if they can’t maintain the invariant. They may 
be able to proceed later, after other transactions have committed. But some code can get stuck 
(for example, the optimistic schemes described later), and for these there must be a demon thread 
that aborts a stuck transaction. 
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APROC Begin() -> T =                 
% Choose a t and make it later in xc than every committed trans; can't block 

<< VAR t | ~ t IN active \/ committed \/ installed \/ aborted => 
y(t) := {}; active := active \/ {t}; xc(t, t) := true; 
DO VAR t' :IN committed | ~ xc.closure(t', t) => xc(t', t) := true OD; 
RET t >> 

APROC Do(t, a) -> V RAISES {badT} =  
% Add (a,v) to history; may block unless NC 

<< IF  ~ t IN active => RAISE badT 
   [*] VAR v, y' := y{t -> y(t) + {E{a, v}}}} |  

Invariant(committed, active, xc, y') => y := y'; RET v >> 

APROC Commit(t) RAISES {badT} = <<      % may block unless AC (to keep invariant) 
IF  t IN committed \/ installed => SKIP % repeating Commit is OK 
[]  ~ t IN active \/ committed \/ installed => RAISE badT >> 
[]  t IN active /\ Invariant(committed \/ {t}, active - {t}, xc, y) => 

committed := committed \/ {t}; active := active - {t} >> 

APROC Abort(t) RAISES {badT} = <<       % doesn't block (need this for crashes) 
IF  t IN aborted => SKIP % repeating Abort is OK 
[]  t IN active  =>  

% Abort t, and as few others as possible to maintain the invariant. 
% s is the possible sets of T’s to abort; choose one of the smallest ones. 
VAR s      := {ts |   {t} <= ts /\ ts <= active  
                   /\ Invariant(committed, active - ts, xc, y)}, 
    n      := {ts | ts IN s | ts.size}.min, 
    aborts := {ts | ts IN s /\ ts.size = n}.choose | 

aborted := aborted \/ aborts; active:= active - aborts;  
y := y{t->} 

[*] RAISE badT  
FI >> 

Installation daemon 

This is not really part of the spec, but it is included to show how the data structures can be 
cleaned up. 

THREAD Install() = DO                  % install a committed transaction in s0 
<< VAR t | 

     t IN committed 
     % only if there’s no other transaction that should be earlier 
  /\ ( ALL t' :IN committed \/ active | xc(t , t') ) => 

s0 := Apply(y(t), s0);  
committed := committed - {t}; installed := installed \/ {t}  
% remove t from y and xc; this isn’t necessary, but it’s tidy 
y := y{t -> };  
DO VAR t' | xc(t , t') => xc := xc{(t , t') -> } OD;  

>> 
[*] SKIP 
OD 
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Function defining the main invariant 

FUNC Invariant(com: TS, act: TS, xc0, y0) -> BOOL = VAR current := com + act | 
 Serializable(com, xc0, y0) 
/\ % constraints on active transactions: choose ONE 
 

AC (ALL t :IN act |                      Serializable(com + {t}, xc0, y0) )) 
 

CC                                       Serializable(com + act, xc0, y0) 
 
EO (ALL t :IN act | (EXISTS ts | 
     com       <=ts /\ ts<=current /\  Serializable(ts  + {t}, xc0, y0) )) 
 
OD (ALL t :IN act | (EXISTS ts | 
     AtBegin(t)<=ts /\ ts<=current /\  Serializable(ts  + {t}, xc0, y0) )) 
 
OC1 (ALL t :IN act, h :IN Prefixes(y0(t)) | (EXISTS to, h1, h2 | 
      to.set = AtBegin(t) /\ Consistent(to, xc0) /\ Valid(y0, to) 
    /\ IsInterleaving(h1, {t' | t' IN current - AtBegin(t) - {t} | y0(t')}) 
   /\ h2 <<= h1     % subsequence 
   /\ h.last.a(Apply(+ : (to * y0) + h2 + h.reml, s0) = h.last.v )) 
 
OC2 (ALL t :IN act, h :IN Prefixes(y0(t)) | (EXISTS to, h1, h2, h3 | 
      to.set = AtBegin(t) /\ Consistent(to, xc0) /\ Valid(y0, to) 
   /\ IsInterleaving(h1, {t' | t' IN current - AtBegin(t) - {t} | y0(t')}) 
   /\ h2 <<= h1     % subsequence 
   /\ IsInterleaving(h3, {h2, h.reml}) 
   /\ h.last.a(Apply(+ : (to * y0) + h3, s0) = h.last.v )) 
 

NC true   

FUNC Prefixes(h) -> SET H = RET {h' | h' <= h /\ h' # {}} 

FUNC AtBegin(t) -> TS = RET {t' | xc.closure(t', t)} 
% The transactions that are committed when t begins. 

FUNC IsInterleaving(h, s: SET H) -> BOOL =  
% h is an interleaving of the histories in s. This is true if there’s a  
% multiset il that partitions h.dom, and each element of il extracts  
% one of the histories in s from h  

RET (EXISTS il: SEQ SEQ Int | 
(+ : il) == h.dom.seq /\ {z :IN il | | z * h} == s.seq ) 
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A set of transactions is serializable if there is a serialization for all of them. All versions of the 
invariant require the committed transactions to be serializable; hence a transaction can only 
commit if it is serializable with all the already committed transactions. There are different ideas 
about the uncommitted ones. Some ideas use AtBegin(t): the transactions that committed 
before t started. 

AC All Committable: every uncommitted transaction can commit now and AC still holds 
for the rest (implies that any subset of the uncommitted transactions can commit, 
since abort is always possible). Strict two-phase locking, which doesn’t release any 
locks until commit, ensures AC. 

CC Complete Commit: it’s possible for all the transactions to commit (i.e., there’s at least 
one that can commit and CC still holds for the rest). AC ==> CC. Two-phase locking, 
which doesn’t acquire any locks after releasing one, ensures CC. 

EO Equal Opportunity: every uncommitted transaction has some friends such that it can 
commit if they do. CC ==> EO. 

OD Orphan Detection: every uncommitted transaction is serializable with its AtBegin 
plus some other transactions (a variation not given here restricts it to the AtBegin 
plus some other committed transactions). It may not be able to commit because it may 
not be serializable with all the committed transactions; a transaction with this 
property is called an ‘orphan’. Orphans can arise after a failure in a distributed system 
when a procedure keeps running even though its caller has failed, restarted, and 
released its locks. The orphan procedure may do things based on the old values of the 
now unlocked data. EO ==> OD. 

OC Optimistic Concurrency: uncommitted transactions can see some subset of what has 
happened. There's no guarantee that any of them can commit; this means that the code 
must check at commit. Here are two versions; OC1 is stronger. 

OC1: Each sees AtBegin + some other stuff + its stuff; this roughly corresponds to 
having a private workspace for each uncommitted transaction. OD ==> OC1. 

OC2: Each sees AtBegin + some other stuff including its stuff; this roughly 
corresponds to a shared workspace for uncommitted transactions. OC1 ==> OC2 

NC No Constraints: uncommitted transactions can see arbitrary values. Again, there's no 
guarantee that any of them can commit. OC2 ==> NC. 

Note that each of these implies all the lower ones. 
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Code 

In the remainder of the handout, we discuss various ways to code these specs. These are all ways 
to code the guards in Do and Commit, stopping a transaction either from doing an action which 
will keep it from committing, or from committing if it isn’t serializable with other committed 
transactions. 

Two-phase locking 

The most common way to code this spec1 is to ensure that a transaction can always commit (AC) 
by  

acquiring locks on data in such a way that the outstanding actions of active transactions 
always commute, and then  

doing each action of transaction t in a state consisting of the state of all the committed 
transactions plus the actions of t.  

This ensures that we can always serialize t as the next committed transaction, since we can 
commute all its actions over those of any other active transaction. We proved a theorem to this 
effect in handout 17, the “big atomic actions” theorem. With this scheme there is at least one 
time where a transaction holds all its locks, and any such time can be taken as the time when the 
transaction executes atomically. If all the locks are held until commit (strict two-phase locking), 
the serialization order is the commit order (more precisely, the commit order is a legal 
serialization order). 

To achieve this we need to associate a set of locks with each action in such a way that if two 
actions don’t commute, then they have conflicting locks. For example, if the actions are just 
reads and writes, we can have a read lock and a write lock for each datum, with the rule that read 
locks don’t conflict with each other, but a write lock conflicts with either. This works because 
two reads commute, while a read and a write do not. Note that the locks are on the actions, not 
on the updates into which the actions are decomposed to code logging and recovery. 

Once acquired, t’s locks must be held until t commits. Otherwise another transaction could see 
data modified by t; then if t aborts rather than committing, the other transaction would also have 
to abort. Thus we would not be maintaining the invariant that every transaction can always 
commit, because the premature release of locks means that all the actions of active transactions 
may not commute. Holding the locks until commit is called strict two-phase locking.  

A variation is to release locks before commit, but not to acquire any locks after you have 
released one. This is called two-phase locking, because there is a phase of acquiring locks, 
followed by a phase of releasing locks. Two-phase locking implements the CC spec.  

One drawback of locking is that there can be deadlocks, as we saw in handout 14. It’s possible to 
detect deadlocks by looking for cycles in the graph of threads and locks with arcs for the 
relations “thread a waiting for lock b” and “lock c held by thread d”. This is usually not done for 

                                                 
1 In Jim Gray’s words, “People who do it for money use locks.” This is not strictly true, but it’s close. 



6.826—Principles of Computer Systems   2000 

Handout 20.  Concurrent Transactions 9 

mutexes, but it often is done by the lock manager of a database or transaction processing system, 
at least for threads and locks on a single machine. It requires global information about the graph, 
so it is expensive to code across a distributed system. The alternative is timeout: assume that if a 
thread waits too long for a lock it is deadlocked. Timeout is the poor man’s deadlock detection; 
most systems use it. A transaction system needs to have an automatic way to handle deadlock 
because the clients are not supposed to worry about concurrency, and that means they are not 
supposed to worry about avoiding deadlock. 

To get a lot of concurrency, it is necessary to have fine-granularity locks that protect only small 
amounts of data, say records or tuples. This introduces two problems: 

There might be a great many of these locks. 

Usually records are grouped into sets, and an operation like “return all the records with 
hairColor = blue” needs a lock that conflicts with inserting or deleting any such record. 

Both problems are usually solved by organizing locks into a tree or DAG and enforcing the rule 
that a lock on a node conflicts with locks on every descendant of that node. When there are too 
many locks, escalate to fewer locks with coarser granularity. This can get complicated; see Gray 
and Reuter2 for details. 

We now make the locking scheme more precise, omitting the complications of escalation. Each 
lock needs some sort of name; we use strings, which might have the form "Read(addr)", where 
addr is the name of a variable. Each transaction t has a set of locks locks(t), and each action a 
needs a set of locks protect(a). The conflict relation says when two locks conflict. It must 
have the property stated in invariant I1, that non-commuting actions have conflicting locks. Note 
that conflict need not be transitive. 

Invariant I2 says that a transaction has to hold a lock that protects each of its actions, and I3 says 
that two active transactions don’t hold conflicting locks. Putting these together, it’s clear that all 
the committed transactions in commit order, followed by any interleaving of the active 
transactions, produces the same histories. 

TYPE Lk = String 
Lks = SET Lk 

CONST  
 protect : A -> Lks  

conflict : (Lk, Lk) -> Bool 

% I1: (ALL a1, a2 | a1 * a2 # a2 * a1 ==> conflict(protect(a1), protect(a2))) 

VAR locks : T -> Lks 

% I2: (ALL t :IN active, e :IN y(t) | protect(e.a) <= locks(t)) 

% I3: (ALL t1 :IN active, t2 :IN active | t1 # t2 ==> 
  (ALL lk1 :IN locks(t1), lk2 :IN locks(t2) | ~ conflict(lk1, lk2))) 

                                                 
2Gray and Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1993, pp 406-421. 
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To maintain I2 the code needs a partial inverse of the locks function that answers the question: 
does anyone hold a lock that conflicts with lk. 

Multi-version time stamps 

It’s possible to give very direct code for the idea that the transactions take place serially, each 
one at a different instant —we make each one happen at a single instant of logical time. Define a 
logical time and keep with each datum a history of its value at every instant in time. This can be 
represented as a sequence of pairs (time, value), with the meaning that the datum has the given 
value from the given time until the time of the next pair. Now we can code AC by picking a time 
for each transaction (usually the time of its Begin, but any time between Begin and Commit will 
satisfy the external consistency requirement), and making every read obtain the value of the 
datum at the transaction’s time and every write set the value at that time. 

More precisely, a read at t gets the value at the next earlier definition, call it, and leaves a note 
that the value of that datum can’t change between t and t' unless the transaction aborts. To 
maintain AC the read must block if t' isn’t committed. If the read doesn’t block, then the 
transaction is said to read ‘dirty data’, and it can’t commit unless the one at t' does. This version 
implements CC instead of AC. A write at t may not be possible, because some other transaction 
has already read a different value at t. This is the equivalent of deadlock, because the transaction 
cannot proceed. Or, in Jim Gray's words, reads are writes (because they add to the history) and 
waits are aborts (because waiting for a write lock turns into aborting since the value at that time 
is already fixed).3 These translations are not improvements, and they explain why multi-version 
time stamps have not become popular. 

A drastically simplified form of multi-version time stamps handles the common case of a very 
large transaction t that reads lots of shared data but only writes private data. This case arises in 
running a batch transaction that needs a snapshot of an online database. The simplification is to 
keep just one extra version of each datum; it works because t does no writes. You turn on this 
feature when t starts, and the system starts to do copy-on-write for all the data. Once t is done 
(actually, there could be several), the copies can be discarded. 

Optimistic concurrency control 
 
It’s easier to ask forgiveness than to beg permission. 

Grace Hopper 

Sometimes you can get better performance by allowing a transaction to proceed even though it 
might not be able to commit. The standard version of this optimistic strategy allows a transaction 
to read any data it likes, keeps track of all the data values it has read, and saves all its writes in 
local variables. When the transaction commits, the system atomically  

checks that every datum read still has the value that was read, and  

if this check succeeds, installs all the writes.  

                                                 
3 Gray and Reuter, p 437. 
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This obviously serializes the transaction at commit time, since the transaction behaves as if it did 
all its work at commit time. If any datum that was read has changed, the transaction aborts, and 
usually retries. This implements OC1 or OC2. The check can be made efficient by keeping a 
version number for each datum. Grouping the data and keeping a version number for each group 
is cheaper but may result in more aborts. 

The disadvantages of optimistic concurrency control are that uncommitted transactions can see 
inconsistent states, and that livelock is possible because two conflicting transactions can 
repeatedly restart and abort each other. With locks at least one transaction will always make 
progress as long as you choose the youngest one to abort when a deadlock occurs. 

OCC can avoid livelock by keeping a private write buffer for each transaction, so that a 
transaction only sees the writes of committed transactions plus its own writes. This ensures that 
at least one uncommitted transaction can commit whenever there’s an uncommitted transaction 
that started after the last committed transaction t. A transaction that started before t might see 
both old and new values of variables written by t, and therefore be unable to commit. Of course 
a private write buffer for each transaction is more expensive than a shared write buffer for all of 
them. This is especially true because the shared buffer can use copy-on-write to capture the old 
state, so that reads are not slowed down at all. 

The Hydra design for a single-chip multi-processor4 uses an interesting version of OCC to allow 
speculative parallel execution of a sequential program. The idea is to run several sequential 
segments of a program in parallel as transactions (usually loop iterations or a procedure call and 
its continuation). The desired commit order is fixed by the original sequential ordering, and the 
earliest segment is guaranteed to commit. Each transaction has a private write buffer but can see 
writes done by earlier transactions; if it sees any values that are later overwritten then it has to 
abort and retry. Most of this logic is coded by the hardware of the on-chip caches and write 
buffers. 

Field calls and escrow locks 

There is a specialization of optimistic concurrency control called “field calls with escrow 
locking” that can perform much better under some very special circumstances that occur 
frequently in practice. Suppose you have an operation that does  

 << IF pred(v) => v := f(v) [*] RAISE error >>  

where f is total. A typical example is a debit operation, in which v is a balance, pred(v) is 
v > 100, and f(v) is v - 100. Then you can attach to v a ‘pending list’ of the f’s done by 
active transactions. To do this update, a transaction must acquire an ‘escrow lock’ on v; this lock 
conflicts if applying any subset of the f’s in the pending list makes the predicate false. In general 
this would be too complicated to test, but it is not hard if f’s are increment and decrement (v + 
n and v - n) and pred’s are single inequalities: just keep the largest and smallest values that v 
could attain if any subset of the active transactions commits. When a transaction commits, you 

                                                 
4 Hammond, Nayfeh, and Olukotun, A single-chip multiprocessor, IEEE Computer, Sept. 1997. Hammond, Willey, 
and Olukotun, Data speculation support for a chip multiprocessor, Proc 8th ACM Conference on Architectural 
Support for Programming Languages and Operating Systems, San Jose, California, Oct. 1998. See also http://www-
hydra.stanford.edu/publications.shtml. 
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apply all its pending updates. Since these field call updates don’t actually obtain the value of v, 
but only test pred, they don’t need read locks. An escrow lock conflicts with any ordinary read 
or write. For more details, see Gray and Reuter, pp 430-435. 

This may seem like a lot of trouble, but if v is a variable that is touched by lots of transactions 
(such as a bank branch balance) it can increase concurrency dramatically, since in general none 
of the escrow locks will conflict. 

Full escrow locking is a form of locking, not of optimism. A ‘field call’ (without escrow locking) 
is the same except that instead of treating the predicate as a lock, it checks atomically at commit 
time that all the predicates in the transaction are still true. This is optimistic. The original form of 
optimism is a special case in which every pred has the form v = old value and every f(v) is 
just new value. 

Nested transactions 

It’s possible to generalize the results given here to the case of nested transactions. The idea is 
that within a single transaction we can recursively embed the entire transaction machinery. This 
isn’t interesting for handling crashes, since a crash will cause the top-level transaction to abort. It 
is interesting, however, for making it easy to program with concurrency inside a transaction by 
relying on the atomicity (that is, serializability) of sub-transactions, and for making it easy to 
handle errors by aborting unsuccessful sub-transactions. 

With this scheme, each transaction can have sub-transactions within itself. The definition of 
correctness is that all the sub-transactions satisfy the concurrency control invariant. In particular, 
all committed sub-transactions are serializable. When sub-transactions have their own nested 
transactions, we get a tree. When a sub-transaction commits, all its actions are added to the 
history of its parent. 

To code nested transactions using locking we need to know the conflict rules for the entire tree. 
They are simple: if two different transactions hold locks lk1 and lk2 and one is not the ancestor 
of the other, then lk1 and lk2 must not conflict. This ensures that all the actions of all the 
outstanding transactions commute except for ancestors and descendants. When a sub-transaction 
commits, its parent inherits all its locks. 

Interaction with recovery 

We do not discuss in detail how to put this code for concurrency control together with the code 
for recovery that we studied earlier. The basic idea, however, is simple enough: the two are 
almost completely orthogonal. All the concurrent transactions contribute their actions to the logs. 
Committing a transaction removes its undo’s from the undo logs, thus ensuring that its actions 
survive a crash; the single-transaction version of recovery in handout 18 removes everything 
from the undo logs. Aborting a transaction applies its undo’s to the state; the single-transaction 
version applies all the undo’s.  

Concurrency control simply stops certain actions (Do or Commit) from happening, and perhaps 
aborts some transactions that can’t commit. This is clearest in the case of locking, which just 
prevents any undesired changes to the state. Multi-version time stamps use a more complicated 
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representation of the state; the ordinary state is an abstraction given a particular ordering of the 
transactions. Optimistic concurrency control aborts some transactions when they try to commit. 
The trickiest thing to show is that the undo’s that recovery does in Abort do the right thing. 

Performance summary 

Each of the coding schemes has some costs when everything is going well, and performs badly 
for some combinations of active transactions. 

Locking pays the costs of acquiring the locks and of deadlock detection in the good case. 
Deadlocks lead to aborts, which waste the work done in the aborted transactions, although it’s 
possible to choose the aborted transactions so that progress is guaranteed. If the locks are too 
coarse either in granularity or in mode, many transactions will be waiting for locks, which 
increases latency and reduces concurrency. 

Optimistic concurrency control pays the cost of noticing competing changes in the good case, 
whether this is done by version numbers or by saving initial values of variables and checking 
them at Commit. If transactions conflict at Commit, they get aborted, which wastes the work they 
did, and it’s possible to have livelock, that is, no progress, in the shared-write-buffer version; it’s 
OK in the private-write-buffer version, since someone has to commit before anyone else can fail 
to do so. 

Multi-version time stamps pay a high price for maintaining the multi-version state in the good 
case; in general reads as well as writes change it. Transaction conflicts lead to aborts much as in 
the optimistic scheme. This method is inferior to both of the others in general; it is practical, 
however, for the special case of copy-on-write snapshots for read-only transactions, especially 
large ones. 
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